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Abstract
Persistent Memory (PM) technologies provide fast, byte-

addressable access to durable storage but face crash consis-

tency challenges, motivating extensive work of testing and

verification of PM programs. Central to PM testing tools is

the specification of program properties for object persistence

order and atomicity. Although several methods have been

proposed for inferring PM program properties, most focus

on ordering properties, offering limited support for atomicity

properties. This paper explores a class of important atomicity

properties between the container-like arrays and their logical

size variables, referred to as the counting correlation, which

are common in PM programs but exceed the capability of

existing approaches. We propose invariants to capture the

necessary behaviors of counting-correlated variables, utilize

symbolic range analysis to extract PM program behaviors,

and encode them into SMT constraints. These constraints are

checked against the invariants to infer likely PM program

properties. We demonstrate the utility of the inferred proper-

ties by leveraging them for PM bug detection, which discovers

14 atomicity bugs (including 11 new bugs) in real-world PM

programs.

1 Introduction

DRAM technology is facing significant challenges in den-

sity scaling and power leakage [37]. Alternatively, Persistent

Memory (PM) technologies, such as Intel Optane [18] and

CXL-SSD [2, 35], open a new paradigm that allows for byte-

addressable interfaces like DRAM and avoids the overhead

of the storage stack. However, PM-based systems are error-

prone due to the crash consistency issue. A store to PM is

first written to a volatile cache and then flushed to the durable

media, during which data is reordered [32, 33]. Programmers

need to explicitly use hardware instructions like clflush
and sfence, or transaction interfaces provided by libraries

to ensure crash consistency. Yet appropriate usage of these

instructions or interfaces demands expertise, beyond the reach

of most programmers. As a result, PM programs are found to

have many crash consistency bugs by emerging PM testing

tools [9, 11, 15, 24, 30].

Due to the explosive program state and the arbitrary crashes

that need to be explored, most existing PM testing tools rely

on manual annotation [5, 5, 16, 23, 24], which can be tedious,

or PM program properties specified by developers [9, 30] to

inject crashes in a way that efficiently triggers potential bugs.

Consequently, there is a persistent need for specifying PM

program properties to detect crash consistency violations. To

relieve the burden of programmers, PM program property in-

ference approaches, such as Witcher [9] and Huang et al. [15],

have been proposed to infer likely program properties based

on control and data dependencies. While these methods show

promise in ordering properties, they face challenges when

dealing with the diverse atomicity properties of common PM

data structures.

This paper examines a crucial category of atomicity prop-

erties that pertain to the relationship between container-like

PM data structures and the integer variables that represent

their semantic sizes–a relationship we refer to as counting.

For instance, in a tree node, the children array is counting-

correlated with its length variable, which records the num-

ber of appended pointers to child nodes. Without ensuring

atomic persistence of updates to the children array and its

length variable, the crash could result in the program reading

a dangling pointer or losing ingested data. This counting cor-

relation is also present in other persistent data structures and

PM-based systems, such as hash tables [22, 28, 41] and ring

buffers [14, 36, 39]. Unfortunately, systematically inferring

properties related to counting correlation is out of reach of

dependency-based atomicity property inference approaches,

which rely on assumptions about access patterns rather than

directly analyzing the program semantics of counting.

This paper studies the inference approach of the counting-

related atomicity properties, aiming to complement the exist-

ing atomicity inference methods and thereby expand the scope

of violations that the PM testing tools can detect. However,

identifying the counting correlation among variables is not as



straightforward as its simple definition suggests. The seman-

tic sizes, as a logical concept derived from the programmer’s

intent, are not explicitly revealed through program behavior.

To handle it, we first propose the invariants for describing the

necessary behaviors of counting-correlated variables based on

their access ranges. We leverage symbolic range lattice [29] to

extract these behaviors from the program, then encode them

into SMT (Satisfiability Modulo Theories) [4] constraints,

which are checked against the invariant with an SMT solver,

thereby validating the likely counting-related atomicity prop-

erties. To show the effectiveness of the proposed inference

approach, we leverage the inferred properties to detect PM

bugs and successfully detect 14 atomicity violations, includ-

ing 11 previously unknown bugs.

In summary, this paper makes the following contributions.

• We identify an important class of atomicity properties,

termed counting, which are crucial for ensuring the crash

consistency of PM programs. We also propose invariants to

capture the behaviors of counting-correlated variables.

• We propose a framework that infers the counting correlation

in PM programs by combining the symbolic range analysis

with SMT constraint solving to validate the invariant.

• We evaluated the effectiveness of our approaches on real-

world PM programs and found 14 atomicity bugs.

2 Background and Motivation

2.1 Background
Applications accessing PM could directly perform byte-

addressable load/store operations, instead of system calls,

as with traditional storage devices. Store requests to PM are

first buffered in a volatile cache and then wait an arbitrary

amount of time before the cacheline containing the data is

evicted to PM. As a result, the reordering of writes to dif-

ferent memory locations may occur [34], causing the data

persistence order may differ from the original execution order

in the program. When a crash occurs, durable data in PM is

prone to unexpected inconsistency.

PM programming delegates the task of ensuring crash con-

sistency to the programmers, by using low-level instructions

like clflush (or clwb) to flush cache lines and sfence to

enforce the order, as well as high-level transaction (TX) in-

terfaces [17, 19, 38] to provide all-or-nothing semantics. De-

spite these explicit flush and fence instructions, PM programs

suffer from crash consistency issues [5, 9, 24, 30], including

correctness bugs (e.g., improper or missed flush/fence) and

performance bugs (e.g., extra flush/fence). This work focuses

on the correctness issues.

2.2 Related Work
While earlier PM testing tools discussed the detection of

durability bugs (i.e., missing flush for a particular store)–the

simplest form of correctness bug in PM programs [20,24,30],

recent works focus more on discovering application-specific

bugs that require an understanding of the program logic.

In particular, application-specific testing frameworks are de-

signed to detect (i) ordering bugs that violate the must persist-

before requirements between writes, i.e., without properly

using fences, and (ii) atomicity bugs that violate the must

persist-together requirements of writes, i.e., without enclos-

ing the writes in a transaction.

The main challenge faced by application-specific PM test-

ing tools is the explosive PM state space [12, 20, 30] due

to the arbitrary write reordering and crash point in PM pro-

grams. To overcome it, existing tools use manual annota-

tion [5, 5, 16, 23, 24], known bug pattern [10, 30], or in a

more general way, PM program properties specified by de-

velopers [9, 30] to inject crashes such that potential bugs are

triggered efficiently.

However, relying on manual efforts to specify the PM prop-

erties is time-consuming and demands expert knowledge of

program semantics and the PM hardware model, making

it not within reach of most developers. Although a black-

box approach [11] has been proposed to bypass the need for

program properties by focusing on the recovery procedure–

specifically, examining whether the crashed program states

are recoverable–the recovery code itself is often buggy and

unreliable [24]. As a result, existing PM testing tools still

have a common requirement for PM program properties to

identify violations effectively.

To help programmers specify PM program properties,

Witcher [9] and Huang et al. [15] propose to infer likely

program properties based on the control dependency and data

dependency patterns. For example, from a single control de-

pendency relationship if(x) then y=0, where the write to y
is control dependent on the read from x, an ordering PM pro-

gram property is inferred that a store of x should be persisted

before an update of y to ensure crash consistency. Through

static analysis or dynamic analysis of data and control de-

pendencies in program traces, Witcher and Huang et al. have

demonstrated their ability to infer several ordering and atom-

icity PM program properties and detected potential bugs by

checking whether these properties are satisfied.

Limitations. While dependency analysis can easily infer a

persist-before requirement from a single data or control de-

pendency relationship, it is limited to capturing the persist-
together requirements for common data structures in PM

programs. Table 1 presents the control dependency patterns

that two existing works rely on to infer the potential atomicity

properties in PM programs. Witcher observes that the updates

of two or more guardians should be persisted atomically;

the guardian is the flag variable at the condition statement

controlling the access to other variables, e.g., x in if(x). In

contrast, Huang et al. regard a set of guardians that guard

each other as atomic variables. The logic is that since each

guarding relationship produces an ordering requirement, the



Witcher [9] Huang et al. [15]

Dependency Pattern
if(x) then m· · · (m

ctrl−−→
dep

x) if(x) then y· · · (y
ctrl−−→
dep

x)

if(y) then n· · · (n
ctrl−−→
dep

y) if(y) then x· · · (x
ctrl−−→
dep

y)

Inferred Likely

Atomicity Property
ATOMICITY(x, y) ATOMICITY(x, y)

Table 1: Existing dependency-based atomicity PM program

property inference approaches.

only way to reconcile the conflicting requirements between

interdependent variables is to persist them together.

Consider an atomicity bug found by our work from P-

ART [22], a persistent adaptive radix tree (ART), shown in

Figure 1 (b). In this code, a children array that collects the

valid elements from the node_4 of ART, along with a variable

childrenCount that indicates the size of valid elements in

children, are expected to update atomically. Failing to en-

sure atomicity upon crash could result in irrecoverable data

loss if only the array update is persisted, or the return of stale

values if only the size update is persisted.

However, neither of the aforementioned dependency pat-

terns could be identified in the accesses to children and

childrenCount. In Figure 1 (a), childrenCount guards the

access to children, but the testing tools fail to detect any

instances where children guards childrenCount (to form

the pattern in Huang et al.) or other variables (to form the pat-

tern in Witcher). Unlike a single variable acting as a guardian,

the children array functions as a container with different

semantics. It stores multiple user data and ensures their dura-

bility in PM to serve future queries. These container-like

structures are common in PM use cases, such as database

indexes [22, 27, 28, 41] and file systems [7, 40]. Without a

guardian role, these structures are hardly captured by the de-

pendency analysis to infer their related atomicity properties.

Besides, work on detecting atomicity violations in concur-

rent programs [25, 31], such as MUVI [25], might potentially

uncover certain counting-related bugs. However, these meth-

ods lack the capability for systematic detection and employ

runtime techniques that are not straightforward for adoption

in PM. For instance, controlling thread interleaving [31] is

challenging in the context of PM due to the costly PM writes,

as well as arbitrary crashes, which alter the interleaving space.

2.3 Counting-related Atomicity Property
We now introduce the counting relationships between

container-like structures and their size attributes commonly

found in PM programs. These relationships form a new atom-

icity property pattern, complementing existing dependency-

based ones. Formally, an integer variable SZ tracks a numer-

ical value about the logical size1 of one or multiple arrays

ARRs in the following three scenarios:

1The physical size could be regarded as a special case of the logical size.

73   Tree::lookupRange (…) {
74          ...
99            for (uint32_t i = 0; i < childrenCount; ++i) {

100               const N *n = std::get<1>(children[i]);
101            ...}
         }                               (a) Tree.cpp 

109   N4::getChildren (…) { 
116            ...
117 children[childrenCount] = std::make_tuple(key, child);
118     childrenCount++;
119            ...
          }                              (b) N_4.cpp

They should be 
in the same TX

Figure 1: An example atomicity bug outside the reach of

dependency-based inference approaches.

• the logical size of an array, and

• the sum of the logical sizes of multiple arrays, and

• the complementary size of an array to a constant.

If a SZ and one or more ARRs exhibit any of the above relation-

ships, an atomicity property ATOMICITY(SZ,ARR) should be

satisfied in PM programs to ensure the crash consistency.

Despite their intuitive semantics, counting-related atom-

icity properties are often violated in many software storage

stacks, which are among the primary targets PM is expected

to reshape. For example, in btrfs, i_size that indicates the

file size was found to be inconsistent with the actual file size

when appending data. This inconsistency arises when the log

of i_size is delayed as improper flags are set by other op-

erations, and then a fsync flushes the data with the value of

i_size smaller than the actual data size [26]. And in ext4,

i_disksize indicating the size of data stored on disk is found

inconsistent with the real data size when a delayed end-of-file

write back meets a crash while a direct non-end-of-file write

succeeds [13]. Although only a limited number of atomicity

PM bugs are found due to the lack of testing tools aside from

Witcher [9] and Huang et al. [15], there is a counting-related

PM atomicity bug [6]. In this bug, size that indicates the

allocated size of an array becomes inconsistent with the array

when a crash happens between their updates.

3 Property Inference

3.1 Overview
This work aims to infer counting-related atomicity properties

from PM programs. Rather than relying on causation rela-
tionships, as dependency-based inference approaches do, we

resort to a correlation relationship, in which variables main-

tain a semantic relation throughout the program. We expect

our approach to complement the work of Witcher [9] and

Huang et al. [15], thereby broadening the range of inferred

atomicity properties and related bugs covered by testing tools.

Problem. Although the concept of counting is intuitive, dis-

covering the counting correlation is not straightforward. As a



programmer’s intent, an array’s logical size, which indicates

the number of valid elements in its allocated space, is un-

known to the analysis tools. Furthermore, the variable that

represents the array’s logical size may not consistently align

with the array’s true size throughout the program’s execution.

Consider an array insertion example in List 1. After executing

lines 2 to 5, which insert an element into the middle of the

array, the real size of array after line 2 is size+1, different

from the value of size until its update at line 6. Here, size
is intended to be counting-correlated with array. But the

definitions of counting cannot be used to identify counting-

correlated variables.

1 // insert an element at position p
2 for(i = size - 1; i >= p; i--){
3 array[i + 1] = array[i];
4 }
5 array[p] = 20;
6 size += 1;

Listing 1: Array insertion example (0 <= p < size).

Main Idea. Our solution to the above problem is based on

our observation that the read access to the array must remain
within the range of valid elements constrained by the real size,

where the range of valid elements is accessible by analyzing

program behaviors. As a result, we propose that the likely PM

atomicity property ATOMICITY(array, size) is identified

if any read access to array could be proved to be restricted

by size. We refer to this as the read range invariant. Later,

we will show why write access to the array may be beyond

the valid element range and how to leverage this fact to form

an (optional) write range invariant.

Inference Approach. To infer the counting-related atomicity

property, we need to discover the counting-correlated vari-

able pairs that satisfy the above access range invariants. A

possible solution is to employ dynamical analysis such as

Daikon [8], which monitors the indices of all pointer accesses

and the values of all integers, subsequently verifying each pair

in traces against the invariant individually. However, due to

the inequalities in access range invariants, dynamic analysis

often yields highly inaccurate results and is hard to scale in

the presence of loops. Instead, we resort to Symbolic Range

Analysis (SRA) [29], which over-approximates the access

ranges for array indices and offers a more reliable analysis of

program behaviors.

3.2 Invariants for Counting Correlation
Since the definition of counting about the logical/real size

of an array does not characterize the real behaviors of cor-

related variables, we propose two access range invariants as

the necessary conditions to infer likely counting-related atom-

icity properties. The invariant refers to the assertion about

the correlated variables that are always held to be true in the

program. We denote the program with P in this section.

Invariant 1: Read Range. We observe that a read access,

which incorporates the programmer’s intent for acquiring

the valid elements of a container, has its index always lie in

the region restricted by the container’s logical size. Thus, we

propose to use read range invariants to capture the relationship

between the access behavior to an array and its counting-

correlated size variable. We first introduce the invariant for

the first correlation pattern, which is the base of the two other

correlation patterns, as shown below:

∀ρ ∈ P, Readρ(ARR, idx) =⇒ idx <Valρ(SZ). (1)

Readρ(ARR, idx) indicates there is a read to ARR at line ρ
with access index being idx, and Valρ(SZ) is the value of

the logical size variable SZ at line ρ. We assume idx ≥ 0.

Consider the example in Listing 1, where the program shifts

all elements starting from the insertion position towards the

right, the index of read to array is [p,size−1], which could

be proved to be contained by the range [0,size).
We also motivate the access range invariants by demon-

strating an alternative class of correlation-based atomicity

invariants based on access-together-times (MUVI [25]). This

invariant is originally designed for testing concurrent pro-

gramming atomicity bugs, in which accessed-together times

exceeding a threshold should be updated atomically. From

Listing 1, we notice the access-together-times invariant does

not hold unless a tiny threshold is set, since this piece of code

accesses array size− p+1 times, while accessing size once.

By leveraging the basic read range invariant defined in

Eq. (1), our approach could be extended to handle the two

additional correlation patterns related to the logical size, given

certain specifications from users. In the second pattern, the

variable SZs tracks the cumulative logical sizes of multiple

arrays. Provided N, the number of arrays considered by the

user, the read range invariant is:

∀ρ ∈ P, ∑
i∈[1,N]∧Readρ(ARRi,idxi)

idxi <Valρ(SZs). (2)

Here, the sum of the indices of accesses to a number of ARRs

at line ρ is compared against the integer value of Valρ(SZs),
enabling the inference of the cumulative size variable by

programmer intent. We set N = 2 as the default configuration.

In the third correlation pattern, the variable SZc is used to

represent the complementary size of the array relative to a

constant. Provided the constant C from the user, the read range

invariant under this scenario is:

∀ρ ∈ P, Readρ(ARR, idx) =⇒ idx <C−Valρ(SZc). (3)

Here, the read access index is checked against the comple-

mentary value C−Valρ(SZc).
We use the read index to establish the range invariant be-

cause writes may exceed the region restricted by the logical

size variable, e.g., during insertion. In Listing 1, the write
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Figure 2: The workflow of our work.

indices to array are within the range [p,size]. As the inser-

tion extends the logical size at the final step, writes access the

index outside of the existing valid element region intended to

be represented by size to include new elements.

Invariant 2: Write Range. According to the above obser-

vation regarding the write behaviors of arrays in programs,

the write access range cannot be directly used for inferring

the programmer’s intent concerning the logical size of arrays.

However, we can refine this approach by relaxing the condi-

tion on the maximum allowable write index. This adjustment

allows us to incorporate an optional invariant, thereby en-

hancing the accuracy of our inferences. For example, under

the assumption that each insertion function only adds one

element, the write range invariant for the first pattern is:

∀ρ ∈ P, Writeρ(ARR, idx) =⇒ idx ≤Valρ(SZ), (4)

where Writeρ(ARR, idx) indicates there is a write to ARR
at line ρ with index idx. A constant term c could be added

after the integer variable value to allow for different index

relaxation limit assumptions. We set c as 0 by default.

3.3 Atomicity Property Inference
The workflow of inferring counting-related atomicity proper-

ties is shown in Figure 2. Our tool accepts the programs in C

and translates them into LLVM bitcode IR [21]. We employ

a symbolic range lattice [29] to abstract the symbolic access

indices (Step 1) and identify candidate variable pairs for in-

variant validation (Step 2). Finally, we encode the symbolic

information of array indices and the integer variables into

SMT constraints and use an SMT solver to verify whether the

invariants are satisfied (Step 3). For each variable pair that

satisfies the invariant, an atomicity property is generated.

Step 1. Symbolic Range Generation. Before generating

symbolic accesses to arrays, we first prepare all the candidate

arrays. We use an LLVM pass to identify all pointer variables,

including those that are members of structures. Since C con-

flates arrays with pointers, we differentiate the array variables

from regular pointers by checking the pointer’s operand. We

collect the pointers that represent arrays into the set {ptr}.

For each ptr, the symbolic range analysis is then employed

to compute symbolic bounds for all accesses to ptr. Formally,

the symbolic range of an access index intv, denoted as �intv�,

consists of a pair of symbolic bounds denoted by [l,r], where

entry:
size0 = •
p0 = •
i0= size0-1

for.cond:
i1 = (i0, i2)
t = i1 >= p0br(t, for.body, for.end)

for.body:
it = (i1)
idx = it
idx2 = it+1
*arrayidx2 = *arrayidx
i2 = it - 1

for.end:
if = (i1)
idx3 = p0
*arrayidx3 = 20
size1 = size0 + 1

entry: = [size , size ]= [p , p ]= size 1, size 1
for.cond:= (p 1, size 1), size 1
for.body:= p , size 1= p , size 1= + 1, size= p 1, size
for.end:= p 1, size 1 ,  ( 1, 1)= , ,= ,

1
2
3

4
5
6

7
8
9

10

11
12
13
14
15

(a) Control Flow Graph (b) Symbolic Range

Figure 3: The control flow graph and the symbolic ranges of

integer variables in Listing 1.

l ≤ r. Here, l represents the lower bound, denoted as �xv�↓,

and r represents the upper bound, denoted as �xv�↑. If the

symbolic value is undecidable, the range is [None,None].
Example. We use the program in Listing 1 to illustrate the

computed symbolic ranges of integer variables, including the

access indices. We show the control flow graph in Figure 3 (a).

The program is transformed to Extended SSA form [1] before

the analysis, where a φ-function is created when the value

of a variable depends on multiple predecessor blocks, and a

σ-function is a copy created for the splitting at a conditional.

Before the analysis, all integer variables are initialized with a

degenerate-interval symbolic range, i.e., �·� = [·, ·]. The pro-

gram inputs, which include the potential integer variables, are

treated as symbols during SRA, also known as the symbolic

kernel [29], to compute other symbolic ranges.

SRA computes the symbolic ranges of integer variables

as follows. The assignment instructions after reads rewrite

both bounds of the symbolic range, e.g., i0 is assigned

�size0�− 1 = [size0 − 1,size0 − 1]. Besides, the φ-function

computes a union of two symbolic ranges from two blocks.

In Line 4, �i1� = [Min(�i0�↓,�i2�↓),Max(�i0�↑,�i2�↑)] And σ-

function computes the interval intersection of the operand’s

symbolic range and the condition. For example, it is in the

condition i1 ≥ p0 satisfied branch; its symbolic value be-

comes [Max(p0,�i1�↓),�i1�↑]. Following these rules, SRA

converges after iterations and finally yields the results in

Figure 3 (b). Note that the symbolic range results provide

over-approximation of the variable ranges [29], which means

the actual values during program execution must fall within

these ranges.

Step 2. Candidate Variable Pairs Generation. The next

step is generating the candidate variable pairs to be checked

against the counting invariants. The naive method enumerates

all integers to form a pair with a candidate array. Instead,

we only select the integer variables that appear in the sym-

bolic range of any accesses to ptr. Specifically, we collect

all integer-type IR instructions but exclude the integers unre-

lated to the computed symbolic ranges into the set {int}. The

candidate variable pairs are {(ptr, int)}= {ptr}×{int}. We



PM Programs Description Versions
P-ART [22] Persistent Adaptive Radix Tree f0b891a

P-BwTree [22] Persistent BwTree f0b891a

CCEH [28] Dynamic Hashing for PM b62a9c8

Level-Hashing [41] Hash Indexing for PM 28eca31

Table 2: Tested PM Programs.

then validate the invariant for each candidate pair.

Step 3. Constraint-based Invariant Validation. To deter-

mine whether an integer variable int is counting-correlated

with ptr, we encode int and the accesses to ptr into the

SMT constraints of the invariant, e.g., the invariants shown

in Eq. (1) and Eq. (4) for the first correlation pattern. Then,

the SMT solver is used to check if the constraints are always
satisfied, representing that the accesses to ptr are restricted

by int across user (function) inputs. Specifically, for each

access index idx to ptr, an SMT constraint �idx�↑ < �intv�↓
is built for read invariant, and �idx�↑ ≤ �intv�↓ is built for

write invariant. For the read index range that is undecidable

or has an infinite value in any of the bounds, we directly add

False to the constraints set. Then we make the conjunction

of constraints for all accesses to form the invariant constraint.

Taking the first counting correlation pattern as an illustra-

tive example, if we let all SSA forms of int constitute Vint and

the read indices to ptr forms Uptr, a read invariant INV is:

∧

idx∈Uptr

∨

v∈Vint

�idx�↑ < intv. (5)

Here, the disjunction among multiple SSAs of int ensures

that the indexes are checked against a specific assignment

of int. Thus, we don’t need to distinguish which assignment

manually. An SMT solver Z3 [3] is utilized to check whether

the constraints are satisfied across all possible values of int.
Since SMT solvers only find a specific satisfaction for given

constraints, we make the negation of Eq. (5) (¬INV) and

ask the solver to prove its UNSAT, i.e., no values could be

found to make the invariant unsatisfied. If the proving is suc-

cessful, a likely counting-related atomicity property ATOMIC-

ITY(ptr, int) is generated.

To encode the invariant in the second correlation pattern,

the sum of indices to each accessed ptri is checked. Similarly,

encoding the invariant in the third scenario requires only

replacing an SSA of the integer variable intv with C− intv.

4 Evaluation

4.1 Methodology
The program analysis stage of our work is implemented as

LLVM [21] compiler passes with a symbolic range analysis

pass modified from the open-source Nazaré et al. [29] 2. The

2https://github.com/henry-nazare/llvm-sra

invariant validation is implemented in Python with Z3 [3] as

the SMT solver.

Experimental Setup. We conduct all experiments on a ma-

chine equipped with 2× Intel Xeon Gold 5317 CPUs, 128GB

DRAM, and 512GB Intel Optane DC Persistent Memory.

The PM consists of four 128GB Optane memory through

interleaved mode. To demonstrate the utility of our counting-

related atomicity property inference approach, we leverage

the inferred properties to detect PM bugs. For each identified

property, ATOMICITY(x,y), we confirm the atomicity vio-

lations by manually checking whether the updates of x and

y are protected by a transaction, e.g., between TX_BEGIN

and TX_END of libpmemobj [17]. Integrating our property

inference approach into an established property-checking pro-

cedure to confirm bugs through trace analysis (e.g., Huang et

al. [15]) is left in our future work. Table 2 shows the tested

real-world PM programs in this evaluation, including popular

PM data structures such as hash tables (CCEH and Level-

hashing) and trees (P-ART and P-BwTree).

4.2 Results
Table 3 summarizes 14 atomicity violations in the tested prob-

lems, where 11 of them are new bugs, and the rest have been

reported [9]. Among the detected bugs, 4 bugs (#10, #12, #13,

and #14) violate the atomicity properties between an array

and its correlated allocation size (a special case of logical

size), producing a fault when the post-crash program reads

the unallocated memory space. All the rest of the bugs violate

the atomicity property between an array with its logical size.

The impact of these bugs varies due to the diverse element

types within the array. Bug #8 involves a value array failing to

update atomically with its logical size, causing invalid reads

or user data loss after a crash. In other bugs, the pointer arrays

are not atomically updated with the integer variable indicating

the number of valid pointers, leading to stale pointer reads in

post-recovery programs. These different impacts of atomicity

violations highlight the varied scenarios where an atomicity

bug can occur.

Next, we compare our tool with a correlation inference

tool MUVI [25]. Since Huang et al. [15] relies on the dual-

dependent relationship that does not exist in any pair of ar-

ray and integer, we compare with another dependency-based

atomicity property inference approach Witcher [9]. Among

the 14 bugs detected by our tool, MUVI successfully identified

4 of them, while Witcher identified 3. MUVI works effectively

when the array and the size variable are closely tied to each

other. We observe that this detection strategy struggles to iden-

tify counting-correlated variables in two main scenarios. First,

when an array has more than one size variable, e.g., one for

allocated size and one for logical size, the frequency of access

to the array and its size variable tends to be random. Second,

when the elements of the array are structures with multiple

variables that might be accessed individually, the program



PM Program ID New Code Description Impact MUVI Witcher

P-ART

1 � N4.cpp:117 Creating an array of valid nodes Fault or data loss

2 N4.cpp:22 Inserting a node to an array of children nodes Fault or data loss �
3 � N16.cpp:124 Creating an array of valid nodes Fault or data loss

4 � N48.cpp:120 Creating an array of valid nodes Fault or data loss

5 � N256.cpp:81 Creating an array of valid nodes Fault or data loss

6 N16.cpp:13 Inserting a node to an array of children nodes Fault or data loss �
7 � Epoch.cpp:57 Adding to an array of fixed size arrays Fault or data loss �

P-BwTree 8 � bloom_filter.h:143 Inserting an element to a “ValueType” array Stale read or data loss �

CCEH

9 � CCEH_LSB.cpp:220 Resizing an array before insertions. Fault or data loss �
10 � linear_probing.cpp:151 Resize a hash table Memory corruption

11 � extendible_hash.cpp:329 Resizing an array before insertions. Fault or data loss �
12 � cuckoo_hash.cpp:295 Resizing a “table” array Memory corruption

Level-Hashing
13 level_hashing.c:112 Expanding a level hash table Memory corruption �
14 � level_hashing.c:226 Shrinking a level hash table Corruption or data

Table 3: Atomicity bug detection results of our tool and related work.

88 struct Directory { ... 
89    Segment** _;
          …
92    size_t capacity;
93      … 
         }
              CCEH.h

177    void CCEH::Insert(…) { ...
183      auto x = (key_hash % dir->capacity);
184      auto target = dir->_[x];
185      …
          }
                       CCEH_LSB.cpp

130   CCEH::CCEH(…)  { … 
133      for (unsigned i = 0; i < dir->capacity; ++i) {
134         dir->_[i] = new Segment(global_depth);
135         …
         }
                            CCEH_LSB.cpp

177    void CCEH::Insert(…){ ...
220       dir->_ = _dir;     
221       clflush((char*)&dir->_, …);
222       dir->capacity *= 2;
223       clflush((char*)&dir->capacity,…);
224       …
          }             CCEH_LSB.cpp

(a) Definition

(c) Read index

(b) Write index

(d) Correlated updates

They should be 
in the same TX

Figure 4: An example of a pair of counting-correlated vari-

ables (a), the example write to the array (b), the example read

to the array (c), and an atomicity bug detected by our tool (d).

has more frequent access to the array than to its size variable.

Witcher is unable to detect most counting-related atomicity

violations, since few arrays serve as guardians within condi-

tion statements. However, there are three exceptions: bugs #2,

#6, and #13, in which the pointer element in the array is used

to control the read of the pointed-to structure.

False Positives. Our approach may produce false positives by

incorrectly identifying variable pairs as counting-correlated.

We have manually inspected the inferred properties and found

the existence of such incorrect properties around the misiden-

tified temporary loop variables. The temporary loop variables

that control the instructions for accessing the array have the

same analyzed behaviors as the logical size variable, leading

to the wrong inference. Fortunately, such cases can be easily

filtered by manual post-processing (e.g., checking whether

the reported integer variable is in PM or DRAM).

A detected bug example. Figure 4 shows the bug #9,

where a pointer array dir->_ and its logical size variable

dir->capacity is counting-correlated. Our tool could detect

this atomicity property, as the read and write access to dir->_
are restricted by dir->capacity. MUVI could detect it due

to the symmetric access to the array and the size variable,

while Witcher fails since dir->_ is not a guardian.

Running Time of Property Inference. We recorded the run-

time overhead of our tool’s workflow on the benchmark pro-

grams for inferring PM properties, finding it is between 0.2

and 0.6 seconds. Our tool’s static analysis method avoids ex-

ploring program states, resulting in a short analysis time. In

contrast, Witcher spends 11 minutes to more than 1 hour to

detect ordering and atomicity bugs [9]. Yet SMT solvers may

become the bottleneck when applying our approach to large-

scale PM systems with complex constraints to be checked.

This issue could be mitigated by restricting the checked SSAs

of an integer variable to the ones in the same block as the ar-

ray access, reducing the number of constraints. Additionally,

optimizations like constraint caching or lightweight approx-

imations could prevent worst-case SMT solver behavior in

larger PM systems, which we plan to explore in future work.

5 Conclusion

This paper presents an observation and inference approach for

a class of important atomicity properties about the counting

relationship between the array and its logical size variable

in PM programs. We first propose the necessary conditions

for the behaviors of counting-correlated variables among di-

verse array operations as invariants. We then use symbolic

range analysis combined with an SMT solver to discover the

variables satisfying the invariants, generating likely atomic-

ity properties. The evaluation shows that using our inference

method, 14 bugs are detected in real-world PM programs.
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