
PIE: Enabling Fast and Scalable Incremental Evolving
Graph Analytics on Persistent Memory

Yunmo Zhang

City University of Hong Kong

Hong Kong, China

yunmo.zhang@my.cityu.edu.hk

Jiacheng Huang

City University of Hong Kong

Hong Kong, China

jiacheng.huang@my.cityu.edu.hk

Xizhe Yin

University of California Riverside

Riverside, USA

xyin014@ucr.edu

Junqiao Qiu
∗

City University of Hong Kong

Hong Kong, China

junqiqiu@cityu.edu.hk

Hong Xu

The Chinese University of Hong

Kong

Hong Kong, China

hongxu@cuhk.edu.hk

Chun Jason Xue

MBZUAI

Abu Dhabi, United Arab Emirates

jason.xue@mbzuai.ac.ae

Abstract
Graph processing is crucial for unstructured-data-driven

applications in various domains. In recent years, there has

been a growing need to perform real-time analytics on large-

scale evolving graphs, which involves evaluating a graph

query on a sequence of snapshots within a given time win-

dow. Some prior studies have explored utilizing persistent

memory (PM) technologies, such as non-volatile memory,

for efficient evolving graph analytics. However, the latest

incremental processing designs fail to fully exploit the PM

potential, suffering from severe read and write amplifica-

tion during update ingestion and query evaluation. In this

paper, we develop PIE, a PM-based incremental processing

framework for fast and scalable evolving graph analytics. We

first observe that leveraging CommonGraph, a recently pro-

posed DRAM-based incremental approach that transforms

costly deletions into additions, can significantly improve ef-

ficiency for evolving graph analytics in PM, although the

direct adaptation introduces significant PM access ineffi-

ciencies. To enable PM-friendly incremental processing, PIE

introduces a logical graph view abstraction that is detached

from the physical storage to avoid extra PM writes, and a

∗
Corresponding Author

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies

are not made or distributed for profit or commercial advantage and that

copies bear this notice and the full citation on the first page. Copyrights

for components of this work owned by others than the author(s) must

be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific

permission and/or a fee. Request permissions from permissions@acm.org.

ICS ’25, June 8–11, 2025, Salt Lake City, UT, USA
© 2025 Copyright held by the owner/author(s). Publication rights licensed

to ACM.

ACM ISBN 979-8-4007-1537-2/2025/06

https://doi.org/10.1145/3721145.3730419

chunked neighbor index to reduce extensive PM reads during

deletion transformation. Additionally, PIE prioritizes low-

cost transformations when executing deletion-free incremen-

tal analytics. Furthermore, PIE incorporates two optimiza-

tions to balance key trade-offs in the proposed analytics on

PM. Experimental results show that PIE significantly outper-

forms two state-of-the-art PM-based evolving graph systems,

DGAP and XPGraph, as well as the direct PM adaptation of

CommonGraph, achieving geometric mean speedups of 9.5×,
8.4×, and 10.9× for update ingestion, and 18.1×, 20.4× and

6.4× for graph analytics, respectively.

CCS Concepts
• Computing methodologies → Parallel computing
methodologies; • Information systems→Computing plat-
forms; Storage class memory; Graph-based database
models.

Keywords
evolving graphs, incremental computing, persistent/non-

volatile memory

ACM Reference Format:
Yunmo Zhang, Jiacheng Huang, Xizhe Yin, Junqiao Qiu, Hong Xu,

and Chun Jason Xue. 2025. PIE: Enabling Fast and Scalable Incre-

mental Evolving Graph Analytics on Persistent Memory. In 2025
International Conference on Supercomputing (ICS ’25), June 8–11,
2025, Salt Lake City, UT, USA. ACM, New York, NY, USA, 16 pages.

https://doi.org/10.1145/3721145.3730419

1 Introduction
Real-world graphs that evolve continuously over time are

ubiquitous in today’s data-driven era [54]. These dynamic

graphs are broadly employed across various domains, includ-

ing social networks [6], machine learning [16], biological

informatics [17], network monitoring [24] and among others.

https://doi.org/10.1145/3721145.3730419
https://doi.org/10.1145/3721145.3730419

ICS ’25, June 8–11, 2025, Salt Lake City, UT, USA Yunmo Zhang, Jiacheng Huang, Xizhe Yin, Junqiao Qiu, Hong Xu, and Chun Jason Xue

Effective analyses of such dynamic graphs are crucial for ex-

tracting timely insights and making informed decisions [54].

Evolving graph analytics is among the most popular anal-

ysis classes on dynamic graphs [15, 25, 45]. It provides real-

time tracking of a graph property over a specific time win-

dow by computing values on a sequence of snapshots. For

example, evolving graph analytics was used in an infectious

disease monitoring platform for tracing epidemics spread

over time during COVID-19 [67]. It was also used to extract

the varying distance between two users in a social network

(shortest-path query) [51], or measure the duration of a net-

work failure (reachability query) [24].

As real-world graphs continue to grow in scale and

the need to analyze more historical data intensifies, in-

memory graph systems face a significant scalability chal-

lenge due to the limited DRAM capacity. Persistent memory

(PM) technologies, such as non-volatile memory [18] and

CXL-SSD [29], emerge with memory-like access semantics

and an order of magnitude greater capacity at a cheaper

per-gigabyte cost than DRAM. These features make PM

well-suited for memory-intensive evolving graph process-

ing [2, 8, 13, 14, 50]. Recent works, including DGAP [22] and

XPGraph [63], highlight the potentials of PM in evolving

graph processing.

Though existing PM-based evolving graph systems have

achieved either fast ingestion of updates or efficient data ac-

cess, none of them supports incremental analytics of evolv-

ing graphs. Incremental graph analytics has been proven

to have superior efficiency in many in-memory graph sys-

tems [9, 43, 62], as evolving graphs typically exhibit slow,

gradual changes over time, resulting in high similarity (often

exceeding 99% [51]) between consecutive snapshots. For a se-

ries of snapshots, incremental analysis approaches leverage

the results of a previous snapshot to compute the targeted

snapshot, instead of re-computing the results from scratch

for each snapshot. However, their efficiency diminishes when

processing deleted edges [1, 12], incurring significant com-

putations to align previous results with updates before re-

converging on the new snapshot.

In this paper, we introduce PIE, a framework that en-

ables fast and scalable Persistent memory based Incremental

Evolving graph analytics. PIE is built upon the main idea of

a recent evolving graph incremental analysis and represen-

tation work CommonGraph [1], which transforms the dele-

tions into additions to avoid processing expensive deletions

in traditional incremental analytics. Starting from evaluat-

ing the query on the common graph across snapshots, this

approach incrementally reaches each snapshot with only

additions to handle on a schedule that maximizes the shar-

ing of analysis results. Our initial results show that a naive

PM version of CommonGraph outperforms the traditional

G0

Δ!": {v4->v0, v2->v3}
Δ!#: {v0->v3, v1->v3}

G1 G2

v2 v2

Δ$": {v3->v0, v4->v2}
Δ$#: {v3->v2, v4->v0}

v3

v4

v0

v1

v3

v4v1

v0

v2 v3

v0

v1 v4

𝑄(G0) 𝑄(G1) 𝑄(G2)

(a) An evolving graph with 3 snapshots

32143321

76530V. Array
v0

E. Array

v1 v2 v3 v4

(b) CSR of G0

Figure 1: An illustrative example of an evolving graph
and the CSR representation of its snapshot 𝐺0.

incremental analysis approaches combined with state-of-the-

art PM-based evolving graph representations. However, the

transformation of deletions introduces extensive additional

calculations and footprint storage on PM, leading to perfor-

mance bottleneck and thus making a naive application of

CommonGraph in PM far from optimal.

PIE incorporates a graph storage system and an analytics

engine that work synergistically to prioritize the principle of

maintaining low PM write and read amplification in support-

ing deletion-free incremental analysis. The storage system of

PIE is based on the idea of separating the logical graph views

required by incremental analysis and the physical storage of

graph data. Exploiting our key observation on the relation-

ship between graph data and graph views in analysis, we

build a bitmap-based logical graph system, without requiring

any PM writes. The storage system also includes a chunked

neighbor index structure to reduce the PM reads needed to

build the logical graph view of the common graph.

The analytics engine in PIE features a low building cost

of deletion-free incremental analysis schedule based on the

concept of the Lasting Common Graph (LCG), the maximal

subgraph that remains across multiple snapshots till a times-

tamp. After refining the calculation methods of deletion-to-

addition transformations, we identify a path between the

common graph and snapshots that enables the reuse of mul-

tiple calculations around LCG. The LCG-driven incremental

analytics engine of PIE thus conducts the query evaluation

through a streamlined workflow that maintains the advan-

tage of sharing analysis results in CommonGraph while re-

ducing amplified read and calculation for transformation.

Finally, PIE introduces two optimizations to explore two

key trade-offs in incremental analysis on PM, including a

two-stage LCG-driven incremental analysis and caching the

critical part of LCG to DRAM, to further improve perfor-

mance under certain environments. Our evaluation of PIE

using five commonly used graph queries on real-world graph

datasets shows that PIE can significantly improve the perfor-

mance efficiency and scalability of ingestion and analytics.

In summary, this paper made the following contributions:

PIE: Enabling Fast and Scalable Incremental Evolving Graph Analytics on Persistent Memory ICS ’25, June 8–11, 2025, Salt Lake City, UT, USA

• Presented the first work discussing PM-based evolv-

ing graph system that supports incremental analysis,

including adapting different incremental analytics ap-

proaches to state-of-the-art in-PM graph formats, and

revealing their key performance issues in ingesting

updates and conducting analytics;

• Proposed a graph storage format that separates logical

graph views with physical graph storage to achieve

low amplified PMwrites, as well as a chunked neighbor

index technique tomaintain low PM read amplification,

for supporting incremental analysis;

• Designed a lightweight deletion-free incremental

schedule that requires less calculation to build and two

optimizations to exploit the trade-offs in the proposed

framework to further improve performance;

• Compared PIE with the state-of-the-art systems

through systematic evaluations. The results demon-

strate that PIE brings significant performance improve-

ments.

2 Background and Motivation
2.1 Persistent Memory
Persistent Memory (PM), including non-volatile mem-

ory [18] and CXL solutions such as CMM-H PM [55], offers

durability and larger capacity at a more affordable cost than

DRAM, while maintaining byte-addressability and compa-

rable latency. These characteristics make PM an attractive

option for a wide range of real-world applications [38], such

as HPC [10, 11, 48, 64], database [31, 33, 72], and cloud ser-

vice [30, 58]. Recently, PM has also gained attention for its

potential in optimizing large-scale graph storage and pro-

cessing [2, 8, 13, 14, 42, 50, 73].

Performance Characteristics. There are two key per-

formance characteristics of PM, both in current technolo-

gies [27, 68] and future trends [29, 55, 59], crucial for building

efficient systems upon PM. First, PM exhibits a noticeable

performance gap with DRAM in general. DRAM’s read and

write bandwidths are 2~3× and 7~8× higher than PM’s max

read and write bandwidth [69], respectively. This gap is even

more pronounced with CXL-SSDs [29, 57], which exhibit

microsecond-level latencies. Second, small random accesses

to PM experience significant bandwidth drop. Since data ac-

cess is converted into a write/read at PM access granularity

(hundreds of bytes to kilobytes), small accesses to PM may

suffer from heavy read/write amplification [68, 70]. Modern

PM systems use a limited buffer to merge adjacent small

accesses, achieving sequential-like performance when their

combined size matches the media granularity [68]. However,

unmergeable small random accesses still suffer from sub-

stantial bandwidth loss. For instance, in PM with a 256-byte

access granularity, 256-byte random writes offer 3~4× more

ICG12

G0 G1 G2

Δ02𝑙𝑙

Common Graph

ICG01

Δ02𝑟𝑟

Δ01𝑙𝑙 Δ01𝑟𝑟 Δ12𝑟𝑟Δ12𝑙𝑙 (Re-)Converge

Deletion-free
Incre. Analysis

Traditional
Incre. Analysis

Δ1+,Δ1− Δ2+,Δ2−

Gc

Figure 2: An incremental analysis schedule on the Tri-
angle Grid in CommonGraph.

bandwidth than 64-byte random writes, and even 40× than

4-byte writes, which are common in graph data storage.

2.2 Evolving Graph Stores and Analytics
Existing dynamic graph systems can be classified into stream-

ing graphs [7, 9, 43, 44, 62] and evolving graphs [1, 15, 25, 34,

37]. The former targets the latest snapshot of the graph as it

continually changes, while the latter systems apply analytics

over multiple snapshots within a time interval, providing in-

sights or information drawn from historical data. This paper

focuses on evolving graph systems. Formally, evolving graph

analytics evaluates a query 𝑄 on a series of snapshots of an

evolving graph𝐺 over a specified time period. At timestamp

𝑖 , the graph is represented by a snapshot𝐺𝑖 . After applying a

batch of edge updates
1
, which consists of an addition batch

Δ+
𝑖+1 and a deletion batch Δ−

𝑖+1, a new snapshot 𝐺𝑖+1 is gen-
erated. An example is shown in Figure 1(a). The query (a

graph algorithm), such as single-source-shortest-path (SSSP),

is evaluated on each snapshot.

Evolving Graph Representations. A common approach

to represent a snapshot is Compressed Sparse Row (CSR),

which organizes vertex neighbors in an edge array with a

vertex array for indexing, as illustrated in Figure 1(b). CSR

provides space efficiency and locality but suffers from costly

structural modifications during updates in dynamic graphs.

To address this, amount of mutable CSR formats have been

proposed. For instance, PCSR [65, 66] and VCSR [23] lever-

age the Packed Memory Array (PMA) to introduce space be-
tween different vertices’ neighbors in the edge array. These

spaces are managed by a binary tree, known as the PMA

tree, which ensures neighbor density within a range. In addi-

tion, Graphone [34] extends traditional adjacency lists (AL)

with multi-version degree arrays to manage updates across

snapshots. The most recent in-DRAM evolving graph repre-

sentation is TgStore [5], which stores the union of the base

graph and updated edges as ordered edge lists, associating

bitmaps for each edge to indicate if it exists in a snapshot.

1
This paper focuses on edge updates. Weight updates can be managed

by deleting the old edge and adding a new one. Vertex updates involve

removing/adding all edges of the vertex.

ICS ’25, June 8–11, 2025, Salt Lake City, UT, USA Yunmo Zhang, Jiacheng Huang, Xizhe Yin, Junqiao Qiu, Hong Xu, and Chun Jason Xue

1 2 3 3 4 1 2 3

0 3 5 6 7 𝐺𝐺0

1 2 - - 4 1 2 3

0 3 5 6 7

(Evolving) Common Graph CSR
Historical 𝐺𝐺c

… 0 1 1

3 0

v2 v3 v4

3 3

0 1 …
v0 v1

Δ1+Δ1−

… 0 1

0 2

v3 v4

2 0

… 0 1
v3 v4

Δ2+Δ2−

1 2 - - 4 1 - 3

0 3 5 6 7
v0 v1 v2 v3 v4

𝐺𝐺c

Delta CSRs

𝑄𝑄(G0) 𝑄𝑄(G1) 𝑄𝑄(G2)

…
IR Deltas

Runtime

Δ𝑖𝑖𝑖𝑖
𝑙𝑙/𝑟𝑟

(a) (In-DRAM/In-PM) CommonGraph

DRAM

PM

Degree Array

𝑄𝑄(G0) 𝑄𝑄(G1) 𝑄𝑄(G2)

{1, 2, 3}
{3, 4}
{1}
{2}
{3}

Adj. Lists
(AL)

{−3} {3} − {0}

{2, −0}{0, -2}…

L0

L1

{-3}

…

{3}

{0}

{-3}

{0, -2}

Hierarchical
Buffer

flush

3 2 1 1 1 4 3 2 1 2 4 3 2 3 4

L2…

{2, -0}

v0

v1

v2

v3

v4

{−3}

…grouped
nebr.

(b) XPGraph (In-PM Graphone)

DRAM

PM

v0 v1 v2 v3 v4

0 6 10 13 16

Degree Array

𝑄𝑄(G0) 𝑄𝑄(G1) 𝑄𝑄(G2)

1 2 3 3 3 4 3 1 3 2 0 2 3 0 2 0

3 2 1 1 1 4 3 2 1 2 4 3 2 3 4

PMA Tree

PMA

(c) DGAP (In-PM PMA)

Figure 3: State-of-the-art Evolving Graph Frameworks: CommonGraph, XPGraph, and DGAP.

Meanwhile, graph analytics systems employs different for-

mats to drive their incremental analysis. Kickstarter [62]
and Graphbolt [43] utilize adjacency arrays (with offline

graph updates ingestion), while Risgraph [9] enhances their

formats with localized hash indices to accelerate update re-

trieval. CommonGraph [1] introduces a multi-CSR design,

storing updated edges out of the base graph (𝐺0) to reduce

structural modifications, as shown in Figure 3(a). It updates

𝐺0 as a common graph by marking edges shown in deletion

batches, and constructs intermediate deltas at runtime for

deletion-free incremental analysis.

Evolving Graph Analytics. A straightforward approach is

applying the query independently to each graph snapshot,

known as recomputation. However, this often leads to re-

dundant calculations, as evolving graphs change slowly over

time relative to their sizes (usually less than 1%) [5, 25, 51, 60].

Therefore, a set of incremental analysis approaches, such

as KickStarter and Graphbolt, have been proposed to reuse
the analysis results from the previous snapshot when serv-

ing queries on new snapshots [9, 43, 60, 62]. They generally

contain two phases: (P1) identifying and resetting analysis

results affected by edge deletions in the previous snapshot;

(P2) updating these results to account for edge additions,

ultimately re-converging on the new snapshot.

Recently, CommonGraph [1] proposed a new incremen-

tal analytics design that transforms deletions into additions

for processing. For a series of snapshots, it first analyzes their

common (sub-)graph 𝐺𝑐 , and then incrementally reaches

each snapshot with only processing additions, i.e., P2 in

traditional incremental analysis. For example, in Figure 2,

snapshots 𝐺0 and 𝐺1 share a subgraph 𝐼𝐶𝐺01. The results

of 𝐺0 (𝐺1) are derived by incrementally analyzing addition

delta Δ𝑙
01
(Δ𝑟

01
) from the analysis results of 𝐼𝐶𝐺01. In its work-

sharing mode, CommonGraph builds the shared edge sets

among multiple snapshots recursively, progressing through

the intermediate common graphs (ICGs) to the final common

graph 𝐺𝑐 , creating a triangle grid (Figure 2). A schedule on
triangle grid determines the route from 𝐺𝑐 to each snapshot

through ICGs, where the analysis results re-converged on

ICGs are further shared across part of snapshots. Among

various schedules, CommonGraph chooses the one with the

smallest total delta sizes to maximize analysis results shar-

ing. CommonGraph also has a basic mode called Direct Hop,

which reaches each snapshot directly from𝐺𝑐 without shar-

ing the results of ICGs, making it around 2× slower than

work-sharing mode in PM according to our empirical obser-

vation. Thus, this paper focuses on the work-sharing mode.

PM-based Evolving Graph Processing. Recent PM-based

graph systems highlight the need to handle evolving graphs,

which is a memory-intensive case suitable for PM. The state-

of-the-art (SOTA) PM-based evolving graph systems are

XPGraph [63] and DGAP [22]. XPGraph is essentially a

PM-based Graphone, utilizing AL to store the loaded graph

and dynamic updates in PM, as shown in Figure 3(b). To

reduce write amplification caused by the access granularity

mismatch between 4-byte neighbor and 256-byte PM media,

XPGraph buffers neighbors in a hierarchical DRAM pool

before flushing coalesced writes to PM. When evaluating

graph queries, XPGraph allows its analysis engine to access

data from AL in both DRAM and PM. DGAP employs a PM

version of PMA to improve read locality, as shown in Fig-

ure 3(c). DGAP places its degree array, PMA’s vertex array

and PMA tree in DRAM, while the edge array in PM, to boost

ingestion and analytics efficiency.

2.3 Motivation
SOTA PM-based systems, XPGraph and DGAP, have shown

promising results in update ingestion or snapshot access.

However, both utilize recomputation for query evaluation,

causing substantial redundant computations and missing out

PIE: Enabling Fast and Scalable Incremental Evolving Graph Analytics on Persistent Memory ICS ’25, June 8–11, 2025, Salt Lake City, UT, USA

10190.5 8560.6

375.5 317.7

27.6 21.8

1

10

100

1000

10000

100000

XPGraph DGAP

An
al

ys
is

 T
im

e
(s

ec
on

ds
)

w/ Recomputing
w/ Kickstarter
w/ Kickstarter of Add only (ideal)

better

CG-PM
77.5

(a) The cost of evaluating an SSSP

query on SK [52].

6.2 7.910.1 8.77.6 7.4

467.9 459.3

1

10

100

1000

WK SK

In
ge

st
io

n
Pe

rfo
rm

an
ce

 (M
EP

S)

DGAP XPGraph
CG-PM Ideal

better

(b) Ingestion performance of SOTA

frameworks on WK [35] and SK [52].

Figure 4: Performance comparison among PM-based
systems in query evaluation and update ingestion.

on the benefits offered by recent advancements in incremen-

tal processing techniques.

Potentials of Incremental Processing in PM. We first

verify the benefits of moving existing incremental processing

designs to PM. We integrate the incremental graph analytics

scheme in Kickstarter into XPGraph and DGAP, and imple-

ment a PM-based adaptation of CommonGraph (referred to

as CG-PM). The performance results of query evaluation

and update ingestions over 12 snapshots are reported in Fig-

ure 4. More detailed dataset descriptions and experimental

settings are provided in Section 5. We observe that incremen-

tal analytics approaches significantly outperform recompu-

tation, achieving up to 27× faster when using the KickStarter

scheme for mixed edge additions and deletions. Additionally,

we find that deletion handling in PM-based incremental pro-

cessing remains a critical bottleneck. In Figure 4(a), analyzing

snapshots that involve only edge additions is 13-17× faster

than processing those with both additions and deletions in

the same amount. This validates that the primary motivation

behind CommonGraph of transforming deletions to addi-

tions is also valid in PM. In fact, CG-PM already delivers

up to 4.8× speedup than the KickStarter schemes. We thus

focus on CommonGraph-like incremental evolving graph

analytics in PM.

Limitations of PM-based CommonGraph. However, di-
rectly moving CommonGraph to PM does not yield the ex-

pected performance gains observed in DRAM due to funda-

mental differences in hardware characteristics and the lack

of PM-aware optimizations in its design. Figure 4(a) shows

that CG-PM is 3.6× slower than KickStarter that runs on the

same amount of addition-only updates. This is because the

overhead of transforming deletions into additions is particu-

larly costly in PM. In addition to query evaluation, CG-PM

0

10

20

30

40

50

60

SK TWM

Ti
m

e
(s

ec
on

ds
)

Store Delta
Update Gc

7.4x
7.3x

0
5

10
15
20
25
30
35
40

SK TWM

Ti
m

e
(s

ec
on

ds
)

Analysis
Cal. IR Delta
Cal. Gc&ICGs&Sched.

1.7x

3.2x 1.8x

1.3x

(b) Update Ingestion(a) Query Evaluation

Figure 5: Breakdown of Analytics and Ingestion Per-
formance of CG-PM on SK [52] and Twitter-MPI [21].

also presents a significant gap with the ideal ingestion per-

formance. As shown in Figure 4(b), despite achieving com-

parable ingestion performance to SOTA PM-based systems

due to the contiguous data layout of multi-CSRs, CG-PM

still falls short of an optimal ingestion rate by 50×. Note that
the ideal case is about the sequential writes of flushing edge

updates to an edge list representation in PM and it is not

practical for subsequent graph analysis.

To illustrate the performance bottleneck of CG-PM, we

break down its end-to-end time costs on two large graphs,

as shown in Figure 5. When evaluating an SSSP query, the

time required to construct the grid far exceeds that needed

for analysis. Specifically, calculating intermediate (IR) deltas

takes 1.3× to 1.7× longer, and calculating 𝐺𝑐 , ICGs and the

schedule takes 1.7× to 3.2× longer than executing the incre-

mental analysis. These additional reads and calculations thus

become the bottleneck of serving a query. Moreover, updat-

ing𝐺𝑐 with each new snapshot introduces around 7.3×more

overhead than storing the ingested delta batch, significantly

slowing down the dynamic graph ingestion.

3 The Design of PIE
3.1 Overview
Observing the great benefits introduced by CommonGraph-

based incremental processing and the significant PM access

inefficiency from its direct adoption, we develop PIE, a PM-

based evolving graph storage and analytics system that en-

ables fast and scalable deletion-free incremental analysis.

Figure 6 provides the overview. At a high level, it consists

of three components: a logical-view-decoupled graph stor-

age system, a scheduling-free incremental graph analytics

engine, and PM-friendly optimizations.

In the storage system (1), PIE incorporates two tech-

niques. (1) To avoid PM writes for building the triangle grid

(TG) during ingestion and analytics runtime, we separate

the logical graph view needed for analysis from the physical

storage. This is achieved by using live bitmaps in DRAM to

ICS ’25, June 8–11, 2025, Salt Lake City, UT, USA Yunmo Zhang, Jiacheng Huang, Xizhe Yin, Junqiao Qiu, Hong Xu, and Chun Jason Xue

Storage System

Scheduling-Free Analytics Engine
• LCG-driven Streamlined Inc. Analysis

O
ptim

izations
•

Tw
o-stage LC

G
-driven Analysis

•
LC

G
-centric C

aching

Graph
Query 𝑄𝑄

1

2 3

Time
Graph Update
Batches ∆s

∆𝑖𝑖⋯ ⋯

 𝐺𝐺𝑐𝑐 Snapshots (𝐺𝐺𝑖𝑖)  Deltas Δ𝑙𝑙/𝑟𝑟
Logic Graph View

Physical Storage

Base Graph
 Delta Batches

 Liveness Bitmap(s)
 Chunked Nebr Index





PM DRAM

Figure 6: Overview of PIE.

32143321

76530

v0 v1 v2 v3 v4

33

…10

v0 v1

Δ!"

10…

20

v3 v4

02

10…

v3 v4

Δ#$Δ#"𝐺%
Delta CSRs/ALsBase Graph CSR

10110011

DRAM
PM

Common Graph 𝐺&

Live Bitmap (𝐺&)

01

Δ%#' Bitmap
01

Δ%#(Bitmap

(Intermediate) Deltas

Runtime

V2

V4

3

Δ!$
0

33

…10

CSR(Δ!$)

Figure 7: Evolving Graph Representation in PIE.

create the logical view of TG components (including snap-

shots) without modifying or adding to the graph data stored

in PM. This design leverages our observation about the in-

clusion relationship between the TG components and the

ingested graph data. (2) To reduce extensive and redundant

PM reads in calculating the common graph, we introduce a

chunked binary tree to index the neighbors of high-degree

vertices in DRAM.

The analytics engine (2) employs a scheduling-free ap-

proach that bypasses the complexities of handling deletions

while achieving low transformation cost. Based on the obser-

vation that the schedule path through the Lasting Common

Graphs (LCGs) can be computed with minimal cost, an LCG-

driven streamlined incremental analysis engine is integrated.

Finally, PIE introduces two optimizations (3) that explore

the trade-offs in our design to further enhance performance.

The first optimization is the two-stage LCG-driven incre-

mental analysis, which explores the trade-offs between the

construction overheads of intermediate shared graphs and

the improved sharing of analysis results. The second opti-

mization caches critical parts of the LCG inDRAM, exploiting

the memory resource to further improve the performance of

the analysis. Below, we present the first two components in

detail, and the optimizations are introduced in Section 4.

3.2 Storage System
The graph representation is essential for efficient graph in-

gestion and retrieval. PIE absorbs the multi-CSR format of

CommonGraph as its basic structure for delta batches, which

compactly stores deltas separately from the base graph, of-

fering several benefits for PM-based processing. First, the

out-of-place contiguous storage of deltas allows for coalesced

writes when stored to PM, eliminating small random writes

for new edge data (a 4-byte destination vertex). Second, the

compact CSR format of a delta enhances read efficiency dur-

ing incremental analysis. Our empirical findings show that

processing deltas—traversing their edges to update results—

is a time-intensive step in deletion-free incremental analysis,

often taking longer than re-convergence. The contiguous

layout of delta edges improves the locality during traversal.

However, this format becomes inefficient with small delta

sizes, as the vertex array of delta CSR can far exceed the

number of edges, leading to redundant indexes of empty

neighbors. To resolve it, we enhance multi-CSR with a hy-

brid delta format. As shown in Figure 7, when the number of

unique source vertices in a delta batch is below a threshold

(256 in our work), we store the delta’s adjacency list in PM

and rebuild its CSR format in DRAM before query evaluation.

In PIE, all graph data, including the base graph CSR and

delta CSRs, is entirely stored at PM, as shown in Figure 7.

Based on this physically stored graph data, we build the tri-

angle grid (TG) to support deletion-free incremental analysis

without requiring additional PM writes, as we will discuss

soon. Another key distinction between our format and Com-

monGraph is that the base graph CSR in our work remains

unchanged from being stored to the next checking point to

avoid small random PM writes.

The detached logical graph view of TG components.
In addition to storing data, the graph system must provide

access to the common graph 𝐺𝑐 and intermediate (IR) deltas

in the triangle grid to facilitate deletion-free incremental

analysis. Intermediate common graphs (ICGs) and snapshots

could be viewed as the combination of 𝐺𝑐 and these deltas.

However, as discussed in §2.3, updating𝐺𝑐 and representing

IR deltas in PM are costly for both ingestion and analysis run-

time. A potential solution is to store the IR deltas in DRAM,

but this approach requires significant DRAM resources, lim-

iting its feasibility for large-scale graphs or numerous snap-

shots, as 𝑁 snapshots require 𝑁 2
IR deltas.

We propose to create logical graph views of TG compo-

nents by utilizing our insights regarding the inclusion re-

lationship between graph data and TG components. These

logical views are detached from the physical graph storage,

meaning that the graph itself is not actually stored when pre-

senting its view. This is achieved through the use of bitmaps

PIE: Enabling Fast and Scalable Incremental Evolving Graph Analytics on Persistent Memory ICS ’25, June 8–11, 2025, Salt Lake City, UT, USA

in DRAM and by sharing the physical storage of graph data

in PM across different logical views, as shown in Figure 7.

Denotation. We use 𝐼𝐶𝐺𝑖, 𝑗 to denote the intermedi-

ate common graph shared by consecutive snapshots

{𝐺𝑖 , · · · ,𝐺 𝑗 }, 𝑖 < 𝑗 . Note that 𝐼𝐶𝐺0,𝑁 is the common graph

𝐺𝑐 and 𝐼𝐶𝐺0, 𝑗 , 𝑗 < 𝑁 , is a historical common graph. We use

Δ𝑙
𝑖, 𝑗−1 to denote the intermediate delta between 𝐼𝐶𝐺𝑖, 𝑗 and

its upper left graph 𝐼𝐶𝐺𝑖, 𝑗−1, referred to as left intermediate
delta, while Δ𝑟

𝑖 𝑗 denotes the intermediate delta with its upper

right graph 𝐼𝐶𝐺𝑖+1, 𝑗 , referred to as right intermediate delta.
An example of denotations is shown in Figure 2.

For the relations between IR deltas and the physically

stored delta batches, we have the following claim.

Lemma 3.1 (Delta Inclusions). Any edge in a left inter-
mediate delta Δ𝑙

𝑖, 𝑗 is contained by the deletion delta Δ−
𝑗 ; while

any edge in a right intermediate delta Δ𝑟
𝑖, 𝑗 is contained by the

addition delta Δ+
𝑖 .

This inclusion relation could be naturally proved by our

following computations of IR deltas:

Δ𝑙
𝑖 𝑗 = Δ−

𝑗 −
𝑗−1∑︁
𝑘=𝑖

Δ+
𝑘
; Δ𝑟

𝑖, 𝑗 = Δ+
𝑖 −

𝑗∑︁
𝑘=𝑖+1

Δ−
𝑗 . (1)

This implies a left (right) IR delta includes the edges from

the deletion (addition) delta while removing its intersection

with the previous (following) addition (deletion) deltas. Note

that this computation of IR deltas differs in form from the

recursive computation in CommonGraph by form, which

uses Δ𝑟
𝑖, 𝑗−1 and Δ𝑙

𝑖+1, 𝑗 to generate Δ𝑟
𝑖, 𝑗 , as summarized in

Figure 10. Yet both computations yield equivalent results

(which can be proved easily). With this inclusion relation,

we build a bitmap 𝑏𝑝𝑙𝑖, 𝑗 (𝑏𝑝𝑟𝑖, 𝑗) in DRAM associated with the

edge array of Δ−
𝑗 (Δ+

𝑖) to logically represent Δ𝑙
𝑖, 𝑗 (Δ𝑟

𝑖, 𝑗). In this

bitmap, a bit is False when the edge in the delta batch is not

contained by the IR delta.

The (historical) common graphs have a similar inclusion

relation with the physically stored base graph.

Lemma 3.2 (Common Graph Inclusion). Any edge in
a (historical) common graph 𝐼𝐶𝐺0, 𝑗 is contained by the base
graph 𝐺0.

This claim is obvious given the following computation:

𝐼𝐶𝐺0, 𝑗 = 𝐺0 −
𝑗∑︁

𝑘=1

Δ−
𝑘
. (2)

In other words, a (historical) common graph incorporates

the edges of 𝐺0 while excluding any edges that intersect

with the deletion delta batch prior to its timestamp. Again,

this computation yields an equivalent result as the recursive

computation in CommonGraph (Figure 10). With this rela-

tion,𝐺𝑐 could be logically represented using a bitmap 𝑏𝑝𝑐 in

Table 1: The Graph Abstractions provided by PIE.

Logical Graph Physical Structure
Δ𝑙
𝑖, 𝑗 Filtering Δ−

𝑗 through 𝑏𝑝𝑙𝑖, 𝑗
Δ𝑟
𝑖, 𝑗 Filtering Δ+

𝑖 through 𝑏𝑝𝑟𝑖, 𝑗
𝐺𝑐 Filtering 𝐺0 through 𝑏𝑝

𝑐

𝐼𝐶𝐺𝑖, 𝑗/𝐺𝑖 Combining 𝐺𝑐 and intermediate deltas

DRAM associated with the edge array of 𝐺0, where a bit is

False when an edge from the base graph does not exist in

the common graph. With this bitmap, PIE resets the bit at

the position corresponding to the deleted edge in 𝐺0 upon

each ingested deletion delta, thereby avoiding small random

writes associated with changing 𝐺0 CSR in PM.

Table 1 summarizes the mapping from the physical multi-

CSR graph storage to the logical graph view via bitmaps in

PIE. Exploiting this detached logical graph view, PIE avoids

extra writes to PM, aside from the graph data, during inges-

tion and deletion-free incremental analysis runtime.

The chunked neighbor index. Since calculating the evolu-
tion of the common graph (𝐺𝑐) contributes to the majority

of amplified reads in CG-PM, as shown in Section 2.3, we

design an index structure for 𝐺𝑐 to accelerate its calcula-

tion. Specifically, the𝐺𝑐 update is computed by 𝑁 times of

set-set Difference/Intersection operations between 𝐺0 and

each of 𝑁 deletion deltas, necessitating either binary or lin-

ear searches over 𝐺0. This process induces a considerable

number of redundant reads from the base graph.

An intuitive approach to mitigate this read amplification

is to construct an index for the neighbors in the base graph.

Risgraph [9] creates a hash table for the neighbors in its

adjacency list, enabling𝑂 (1) edge lookup. However, directly
indexing the neighbors requires substantial DRAM usage,

which is at odds with the scenario this paper addresses,

where the graph edge array cannot fit into the memory.

Exploiting the trait of PM access granularity, we build

a chunked neighbor index for the high-degree vertices in

the base graph to accelerate the calculation of the common

graph while maintaining a low DRAM resource usage. As

shown in Figure 8, the neighbors of a high-degree vertex are

segmented into 256-byte chunks, aligning with the media

granularity of existing PM [18]. Then, a binary tree is built

upon the pivot value of each chunk as the leaf node, e.g., the

largest value in the chunk. The chunk size could be set by

users as the buffer size of their PM device. The height of the

tree is then 𝑂 (𝑙𝑜𝑔(𝑑𝑒𝑔(𝑣)/𝑠𝑖𝑧𝑒 (𝑏𝑢𝑓))). This binary tree is

stored as an array on DRAM, in which the position of a leaf

node in the array directly indicates the position of the chunk

containing the target in the edge array. With this index, each

edge from the deletion delta looking up the base graph edges

requires at most one PM media load.

ICS ’25, June 8–11, 2025, Salt Lake City, UT, USA Yunmo Zhang, Jiacheng Huang, Xizhe Yin, Junqiao Qiu, Hong Xu, and Chun Jason Xue

1 … 278 366 … 505 598 … 788 801 … 982
0 63 64 127 128 191 192 255

278 505

278

256B
(Buffer size)

…
Offsets in
neighbors

Base Graph Edge Array

Chunked
Neighbor Index

…
DRAM
PM

788 982

788

505

Figure 8: The chunked neighbor index for a high-
degree vertex in the base graph.

The chunked neighbor index is constructed before the

ingestion to facilitate the calculation of evolving 𝐺𝑐 and

remains unchanged until released after dynamic ingestion

complete. Its memory footprint in DRAM depends on the

high-degree vertex threshold set by users, but it is generally

minimal. In this work, we set the threshold at 256 neighbors,

which identifies 1% to 1.3% vertices as high-degree, consum-

ing only 0.9% to 1.2% of PIE’s entire DRAM usage across the

graphs evaluated in this work (§5). Furthermore, the index

construction can be seamlessly integrated into the parallel

creation or re-creation of the base graph CSR. During this

process, threads store neighbors to the edge array according

to the vertex index (prefix sum) and select a pivot value upon

reaching a chunk boundary.

Crash Consistency and Recovery. PIE ensures crash con-

sistency by atomically updating a snapshot number metadata

after persisting a new update batch. Specifically, an sfence
is issued between the delta batch flush and the snapshot num-

ber update. This guarantees that, after a crash, queries can

access consistent views of snapshots committed before the

crash, avoiding any partial data. Then rolling back to a con-

sistent state involves deleting delta CSRs with IDs larger than

the persisted snapshot number. The crash consistency level

provided by PIE is thus buffered durable linearizability [26],

which is sufficient to enable recoverability of evolving graph

systems, i.e., PIE can rebuild TG components post-crash. For

instance, 𝐺𝑐 can be rebuilt by reconstructing its bitmap by

scanning CSRs of the base graph and all valid deletion deltas.

3.3 LCG-driven Incremental Computations
To maximize the analysis results sharing, CommonGraph

first constructs a complete triangle grid and then computes a

schedule that approximately minimizes the delta size along

the path [1]. However, this method incurs significant over-

head from grid construction, as discussed in Section 2.3.

In contrast, the analytics engine in PIE prioritizes minimal

scheduling and construction costs for deletion-free incremen-

tal analysis while maintaining the analysis results sharing.

v2 v2v3

v4

v0

v1

v3

v4v1

v0

v2 v3

v0

v1 v4

∆1: {∆1+, ∆1−} ∆2: {∆2+, ∆2−}

v2 v2v3

v4

v0

v1

v3

v4v1

v0

v2 v3

v0

v1 v4

∆0𝑟𝑟= ∅ ∆1𝑟𝑟 ∆2𝑟𝑟

∆1𝑙𝑙 ∆2𝑙𝑙

G0 G1 G2

LCG0 LCG1 LCG2

Figure 9: Streamlined incremental analysis.

CommonGraph PIE
Common Graph 𝐼𝐼𝐼𝐼𝐺𝐺0,𝑗𝑗/𝐿𝐿𝐿𝐿𝐺𝐺𝑗𝑗 𝐼𝐼𝐼𝐼𝐺𝐺0,𝑗𝑗−1 − Δ𝑗𝑗− 𝐿𝐿𝐿𝐿𝐿𝐿𝑗𝑗−1 − 𝐿𝐿𝐿𝐿𝐿𝐿𝑗𝑗−1 ∩ Δ𝑗𝑗−

Left Delta Δ𝑖𝑖,𝑗𝑗𝑙𝑙 /Δ𝑗𝑗𝑙𝑙
Δ𝑗𝑗−, 𝑗𝑗 − 𝑖𝑖 = 1
Δ𝑖𝑖+1,𝑗𝑗
𝑙𝑙 − Δ𝑖𝑖,𝑗𝑗−1𝑟𝑟 , 𝑗𝑗 − 𝑖𝑖 > 1

𝐿𝐿𝐿𝐿𝐿𝐿𝑗𝑗−1 ∩ Δ𝑗𝑗−

Right Delta Δ𝑖𝑖,𝑗𝑗𝑟𝑟
Δ𝑖𝑖+, 𝑗𝑗 − 𝑖𝑖 = 1
Δ𝑖𝑖,𝑗𝑗−1𝑟𝑟 − Δ𝑖𝑖+1,𝑗𝑗

𝑙𝑙 , 𝑗𝑗 − 𝑖𝑖 > 1
Δ𝑖𝑖+, 𝑗𝑗 − 𝑖𝑖 = 1
Δ𝑖𝑖,𝑗𝑗−1𝑟𝑟 − Δ𝑗𝑗−, 𝑗𝑗 − 𝑖𝑖 > 1

Figure 10: Calculations of components required in the
deletion-free incremental analysis of two systems.

We introduce the concept of the Lasting Common Graph
(LCG), which are defined as the historical common graphs

in TG, i.e., 𝐿𝐶𝐺 𝑗 = 𝐼𝐶𝐺0, 𝑗 . Each 𝐿𝐶𝐺 𝑗 corresponds to a snap-

shot 𝐺 𝑗 and represents the common graph of the snapshots

till the time 𝑗 . PIE builds its deletion-free incremental anal-

ysis schedule centering around LCG, named as LCG-driven
incremental analysis. As shown in Figure 9, this analytics

approach on an LCG grid first analyzes the latest LCG, i.e.,

𝐺𝑐 , same as CommonGraph, and then reaches the preceding

LCGs recursively before incrementally reaching each snap-

shot. In this process, the analysis results first converge on

LCGs and then are reused by the incremental analysis of the

corresponding snapshot and its preceding LCG. Specifically,

the delta between LCGs, denoted by Δ𝑙
𝑗 , is the leftmost IR

delta in TG generated at CommonGraph; while the delta

between 𝐿𝐶𝐺 𝑗 and its corresponding snapshot 𝐺 𝑗 , referred

to as completion delta and denoted by Δ𝑟
𝑗 , comprises a set of

right IR deltas in TG, as shown in Equation 3.

Δ𝑙
𝑗 = Δ𝑙

0, 𝑗 ; Δ𝑟
𝑗 =

𝑗−1∑︁
𝑘=0

Δ𝑟
𝑘,𝑗

. (3)

The advantage of the LCG-driven approach is that the

construction cost of the LCG grid is as small as the cost

of generating consistent snapshots, which are essential for

dynamic graph analytics. Building 𝑁 consistent snapshots in

a dynamic graph system entails applying 𝑁 deletion batches

to previously inserted edges, including the base graph and

any prior addition batches. In this process, each deletion

delta Δ−
𝑖 requires a Difference/Intersection set-set operation

PIE: Enabling Fast and Scalable Incremental Evolving Graph Analytics on Persistent Memory ICS ’25, June 8–11, 2025, Salt Lake City, UT, USA

with 𝐺0 and same operations with Δ+
𝑘
for 𝑘 < 𝑖 . LCG-driven

analysis demands the same complexity of set-set operations

to create the LCG grid. As shown in Figure 10, in PIE, each

deletion delta Δ−
𝑗 needs a Difference/Intersection operation

with 𝐿𝐶𝐺 𝑗−1 to compute the common graph (note that 𝐿𝐶𝐺 𝑗

is the subset of 𝐺0), and same operations with Δ𝑟
𝑖, 𝑗−1 for

𝑖 < 𝑗 to compute the right deltas needed in the grid (note

that Δ𝑟
𝑖, 𝑗−1 is the subset of Δ

+
𝑖). The left deltas can reuse the

calculations from LCGs, requiring no additional calculation.

Our key observation to enable this minimal construction

cost schedule is the reuse of calculations on LCGs when

calculating a set of special left IR deltas Δ𝑙
𝑗 . Given the cal-

culation method of 𝐼𝐶𝐺0, 𝑗 in CommonGraph, our calcula-

tion method of 𝐿𝐶𝐺 𝑗 shown in Figure 10 is obvious; while

Δ𝑙
𝑗 = 𝐿𝐶𝐺 𝑗−1 ∩ Δ−

𝑗 because 𝐿𝐶𝐺 𝑗−1 ∩ Δ−
𝑗 is the complement

of 𝐿𝐶𝐺 𝑗−1 to 𝐿𝐶𝐺 𝑗 , which is the definition of Δ𝑙
𝑗 . With this

calculation method, during the calculation of the common

graph 𝐿𝐶𝐺 𝑗 , each edge found both in 𝐿𝐶𝐺 𝑗−1 and Δ−
𝑖 should

not only be removed from 𝐿𝐶𝐺 𝑗−1 but also added to Δ𝑙
𝑗 . This

is implemented by setting the edge bit in 𝑏𝑝𝑙
0, 𝑗 in addition to

resetting its bit in 𝑏𝑝𝑐 . In this way, the calculation of Δ𝑙
𝑗 is

merged into the procedure of generating the common graph.

Additionally, we further refine the calculations of the right

IR delta Δ𝑟
𝑖, 𝑗 = Δ𝑟

𝑖, 𝑗−1 − Δ−
𝑗 , by reusing the calculation Δ𝑙

𝑗

again, to Δ𝑟
𝑖, 𝑗−1 − (Δ−

𝑗 − Δ𝑙
𝑗). This reduces the complexity of

a set-set operation by only computing the Δ−
𝑗 − Δ𝑙

𝑗 with the

right delta. Since Δ𝑙
𝑗 is presented by 𝑏𝑝𝑙

0, 𝑗 associated with

Δ−
𝑗 , Δ

−
𝑗 − Δ𝑙

𝑗 requires no computations, as it can be accessed

from the edges in Δ−
𝑗 that do not pass the filtering of 𝑏𝑝𝑙

0, 𝑗 .

In summary, LCG-driven incremental analysis adopts a

scheduling-free strategy that achieves the minimal cost

of constructing the intermediate components needed in

deletion-free incremental analysis.

4 Other Optimizations
4.1 Two-Stage Incremental Analysis
While LCG-driven analytics engine bases its incremental

schedule on the optimal path with respect to the low-cost

construction, it comes with the disadvantage of the increas-

ing divergence between LCGs and their corresponding snap-

shot when the number of snapshots grows. This divergence

diminishes the efficiency of incremental analysis. To mitigate

this issue, we enhance the analytics engine with an optional

technique that may introduce a few delta calculation costs

but improve the sharing of analysis results.

We observe that the completion deltas largely overlap,

particularly consecutive ones. As presented in Figure 10,

the right delta Δ𝑟
𝑖, 𝑗 , a component of a completion delta Δ𝑟

𝑗 ,

⋯⋯

⋯

𝐺𝐺𝑁𝑁

𝐿𝐿𝐶𝐶𝐺𝐺𝑁𝑁𝐿𝐿𝐶𝐶𝐺𝐺𝑁𝑁−𝑊𝑊

Stage-1

Stage-2⋯

𝐺𝐺𝑁𝑁−𝑊𝑊

Δ𝑁𝑁𝑟𝑟1

Δ𝑁𝑁r2

Δ𝑁𝑁−𝑊𝑊𝑟𝑟1

Δ𝑁𝑁−𝑊𝑊𝑟𝑟2

Δ𝑁𝑁𝑙𝑙2Δ𝑁𝑁−𝑊𝑊𝑙𝑙2

Δ𝑁𝑁𝑙𝑙1Δ𝑁𝑁−𝑊𝑊𝑙𝑙1

𝐿𝐿𝐶𝐶𝐺𝐺𝑁𝑁′

⋯ ⋯

Figure 11: Two-stage incremental analysis. The second
stage involves a sub-time window with size𝑊 .

shared many edges with Δ𝑟
𝑖, 𝑗−1, a component of Δ𝑟

𝑗−1. How-
ever, the LCG-driven analysis fails to effectively exploit this

overlap, as each completion delta is processed independently

to avoid the overhead of calculating left IR deltas that cannot

be merged into LCG’s calculation.

To solve this potential issue, we extend the LCG-driven

approach to two stages, with the first stage driven by a local
LCG within a sub-timewindow, while the second stage zoom-

ing out to analyze the LCGs between sub-time windows. As

shown in Figure 11, a local LCG, referred to as 𝐿𝐶𝐺 ′
𝑁
, is incre-

mentally reached from 𝐿𝐶𝐺𝑁 and its results will be shared

by the snapshots in the sub-time window {𝐺𝑁−𝑊 +1, . . . ,𝐺𝑁 }
during the second stage analysis. This local LCG facilitates

the sharing of incremental analysis of consecutive comple-

tion deltas, reducing the divergence between LCG and the

snapshot. In this two-stage grid, all deltas, except the local

left IR Δ𝑙2
𝑖 , could directly use the calculation and storage

introduced in §3.3. For instance, the sub-completion delta

in the first stage Δ𝑟1
𝑖 , could be computed by

∑𝑖−𝑤
𝑘=1

Δ𝑟
𝑘,𝑖
. Yet

the local left IR deltas are new calculations (if𝑊 > 2): using

Eq. 1, Δ𝑙2
𝑖 = Δ−

𝑖 − ∑𝑖−1
𝑗=𝑖−𝑊 +1 Δ

+
𝑗 (𝑖 > 𝑊). In two-stage ap-

proach, 𝑁 snapshots require 𝑁 −𝑊 extra delta calculations,

which is still conservative compared with CommonGraph.

Selection of Sub-Time Window Size. The sub-time win-

dow size𝑊 is crucial for the two-stage approach to balance

redundancy reduced and calculation introduced. A large𝑊

allows more snapshots to share the overlap of completion

deltas but increases the overhead of calculating local left

intermediate deltas. Conversely, a small𝑊 presents the op-

posite challenge. The optimal𝑊 depends on multiple factors,

such as the size and structure of the evolving graph, the num-

ber and size of the deltas, and the specific graph query. In

this paper, we empirically select𝑊 = 4.

4.2 LCG-centric Caching
As introduced in §3.2, PIE’s storage systems store all graph

data (multiple CSRs) in PM by default, allowing the system

to scale for processing larger graphs while conserving mem-

ory resources [37, 53]. However, when memory spaces are

ICS ’25, June 8–11, 2025, Salt Lake City, UT, USA Yunmo Zhang, Jiacheng Huang, Xizhe Yin, Junqiao Qiu, Hong Xu, and Chun Jason Xue

available, DRAM can be utilized to further accelerate query

evaluation due to the noticeable performance gap between

DRAM and PM. Unlike XPGraph, which caches the latest

deltas in DRAM, PIE caches the critical part of the base graph

𝐺0 for two reasons. First, the base graph, logically LCG, is

needed at least twice during the LCG-driven incremental

analysis of each snapshot (§3.3)–once for re-convergence

on itself and once for re-convergence on the snapshot. Sec-

ond, most accesses to the LCG are random, whereas deltas

are accessed sequentially during incremental analysis in the

multi-CSR graph format. To ensure efficient caching, we as-

sign different cache priorities to various portions of 𝐺0 CSR.

The highest priority is given to the vertex array, followed by

the neighbors of high-degree vertices in the edge array (set

through a threshold by users), and finally to other vertices in

the edge array. The selection of the critical parts ultimately

depends on the memory budget. By default, PIE caches the

vertex array of 𝐺0 to maintain memory space efficiency.

5 Evaluation
We implement the prototyped PIE framework in C++ with

using OpenMP for efficient parallelization. The framework

consists of a library providing graph view interfaces intro-

duced in Table 1. The analytics engine and storage system

are developed on top of the GAP framework [3] and Kick-

Starter [43, 62]. The PM-related access and memory manage-

ment is developed using PMDK 1.12 [20].

5.1 Evaluation Methodology
Evaluated Systems. We compare PIE with the following

evolving graph frameworks in the evaluation:

• Two state-of-the-art PM-based evolving graph frame-

works, XPGraph [63] and DGAP [22]. For update

ingestion, both frameworks handle deletion by insert-

ing a new edge with the first bit of the destination

vertex ID flipped. To ensure consistent versioning, XP-

Graph and DGAP read the neighbors into a DRAM

array and apply the deletion to them before returning

the consistent neighbors. We configure XPGraph and

DGAP with their settings in their paper. For query

evaluation, both frameworks originally used recompu-

tation as their analytics engines. We incorporate an

incremental analysis approach Kickstarter [43, 62] to

these SOTA frameworks, denoted as DGAP+KS and
XPGraph+KS, as their PM-aware analytics engine. All

implementations are based on their publicly available

source codes
2,3,4

.

2
https://github.com/ISCS-ZJU/XPGraph

3
https://github.com/DIR-LAB/DGAP

4
https://github.com/pdclab/graphbolt

Table 2: Graph Statistics.

Graph 𝑉 𝐸 Avg. Deg. Dia.

WikiLinks (WK) [35] 13M 669M 64.3 12

uk-2005 (UK) [52] 39M 1.6B 47.4 23

It-2004 (IT) [52] 41M 2.1B 55.7 19

Twitter-2010 (TW) [36] 61M 2.4B 40.5 18

SK [52] 50M 3.7B 77.0 18

Twitter-MPI (TWM) [21] 53M 3.2B 74.7 18

• A direct adaptation of CommonGraph [1] in PM (CG-
PM) with our best efforts. Their entire graph repre-

sentations, such as multi-CSR representations of edge

update batches, are retained in PM.

• A direct PM adoptation of TgStore [5]. As TgStore

primarily focuses on storage cost optimization rather

than query execution, we only evaluate its update in-

gestion performance. Our implementations are based

on our best understanding of the original paper.

Evaluation Platform. All experiments are conducted on

a server with an Intel Xeon Gold 5317 3.00GHz processor

with 12 physical cores. It has 8 DRAM DIMMs with 16 GB

each (128GB in total) and 8 Optane DC DIMMs with 126GB

each (1TB in total) in App Direct mode. The machine runs

on Ubuntu 20.04.6 with Linux kernel 5.1.0. All source codes

are compiled by gcc 10.5.0 with “-O3” flag.

Graph Datasets. Evaluations were conducted with a set of

real-world graphs from different domains. Table 2 lists these

graphs and their key characteristics. Following prior stud-

ies [22, 41, 60, 62], we initialize and warm up the system by

preloading 50% of each dataset as the base snapshot (𝐺0) be-

fore benchmarking update ingestion. Unless otherwise spec-

ified, all experimental results presented in this section are

obtained over 12 snapshots, where each snapshot involves

0.5% edge additions (randomly selected from the remaining

dataset) and 0.5% edge deletions (randomly selected from

the loaded portion). Both ingestion and query evaluation

experiments are conducted with using 12 threads by default.

Graph Algorithms. We use five graph algorithms listed in

Table 3 to evaluate the graph analysis performance as related

work [1, 62].

5.2 Graph Ingestion Performance
Figure 12 presents the geometric mean ingestion throughput

of PIE and four other systems in Million Edges Per Second

(MEPS) across multiple datasets. PIE consistently outper-

forms all other evaluated systems, achieving speedups of

8.4×, 10.8×, 10.9×, and 52.5× over XPGraph, DGAP, CG-PM,

and TgStore, respectively. These results demonstrate the ef-

fectiveness of PIE ’s detached logical graph view and its

contiguous layout design in maximizing data coalescing and

reducing redundant writes. Although CG-PM also utilizes

https://github.com/ISCS-ZJU/XPGraph
https://github.com/DIR-LAB/DGAP
https://github.com/pdclab/graphbolt

PIE: Enabling Fast and Scalable Incremental Evolving Graph Analytics on Persistent Memory ICS ’25, June 8–11, 2025, Salt Lake City, UT, USA

Table 3: Graph Algorithms and their Edge Functions.

Algorithm Push operation for an edge (𝑠, 𝑑)

BFS

level(𝑑) = min{ level(𝑑), level(𝑠) + 1; }

if level(𝑑) changed then add 𝑑 to frontier;

SSSP

dist(𝑑) = min{ dist(𝑑), dist(𝑠) + w(𝑠, 𝑑); }

if dist(𝑑) changed then add 𝑑 to frontier;

SSWP

wide(𝑑) = max{ wide(𝑑), min{ wide(𝑠), w(𝑠, 𝑑); } }

if wide(𝑑) changed then add 𝑑 to frontier;

SSNP

narrow(𝑑) = min{ narrow(𝑑), max{ narrow(𝑠), w(𝑠, 𝑑); } }

if narrow(𝑑) changed then add 𝑑 to frontier;

Viterbi

vite(𝑑) = max{ vite(𝑑), vite(𝑠) / w(𝑠, 𝑑); }

if vite(𝑑) changed then add 𝑑 to frontier;

10
.1

10
.2

8.
9

9 8.
7 9.
8

9.
4

6.
2 7.

7

7.
7 8.
4

7.
9

6.
3 7.
3

7.
6

6.
6 7.
2

7.
1

7.
4

7.
5

7.
2

11
.6

1.
8

1.
7

<1 <1 <1

1.
5

97
.7

64
.1

68
.8

68
.4 96

.2

84
.2

78
.8

1

10

100

WK UK IT TW SK TWM Geo

Av
g.

 In
ge

st
io

n
Th

ro
ug

hp
ut

(M
EP

S)

XPGraph DGAP CG-PM TgStore PIE

Figure 12: The Overall Performance of Ingestion
(Larger the better).

a contiguous layout, the 𝐺𝑐 updates introduce a large num-

ber of small random writes, and thus offsets its intended

benefits. Compared to XPGraph and DGAP, which employ

PM-aware storage optimizations, PIE achieves superior per-

formance by reducing write amplification more effectively.

XPGraph benefits from intra-vertex neighbor coalescing, pro-

viding an advantage over DGAP. However, its performance

is constrained by the overhead of sorting and hierarchical

buffering. TgStore shows a less efficient performance than

other frameworks on large graphs, as it introduces substan-

tial overhead from scans and writes across data blocks of

both baseline snapshots and incremental edge data.

Scalability. We further evaluate the storage system’s sen-

sitivity to workload changes regarding the number of snap-

shots and batch size. We first vary the number of snapshots

(𝑁) from 8 to 48 while keeping a delta size at 0.5%. The re-

sults in Figure 13 indicate that PIE consistently outperforms

the related work as 𝑁 grows, confirming its stable ingestion

performance benefits regardless of 𝑁 . We then vary the delta

sizes from 0.1% to 1% while keeping 𝑁 at 12. The results in

Figure 14 show that the speedups of PIE and CG-PM increase

with larger delta sizes, as DGAP experiences longer blocking

for rebalance under larger batch sizes.

0

4

8

12

16

8 12 24 36 48
0

4

8

12

16

8 12 24 36 48

Sp
ee

du
p

ov
er

 D
G

AP

Number of Snapshots (N)

XPGraph CG-PM PIE

TWMSK

Figure 13: Effect of number of snapshots.

0

6

12

18

0.1% 0.3% 0.5% 0.8% 1%
0

6

12

18

0.1% 0.3% 0.5% 0.8% 1%

Sp
ee

du
p

ov
er

 D
G

AP

Percent of the Batch Size

XPGraph CG-PM PIE

TWMSK

Figure 14: Effect of batch size.

5.3 Graph Analysis performance
Table 4 reports the overall query evaluation performance

of evaluated frameworks, with PIE configured with all opti-

mizations introduced in Section 4. The results show that PIE

outperforms the compared frameworks by factors ranging

from 3.9× to 105.9×. On average, PIE achieves 20.4×, 18.1×,
and 6.4× speedups compared with XPGraph+KS, DGAP+KS,

and CG-PM, respectively. We observe that the performance

gap between PIE and the other systems is less evident on

the smallest dataset (i.e., WK), but becomes increasingly sig-

nificant on large power-law graphs such as UK and TWM.

This is primarily due to the increasing overhead associated

with identifying and propagating deletion effects over large

highly skewed graph when applying traditional incremental

approaches like KickStarter. In contrast, the deletion-free

streamlined incremental analysis used in PIE is less sensitive

to structural variations. Across diverse datasets and algo-

rithms, PIE achieves 4.8× to 10.2× speedups over CG-PM,

showing the effectiveness of its LCG-driven streamlined in-

cremental analysis in mitigating redundant computations

and optimizing PM access patterns.

Scalability. We also examine how well the analytics engine

can handle varying numbers of snapshots and batch sizes.

We first vary the number of batches from 8 to 48 while keep-

ing the batch size at 0.5%. The results in Figure 15 show that

ICS ’25, June 8–11, 2025, Salt Lake City, UT, USA Yunmo Zhang, Jiacheng Huang, Xizhe Yin, Junqiao Qiu, Hong Xu, and Chun Jason Xue

Table 4: Time of ExecutingQueries onEvolvingGraphs.

Alg. Graph XPGraph+KS DGAP+KS CG-PM PIE

BFS

WK 14.4s (6.4×) 14.1s (6.3×) 11.8s (5.2×) 2.2s

UK 644.9s (88.0×) 222.6 (30.4×) 66.3s (9.0×) 7.3s

IT 191.8s (29.0×) 78.4s (11.9×) 43.8s (6.6×) 6.6s

TW 171.3s (17.8×) 247.1s (25.7×) 52.8s (5.5×) 9.6s

SK 362.1s (37.5×) 152.9s (15.8×) 77.9s (8.1×) 9.7s

TWM 549.1s (46.2×) 868.3s (73.0×) 74.5s (6.3×) 11.9s

SSSP

WK 19.8s (8.3×) 15.1s (6.3×) 11.5s (4.8×) 2.4s

UK 553.1s (77.6×) 560.1s (78.6×) 64.6s (9.1×) 7.1s

IT 191.4s (25.1×) 130.2s (17.0×) 43.7s (5.7×) 7.6s

TW 163.8s (15.3×) 222.1s (20.7×) 54.0s (5.0×) 10.7s

SK 375.5s (31.9×) 317.7s (27.0×) 77.5s (6.6×) 11.8s

TWM 844.5s (55.2×) 797.2s (52.1×) 77.1 (5.0×) 15.3s

SSWP

WK 12.8s (5.2×) 11.6s (4.7×) 12.1s (4.9×) 2.4s

UK 163.5s (21.5×) 248.6s (32.6×) 67.4s (8.8×) 7.6s

IT 106.6s (15.7×) 85.4s (12.5×) 43.2s (6.3×) 6.8s

TW 139.5s (13.4×) 209.0s (20.1×) 55.9s (5.4×) 10.4s

SK 87.7s (8.4×) 101.5s (9.7×) 78.9s (7.5×) 10.5s

TWM 287.5s (24.1×) 226.4s (19.0×) 76.0s (6.4×) 11.9s

SSNP

WK 12.1s (5.0×) 12.2s (5.0×) 12.3s (5.1×) 2.4s

UK 648s (105.9×) 311.8s (51.0×) 62s (10.1×) 6.1s

IT 199.1s (29.8×) 85.0s (12.7×) 43.4s (6.5×) 6.7s

TW 69.6s (7.0×) 257.0s (25.8×) 55.1s (5.5×) 10.0s

SK 162.8s (15.9×) 145.6s (14.2×) 78.5s (7.6×) 10.3s

TWM 1031s (90.3×) 344.1s (30.1×) 75.2s (6.6×) 11.4

Viterbi

WK 9.7s (3.9×) 12.9s (5.2×) 12.3s (5.0×) 2.5s

UK 93.3s (15.1×) 105.1s (17.0×) 63s (10.2×) 6.2s

IT 163.1s (24.9×) 90.3s (13.8×) 43.4s (6.6×) 6.6s

TW 152.8s (14.5×) 194.2s (18.4×) 56.3s (5.3×) 10.6s

SK 121.9s (12.2×) 226.2s (22.6×) 78.8s (7.9×) 10.0s

TWM 586.5s (42.7×) 374.4s (27.2×) 77.0s (5.6×) 13.7s

Norm. GMean 20.4× 18.1× 6.4× 1

0

20

40

60

80

100

8 12 24 36 48
0

10

20

30

40

50

8 12 24 36 48

Sp
ee

du
p

ov
er

 X
PG

ra
ph

Number of Snapshots (N)

DGAP CG-PM PIE

TWMSK

Figure 15: Effect of number of snapshots (SSSP).

PIE consistently outperforms other works, with the speedup

increasing as 𝑁 grows. In contrast, CG-PM experiences de-

creased speedup with more snapshots due to its quadratic

complexity to 𝑁 in grid construction. We then vary the batch

size from 0.1% to 1% while keeping 12 snapshots. Figure 16

shows PIE and CG-PM achieve a consistent trend of increas-

ing speedups due to the growing benefits of deletion-free

incremental analysis.

0

20

40

60

80

100

0.1% 0.3% 0.5% 0.8% 1%
0

20

40

60

80

100

0.1% 0.3% 0.5% 0.8% 1%

Sp
ee

du
p

ov
er

 X
PG

ra
ph

Percent of the Batch Size

DGAP CG-PM PIE

TWMSK

Figure 16: Effect of batch size (SSSP).

1.
2

1.
2

2.
2

1.
9

4.
3

3.
2

5.
8

4.
4

6.
5

4.
8

6.
6

5

SK TWM

1.
3

1.
3

2.
6

2.
3

6

4.
7

7.
3

5.
3

7.
9

6.
2

8.
1

6.
3

0
1
2
3
4
5
6
7
8
9

SK TWM
Sp

ee
du

p
of

 P
IE

 o
ve

r C
G

-P
M

no DL&no CNI
no DL
PIE (basic)
+TS (W=2)
+TS (W=4)
+TS (W=4)+cache

SSSPBFS

Figure 17: Impact of PIE Components.

5.4 Breakdown Analysis
To assess the contribution of the proposed PIE components

to the final results in Table 4, we conduct a breakdown anal-

ysis by removing the Detached Logical graph view (no DL)

and the Chunked Neighbor Index (no CNI) from PIE-Basic,

presented in §3. We then add the two-stage technique (TS)

with varying sub-time window sizes and DRAM caching of

the 𝐺0 vertex array (cache). The results in Figure 17 show

that PIE-Basic, including DL, CNI and LCG-driven approach,

achieves average speedups of 5.3× for BFS and 13.7× for SSSP

over CG-PM. Among the three components, DL contributes

the most benefits by eliminating runtime PM writes. The

two-stage technique reduces the analysis time of PIE-Basic

by an average of 14.0% for BFS and 21.8% for SSSP when

𝑊 = 2, and by 24.1% for BFS and 29.3% for SSSP when𝑊 = 4.

Finally, adding DRAM caching further reduces analysis time

by 1.5% to 3%.

5.5 Recovery Cost and DRAM Usage
Table 5 reports the time costs of recovering the system status

of three systems after a crash, which happens after ingesting

12 batches and before analytics. PIE and DGAP could recover

the status within 10 seconds, as their recoveries only involve

a scan of the edge array to recompute the metadata. XPGraph

needs to scan the log to rebuild the graph data in AL, which

is significantly slower. We also profile the peak DRAM space

PIE: Enabling Fast and Scalable Incremental Evolving Graph Analytics on Persistent Memory ICS ’25, June 8–11, 2025, Salt Lake City, UT, USA

Table 5: Recovery Cost (Seconds).

WK UK IT TW SK TWM

XPGraph 3.3 13.8 17.6 16.8 24.6 45.7

DGAP 1.6 4.2 5.0 5.8 8.3 7.7

PIE 0.8 2.2 2.4 3.1 4.5 3.9

Table 6: Peak DRAM Usage.

XPGraph DGAP PIE w/o Cache PIE w/ Cache

WK 17.4GB 2.0GB 686.2MB 741.2MB

TW 21.8GB 9.4GB 2.8GB 3.2GB

SK 20.6GB 7.1GB 2.2GB 2.5GB

occupation of three systems during the entire process of

ingesting and analyzing 12 batches. The results reported in

Table 6 show that XPGraph requires the most DRAM space as

it needs to store a 16GB buffer pool and extensive metadata in

DRAM. In contrast, PIE requires minimal DRAM resources,

even after applying the DRAM caching optimization.

6 Discussion of Generality
The PIE framework is currently implemented on Intel Op-

tane DCPMMs. Despite Intel’s discontinuation of Optane

PM in July 2022 [19], research in PM technologies continues

due to their great potential for data-intensive applications.

Meanwhile, upcoming PM products for the new generation

Intel Xeon Scalable processors (e.g., Sapphire Rapids) will

retain 3D XPoint as their underlying media [39], ensuring

continued applicability of PIE. Beyond Intel, next-generation

PM technologies using alternative media are emerging to

redefine future memory and storage architectures [4, 49, 59].

They are expected to share similar architectural constraints,

including limited internal buffering and high media access

granularity. The design of PIE can be generalized to other

PM devices that exhibit access granularity mismatches, such

as CXL-based Memory-Semantic SSDs [56] and KIOXIA’s

XL-FLASH [32], which have block-level access granularity

(e.g., 4 KB flash pages) significantly larger than cache-line

sizes, leading to severe write amplification. As a result, PIE

will remain highly relevant and is expected to be effective

for PM-based evolving graph analytics across a variety of

next-generation PM architectures.

7 Related Work
PM-based Graph Systems. Several proposals have inves-
tigated the design of static graph systems using single-

machine non-volatile memory. Sage [8] designs a semi-

asymmetric model that combines PM and DRAM to min-

imize costly PM writes. Bae et al. [2] modifies Ligra [61]

to utilize PM in memory mode, controlling PM through the

storage stack. Ghosh et al. [13] and Peng et al. [50] examine

graph applications on PM in App Direct mode, highlighting

its competitive performance against DRAM and memory

mode. PIE also targets App Direct mode, enabling direct

access to durable data via load/store. For dynamic graphs

on PM, an early work is NVGraph [40], which employs an

AL-based graph structure, with each vertex having an array

of pointers to index neighbors in different snapshots. Since

NVGraph was developed before any PM device was released,

recent work [22, 63] does not compare with NVGraph for a

fair comparison [22].

Evolving Graph Systems. On the graph representation

front, Aspen [7] and TEGRA [25] exploit function trees to

represent evolving graphs, indexing the immutable snap-

shots via pointers and storing the mutated sections out-of-

place with pointers to these sections updated in the tree.

Version traveler [28], LLAMA [41] and Graphone [34] em-

ploy linked-based format to manage vertex neighbors with

the degree-array-like structures for identifying snapshots.

Terrace [47] proposes a hierarchical structure that stores low-

degree vertices in an array for better locality and high-degree

vertices in tree structures for efficient updates separately.

On the analytics front, several in-memory incremental anal-

ysis systems have emerged [43, 60, 71]. Early approaches

such as Tornado [60] and Naiad [46] support only edge addi-

tions, while recent work, Kickstarter [62] and Graphbolt [43],

includes deletions, with Graphbolt further supporting the

Bulk Synchronous Parallel (BSP) semantics. IncBoost [71]

discusses the efficiency of different runtime data represen-

tations in Kickstarter, which we adopt the same in PIE as

related systems to ensure a fair comparison.

8 Conclusion
This paper proposes PIE, a PM-based evolving graph system

that features efficient deletion-free incremental analysis of

multiple snapshots. For the amplified write, read, and calcu-

lations introduced by the existing deletion-free incremental

analysis approach, PIE presents the detached logical graph

view, chunked neighbor index, and LCG-driven incremental

analysis to resolve them, respectively. Our comprehensive

evaluation confirms that PIE outperforms state-of-the-art in-

cremental analysis and PM-based graph systems in ingestion,

analysis, recovery, and DRAM usage.

Acknowledgments
We are grateful to the anonymous reviewers for their con-

structive comments and suggestions. The work was sup-

ported in part by City University of Hong Kong internal

and donation fundings (No. 9610598 and No. 9220148), and

the National Science Foundation (NSF) Grant (No. 2105006).

ICS ’25, June 8–11, 2025, Salt Lake City, UT, USA Yunmo Zhang, Jiacheng Huang, Xizhe Yin, Junqiao Qiu, Hong Xu, and Chun Jason Xue

References
[1] Mahbod Afarin, Chao Gao, Shafiur Rahman, Nael Abu-Ghazaleh, and

Rajiv Gupta. 2023. Commongraph: Graph analytics on evolving data.

In Proceedings of the ACM International Conference on Architectural
Support for Programming Languages and Operating Systems (ASPLOS).

[2] Hanyeoreum Bae, Miryeong Kwon, Donghyun Gouk, Sanghyun Han,

Sungjoon Koh, Changrim Lee, Dongchul Park, and Myoungsoo Jung.

2021. Empirical guide to use of persistent memory for large-scale in-

memory graph analysis. In IEEE International Conference on Computer
Design (ICCD).

[3] Scott Beamer, Krste Asanović, and David Patterson. 2017. The GAP

Benchmark Suite. arXiv:1508.03619 [cs.DC]

[4] Nantero Bill Gervasi. 2022. A Persistent CXL Memory Module

with DRAM Performance, In Storage Developer Conference (SDC),

SNIA. https://www.intel.com/content/www/us/en/products/docs/

memory-storage/optane-persistent-memory/overview.html.

[5] Yongli Cheng, Yan Ma, Hong Jiang, Lingfang Zeng, Fang Wang, Xiang-

hao Xu, and Yuhang Wu. 2024. TgStore: An Efficient Storage System

for Large Time-Evolving Graphs. IEEE Transactions on Big Data (2024).
[6] Avery Ching, Sergey Edunov, Maja Kabiljo, Dionysios Logothetis, and

Sambavi Muthukrishnan. 2015. One trillion edges: Graph processing

at facebook-scale. Proceedings of the VLDB Endowment (2015).
[7] Laxman Dhulipala, Guy E Blelloch, and Julian Shun. 2019. Low-latency

graph streaming using compressed purely-functional trees. In Proceed-
ings of the ACM SIGPLAN conference on Programming Language Design
and Implementation (PLDI).

[8] Laxman Dhulipala, Charles McGuffey, Hongbo Kang, Yan Gu3 Guy E

Blelloch, Phillip B Gibbons, and Julian Shun. 2020. Sage: Parallel Semi-

Asymmetric Graph Algorithms for NVRAMs. Proceedings of the VLDB
Endowment (2020).

[9] Guanyu Feng, Zixuan Ma, Daixuan Li, Shengqi Chen, Xiaowei Zhu,

Wentao Han, andWenguang Chen. 2021. Risgraph: A real-time stream-

ing system for evolving graphs to support sub-millisecond per-update

analysis at millions ops/s. In Proceedings of the International Conference
on Management of Data (SIGMOD).

[10] Yehonatan Fridman, Suprasad Mutalik Desai, Navneet Singh, Thomas

Willhalm, and Gal Oren. 2023. CXL memory as persistent memory

for disaggregated hpc: A practical approach. In Proceedings of the
SC’23 Workshops of The International Conference on High Performance
Computing, Network, Storage, and Analysis.

[11] Yehonatan Fridman, Yaniv Snir, Matan Rusanovsky, Kfir Zvi, Harel

Levin, Danny Hendler, Hagit Attiya, and Gal Oren. 2021. Assessing

the use cases of persistent memory in high-performance scientific

computing. In 2021 IEEE/ACM 11th Workshop on Fault Tolerance for
HPC at eXtreme Scale (FTXS). IEEE, 11–20.

[12] Chao Gao, Mahbod Afarin, Shafiur Rahman, Nael Abu-Ghazaleh, and

Rajiv Gupta. 2023. Mega evolving graph accelerator. In IEEE/ACM
International Symposium on Microarchitecture (MICRO).

[13] Sayan Ghosh, Nathan R Tallent, Marco Minutoli, Mahantesh Halap-

panavar, Ramesh Peri, and Ananth Kalyanaraman. 2021. Single-node

partitioned-memory for huge graph analytics: cost and performance

trade-offs. In Proceedings of the International Conference for High Per-
formance Computing, Networking, Storage and Analysis (SC).

[14] Gurbinder Gill, RoshanDathathri, LocHoang, Ramesh Peri, and Keshav

Pingali. 2020. Single machine graph analytics on massive datasets

using Intel optane DC persistent memory. Proceedings of the VLDB
Endowment (2020).

[15] Wentao Han, Youshan Miao, Kaiwei Li, Ming Wu, Fan Yang, Lidong

Zhou, Vijayan Prabhakaran, Wenguang Chen, and Enhong Chen. 2014.

Chronos: a graph engine for temporal graph analysis. In Proceedings
of the Sixteenth European Conference on Computer Systems (EuroSys).

[16] Shenyang Huang, Farimah Poursafaei, Jacob Danovitch, Matthias Fey,

Weihua Hu, Emanuele Rossi, Jure Leskovec, Michael Bronstein, Guil-

laume Rabusseau, and Reihaneh Rabbany. 2024. Temporal graph bench-

mark for machine learning on temporal graphs. Advances in Neural
Information Processing Systems (2024).

[17] Yuriy Hulovatyy, Huili Chen, and Tijana Milenković. 2015. Explor-

ing the structure and function of temporal networks with dynamic

graphlets. Bioinformatics 31, 12 (2015), i171–i180.
[18] Intel. [n. d.]. Intel Optane Persistent Memory. https:

//www.intel.com/content/www/us/en/products/docs/memory-

storage/optane-persistent-memory/overview.html.

[19] Intel. 2022. Intel Reports Second-Quarter 2022 Financial Re-

sults. https://www.intc.com/news-events/press-releases/detail/1563/

intel-reports-second-quarter-2022-financial-results.

[20] Intel. [n. d.]. Persistent Memory Development Kit. https://pmem.io/

pmdk/.

[21] Alexandru Iosup, Tim Hegeman, Wing Lung Ngai, Stijn Heldens, Ar-

nau Prat-Pérez, Thomas Manhardto, Hassan Chafio, Mihai Capotă,

Narayanan Sundaram, et al. 2016. LDBC Graphalytics: A benchmark

for large-scale graph analysis on parallel and distributed platforms.

Proceedings of the VLDB Endowment (2016).
[22] Abdullah Al Raqibul Islam and Dong Dai. 2023. DGAP: Efficient

Dynamic Graph Analysis on Persistent Memory. In Proceedings of the
International Conference for High Performance Computing, Networking,
Storage and Analysis (SC).

[23] Abdullah Al Raqibul Islam, Dong Dai, and Dazhao Cheng. 2022. VCSR:

Mutable CSR Graph Format Using Vertex-Centric Packed Memory

Array. In IEEE International Symposium on Cluster, Cloud and Internet
Computing (CCGrid).

[24] Anand Iyer, Li Erran Li, and Ion Stoica. 2015. CellIQ: Real-Time Cellu-

lar Network Analytics at Scale. In USENIX Symposium on Networked
Systems Design and Implementation (NSDI).

[25] Anand Padmanabha Iyer, Qifan Pu, Kishan Patel, Joseph E Gonzalez,

and Ion Stoica. 2021. TEGRA: Efficient Ad-Hoc Analytics on Evolv-

ing Graphs. In USENIX Symposium on Networked Systems Design and
Implementation (NSDI).

[26] Joseph Izraelevitz, Hammurabi Mendes, and Michael L Scott. 2016.

Linearizability of persistent memory objects under a full-system-crash

failure model. In International Symposium on Distributed Computing
(DISC).

[27] Joseph Izraelevitz, Jian Yang, Lu Zhang, Juno Kim, Xiao Liu, Amir-

samanMemaripour, Yun Joon Soh, ZixuanWang, Yi Xu, Subramanya R

Dulloor, et al. 2019. Basic performance measurements of the intel op-

tane DC persistent memory module. arXiv preprint arXiv:1903.05714
(2019).

[28] Xiaoen Ju, Dan Williams, Hani Jamjoom, and Kang G Shin. 2016. Ver-

sion traveler: Fast and memory-efficient version switching in graph

processing systems. In USENIX Annual Technical Conference (ATC).
[29] Myoungsoo Jung. 2022. Hello bytes, bye blocks: Pcie storage meets

compute express link for memory expansion (CXL-SSD). In Proc. ACM
Workshop on Hot Topics in Storage and File Systems (HotStorage).

[30] Anuj Kalia, David Andersen, and Michael Kaminsky. 2020. Challenges

and solutions for fast remote persistent memory access. In Proceedings
of the ACM Symposium on Cloud Computing (SoCC).

[31] Wook-Hee Kim, R Madhava Krishnan, Xinwei Fu, Sanidhya Kashyap,

and Changwoo Min. 2021. PACTree: A high performance persistent

range index using PAC guidelines. In Proceedings of the ACM Sympo-
sium on Operating Systems Principles (SOSP).

[32] KIOXIA. 2022. Kioxia Launches Second Generation of High-

Performance, Cost-Effective XL-FLASH Storage Class Memory So-

lution. https://www.kioxia.com/en-jp/business/news/2022/20220802-

1.html.

https://arxiv.org/abs/1508.03619
https://www.intel.com/content/www/us/en/products/docs/memory-storage/optane-persistent-memory/overview.html
https://www.intel.com/content/www/us/en/products/docs/memory-storage/optane-persistent-memory/overview.html
https://www.intel.com/content/www/us/en/products/docs/memory-storage/optane-persistent-memory/overview.html
https://www.intel.com/content/www/us/en/products/docs/memory-storage/optane-persistent-memory/overview.html
https://www.intel.com/content/www/us/en/products/docs/memory-storage/optane-persistent-memory/overview.html
https://www.intc.com/news-events/press-releases/detail/1563/intel-reports-second-quarter-2022-financial-results
https://www.intc.com/news-events/press-releases/detail/1563/intel-reports-second-quarter-2022-financial-results
https://pmem.io/pmdk/
https://pmem.io/pmdk/
https://www.kioxia.com/en-jp/business/news/2022/20220802- 1.html
https://www.kioxia.com/en-jp/business/news/2022/20220802- 1.html

PIE: Enabling Fast and Scalable Incremental Evolving Graph Analytics on Persistent Memory ICS ’25, June 8–11, 2025, Salt Lake City, UT, USA

[33] Dimitrios Koutsoukos, Raghav Bhartia, Michal Friedman, Ana

Klimovic, and Gustavo Alonso. 2023. NVM: Is it Not Very Meaningful

for Databases? Poceedings of the VLDB Endowment (2023).
[34] Pradeep Kumar and H Howie Huang. 2019. GRAPHONE: a data store

for real-time analytics on evolving graphs. In USENIX Conference on
File and Storage Technologies (FAST).

[35] Jérôme Kunegis. 2013. Konect: the Koblenz Network Collection. In

Proc. International Conference on World Wide Web (WWW). 1343–1350.
[36] Haewoon Kwak, Changhyun Lee, Hosung Park, and Sue Moon. 2010.

What is Twitter, a social network or a news media?. In Proc. ACM
World Wide Web (WWW).

[37] Aapo Kyrola, Guy Blelloch, and Carlos Guestrin. 2012. GraphChi:

Large-Scale graph computation on just a PC. In USENIX Symposium
on Operating Systems Design and Implementation (OSDI).

[38] Tianxi Li, Yang Wang, and Xiaoyi Lu. 2023. On the Discontinuation of

Persistent Memory: Looking Back to Look Forward. InWorkshop on
Hot Topics in System Infrastructure, Co-located with ISCA 2023.

[39] Zhenxin Li, Shuibing He, Zheng Dang, Peiyi Hong, Xuechen Zhang,

Rui Wang, and Fei Wu. 2024. CCL-BTree: A Crash-Consistent Locality-

Aware B+-Tree for Reducing XPBuffer-Induced Write Amplification in

Persistent Memory. In Proceedings of the Sixteenth European Conference
on Computer Systems (EuroSys).

[40] Soklong Lim, Zaixin Lu, Bin Ren, and Xuechen Zhang. 2019. Enforcing

crash consistency of evolving network analytics in non-volatile main

memory systems. In International Conference on Parallel Architectures
and Compilation Techniques (PACT). IEEE.

[41] Peter Macko, Virendra J Marathe, Daniel WMargo, andMargo I Seltzer.

2015. LLAMA: Efficient Graph Analytics using Large Multiversioned

Arrays. In IEEE International Conference on Data Engineering (ICDE).
[42] Jasmina Malicevic, Subramanya Dulloor, Narayanan Sundaram, Na-

dathur Satish, Jeff Jackson, and Willy Zwaenepoel. 2015. Exploiting

NVM in large-scale graph analytics. In Proceedings of the 3rd Workshop
on Interactions of NVM/FLASH with Operating Systems and Workloads.

[43] Mugilan Mariappan and Keval Vora. 2019. Graphbolt: Dependency-

driven synchronous processing of streaming graphs. In Proceedings of
the Sixteenth European Conference on Computer Systems (EuroSys).

[44] Frank McSherry, Derek Gordon Murray, Rebecca Isaacs, and Michael

Isard. 2013. Differential Dataflow. In CIDR.
[45] Youshan Miao, Wentao Han, Kaiwei Li, Ming Wu, Fan Yang, Lidong

Zhou, Vijayan Prabhakaran, Enhong Chen, and Wenguang Chen. 2015.

Immortalgraph: A system for storage and analysis of temporal graphs.

ACM Transactions on Storage (TOS) (2015).
[46] Derek G Murray, Frank McSherry, Rebecca Isaacs, Michael Isard, Paul

Barham, and Martín Abadi. 2013. Naiad: a timely dataflow system.

In Proceedings of the Twenty-Fourth ACM Symposium on Operating
Systems Principles. 439–455.

[47] Prashant Pandey, Brian Wheatman, Helen Xu, and Aydin Buluc. 2021.

Terrace: A hierarchical graph container for skewed dynamic graphs.

In Proceedings of the International Conference on Management of Data
(SIGMOD).

[48] Onkar Patil, Latchesar Ionkov, Jason Lee, Frank Mueller, and Michael

Lang. 2019. Performance characterization of a dram-nvm hybrid mem-

ory architecture for hpc applications using intel optane dc persistent

memory modules. In Proceedings of the International Symposium on
Memory Systems.

[49] Arthur Sainio Pekon Gupta. 2020. Gen-Z emerging technology

for memory intensive applications, In Storage Developer Confer-

ence (SDC), SNIA. https://www.snia.org/educational-library/gen-z-

emerging-technology-memory-intensive-applications-2020.

[50] Ivy B Peng, Maya B Gokhale, and Eric W Green. 2019. System evalu-

ation of the intel optane byte-addressable nvm. In Proceedings of the
International Symposium on Memory Systems. 304–315.

[51] Chenghui Ren, Eric Lo, Ben Kao, Xinjie Zhu, and Reynold Cheng. 2011.

On querying historical evolving graph sequences. Proceedings of the
VLDB Endowment (2011).

[52] Ryan Rossi and Nesreen Ahmed. 2015. The network data repository

with interactive graph analytics and visualization. In Proceedings of
the AAAI conference on artificial intelligence, Vol. 29.

[53] Amitabha Roy, Ivo Mihailovic, and Willy Zwaenepoel. 2013. X-stream:

Edge-centric graph processing using streaming partitions. In Proceed-
ings of the ACM Symposium on Operating Systems Principles (SOSP).

[54] Siddhartha Sahu, Amine Mhedhbi, Semih Salihoglu, Jimmy Lin, and

M Tamer Özsu. 2017. The ubiquity of large graphs and surprising

challenges of graph processing. Proceedings of the VLDB Endowment
(2017).

[55] Samsung. [n. d.]. Samsung CXL Solutions – CMM-H .

https://semiconductor.samsung.com/us/news-events/tech-

blog/samsung-cxl-solutions-cmm-h/.

[56] Samsung. 2022. Memory-Semantic SSDTM: Industry 1st CXL-Based

Storage Optimized for AI/ML. https://samsungmsl.com/ms-ssd/.

[57] Shintaro Sano, Yosuke Bando, Kazuhiro Hiwada, Hirotsugu Kajihara,

Tomoya Suzuki, Yu Nakanishi, Daisuke Taki, Akiyuki Kaneko, and Tat-

suo Shiozawa. 2023. GPU graph processing on cxl-based microsecond-

latency external memory. In Proceedings of the SC’23 Workshops of
the International Conference on High Performance Computing, Network,
Storage, and Analysis. 962–972.

[58] Korakit Seemakhupt, Sihang Liu, Yasas Senevirathne, Muhammad

Shahbaz, and Samira Khan. 2021. PMNet: In-network data persistence.

In ACM/IEEE Annual International Symposium on Computer Architec-
ture (ISCA).

[59] Kapil Sethi. [n. d.]. Expanding the Limits of Memory Band-

width and Density: Samsung’s CXL Memory Expander. https:

//semiconductor.samsung.com/news-events/tech-blog/expanding-

the-limits-of-memory-bandwidth-and-density-samsungs-cxl-dram-

memory-expander/.

[60] Xiaogang Shi, Bin Cui, Yingxia Shao, and Yunhai Tong. 2016. Tor-

nado: A system for Real-time Iterative Analysis over Evolving Data.

In Proceedings of the International Conference on Management of Data
(SIGMOD).

[61] Julian Shun and Guy E Blelloch. 2013. Ligra: a lightweight graph

processing framework for shared memory. In Proceedings of the ACM
SIGPLAN Symposium on Principles and Practice of Parallel Programming
(PPoPP).

[62] Keval Vora, Rajiv Gupta, and Guoqing Xu. 2017. Kickstarter: Fast

and Accurate Computations on Streaming Graphs via Trimmed Ap-

proximations. In Proceedings of the ACM International Conference on
Architectural Support for Programming Languages and Operating Sys-
tems (ASPLOS).

[63] Rui Wang, Shuibing He, Weixu Zong, Yongkun Li, and Yinlong Xu.

2022. XPGraph: XPline-friendly Persistent Memory Graph Stores for

Large-scale Evolving Graphs. In IEEE/ACM International Symposium
on Microarchitecture (MICRO).

[64] MichèleWeiland, Holger Brunst, Tiago Quintino, Nick Johnson, Olivier

Iffrig, Simon Smart, Christian Herold, Antonino Bonanni, Adrian Jack-

son, and Mark Parsons. 2019. An early evaluation of intel’s optane

dc persistent memory module and its impact on high-performance

scientific applications. In Proceedings of the international conference for
high performance computing, networking, storage and analysis (SC).

[65] Brian Wheatman and Helen Xu. 2018. Packed compressed sparse row:

A dynamic graph representation. In IEEE High Performance Extreme
Computing Conference (HPEC).

[66] Brian Wheatman and Helen Xu. 2021. A parallel packed memory

array to store dynamic graphs. In 2021 Proceedings of the Workshop on
Algorithm Engineering and Experiments (ALENEX). SIAM, 31–45.

https://www.snia.org/educational-library/gen-z-emerging-technology-memory-intensive-applications-2020
https://www.snia.org/educational-library/gen-z-emerging-technology-memory-intensive-applications-2020
https://semiconductor.samsung.com/us/news-events/tech-blog/samsung-cxl-solutions-cmm-h/
https://semiconductor.samsung.com/us/news-events/tech-blog/samsung-cxl-solutions-cmm-h/
https://samsungmsl.com/ms-ssd/
https://semiconductor.samsung.com/news-events/tech-blog/expanding-the-limits-of-memory-bandwidth-and-density-samsungs-cxl-dram-memory-expander/
https://semiconductor.samsung.com/news-events/tech-blog/expanding-the-limits-of-memory-bandwidth-and-density-samsungs-cxl-dram-memory-expander/
https://semiconductor.samsung.com/news-events/tech-blog/expanding-the-limits-of-memory-bandwidth-and-density-samsungs-cxl-dram-memory-expander/
https://semiconductor.samsung.com/news-events/tech-blog/expanding-the-limits-of-memory-bandwidth-and-density-samsungs-cxl-dram-memory-expander/

ICS ’25, June 8–11, 2025, Salt Lake City, UT, USA Yunmo Zhang, Jiacheng Huang, Xizhe Yin, Junqiao Qiu, Hong Xu, and Chun Jason Xue

[67] Mincheng Wu, Chao Li, Zhangchong Shen, Shibo He, Lingling Tang,

Jie Zheng, Yi Fang, Kehan Li, Yanggang Cheng, Zhiguo Shi, et al. 2022.

Use of temporal contact graphs to understand the evolution of COVID-

19 through contact tracing data. Communications Physics 5, 1 (2022),
270.

[68] Lingfeng Xiang, Xingsheng Zhao, Jia Rao, Song Jiang, and Hong Jiang.

2022. Characterizing the performance of intel optane persistent mem-

ory: A close look at its on-dimm buffering. In Proceedings of the Six-
teenth European Conference on Computer Systems (EuroSys).

[69] Jian Yang, Juno Kim, Morteza Hoseinzadeh, Joseph Izraelevitz, and

Steve Swanson. 2020. An empirical guide to the behavior and use of

scalable persistent memory. In USENIX Conference on File and Storage
Technologies (FAST).

[70] Shao-Peng Yang, Minjae Kim, Sanghyun Nam, Juhyung Park, Jin-Yong

Choi, Eyee Hyun Nam, Eunji Lee, Sungjin Lee, and Bryan S Kim.

2023. Overcoming the Memory Wall with {CXL-Enabled}{SSDs}. In
USENIX Annual Technical Conference (ATC).

[71] Xizhe Yin, Zhijia Zhao, and Rajiv Gupta. 2024. IncBoost: Scaling

Incremental Graph Processing for Edge Deletions and Weight Updates.

In Proceedings of the 2024 ACM Symposium on Cloud Computing.
[72] Wenhui Zhang, Xingsheng Zhao, Song Jiang, and Hong Jiang. 2021.

Chameleondb: a key-value store for optane persistent memory. In

Proceedings of the Sixteenth European Conference on Computer Systems
(EuroSys).

[73] Xu Zhang, Yisong Chang, Tianyue Lu, Ke Zhang, and Mingyu Chen.

2023. Rethinking design paradigm of graph processing system with a

cxl-like memory semantic fabric. In 2023 IEEE/ACM 23rd International
Symposium on Cluster, Cloud and Internet Computing (CCGrid). IEEE,
25–35.

	Abstract
	1 Introduction
	2 Background and Motivation
	2.1 Persistent Memory
	2.2 Evolving Graph Stores and Analytics
	2.3 Motivation

	3 The Design of PIE
	3.1 Overview
	3.2 Storage System
	3.3 LCG-driven Incremental Computations

	4 Other Optimizations
	4.1 Two-Stage Incremental Analysis
	4.2 LCG-centric Caching

	5 Evaluation
	5.1 Evaluation Methodology
	5.2 Graph Ingestion Performance
	5.3 Graph Analysis performance
	5.4 Breakdown Analysis
	5.5 Recovery Cost and DRAM Usage

	6 Discussion of Generality
	7 Related Work
	8 Conclusion
	Acknowledgments
	References

