
Performance Impact Inference with Failures in
Data Center Networks

Che Zhang∗, Hong Xu∗, Chengchen Hu†
∗NetX Lab, City University of Hong Kong, Hong Kong

†Department of Computer Science and Technology, Xi’an Jiaotong University, China

Abstract—Maintaining a data center network (DCN) is crucial
to many services running on top of it, especially given its large
scale with tens of thousands of network components. In this
paper, we propose a method to infer performance change before
failures really happen in data center networks, called Sibyl.
Different from previous work, Sibyl relies on network topology
information to infer network performance under failure scenarios
without the overhead of active measurements. Specifically, we
demonstrate that most important performance metrics can be
obtained from two fundamental topological metrics. We develop
efficient algorithms to obtain these two fundamental metrics,
leveraging graph automorphism of various DCN topologies.

I. INTRODUCTION

As the underlying infrastructure of the cloud, data center
networks (DCN) typically have tens of thousands of network
devices and cost millions of dollars to build and maintain
[6, 10]. In such a large scale network, failures caused by
hardware/software malfunctions and human errors are the norm
rather than exception [5, 12]. Failures may cause severe per-
formance degradation to the Internet services running on top
of the data center network. Thus, it is crucial to design an
automatic system to compute the network performance change
after failures for operators to locate and pinpoint the failed
devices.

While many efforts have been devoted to failure detection
[9], diagnosis [3, 15], and mitigation/recovery [19], relatively
little work has been done on inference of performance degrada-
tion before failures actually happen. We argue that performance
inference with failures is instrumental in many scenarios. For
example it can help operators and developers better test their
software under failures, by providing the network performance
impact for possibly all combinations of failures. Currently this
is done either through communications with network engineers
which takes time and is inaccurate; or by using a chaos
monkey approach [14] that proactively introduces failures to
production networks to see how the software reacts, which
may disrupt production services. A better understanding of the
performance loss caused by failures can also help the operator
design more resilient traffic engineering schemes, by computing
and installing backup tunnels for failures that have significant
impact on the network.

In this paper, we propose a novel performance impact in-
ference system for network failures, called Sibyl. Our main
idea is that we can use topology information to infer net-
work performance after failures. Specifically, we demonstrate

that various performance metrics, including throughput, load
balance, network delay, etc., can be deduced accurately from
just two basic topological properties — the shortest path and
the maximum number of edge-disjoint paths between any two
nodes. By enumerating through the possible topologies with
different failure scenarios, one can thus calculate the impact of
them to different performance metrics, without implementing
any new protocols or modifying the existing network.

The technical challenge in Sibyl becomes: how to efficiently
compute various performance metrics and assess the perfor-
mance degradation given the topology information. Efficiency is
important as the operator may need to evaluate a large number
of possible failure cases in practice for better resilience. On the
other hand, the sheer size of a data center network with tens
of thousands of forwarding devices poses significant difficulty
here.

Our main contribution in this paper is that we rely on
graph automorphism for symmetric DCN topologies to develop
efficient algorithms to compute network performance metrics.
Although there are many algorithms solving the shortest path
and the maximum number of edge-disjoint paths problems
individually, most of them are for general topologies and do not
consider the unique characteristics of DCN topologies. Using
automorphism sets that can be readily obtained from DCN
topologies, including fat-tree [1], BCube [7], and DCell [8], our
algorithms can calculate the two basic topological properties
to reduce the time complexity. Finally, for any scale of fat-
tree and BCube, we can reduce N(N − 1) times calculation of
paths to constant times and the time complexity of computing
is O(1). Although DCell is a little different from them due
to the complex connections, we can still reduce the times of
calculation.

The rest of the paper is organized as follows. Section II
introduces the DCN topologies and performance metrics. The
main focus of this paper, performance inference component, is
described in details in Section III. We validate our design via
extensive experiments and simulations in Section IV. Related
works are shown in Section V. Finally, we conclude the paper
in Section VI.

II. TOPOLOGY AND PERFORMANCE METRICS

We first introduce the performance metrics we consider in
this paper, then demonstrate that they can all be calculated from
two key properties of the network topology, namely the shortest

16

0 1 2 3

17

4 5 6 7

18

8 9 10 11

19

12 13 14 15

Level 0

20 21 22 23

 Level 1

200

1

2

3

21

4
5

6
7

2
2

8
91011

24

1
6

1
7

1
8

1
9

23

12
13

14
15

(1) FatTree

(3) DCell
(2) BCube

Fig. 1. Three topologies

path and the maximum number of edge-disjoint paths between
two nodes.

A. Background and Assumptions

Data center networks usually follow richly connected sym-
metric topologies between a pair of hosts. We mainly consider
three DCN topologies: fat-tree [1], BCube [7], and DCell [8]
as shown in Fig. 1.

A k-pod fat-tree built from k-port switches can support non-
blocking communication among k3/4 end hosts using 5k2/4

individual k-port switches. The switches of fat-tree are split into
three layers: edge, aggregation and core. A fat-tree consists of
k pods, each having k2/4 hosts. Fig 1(1) is a 4-pod fat-tree.

BCube is a recursively defined structure as shown in
Fig. 1(2). A BCube0 is simply n servers connecting to an n-port
switch. A BCubek (k ≥ 1)) is constructed from n BCubek−1s
and nk n-port switches.

DCell is also a recursively defined structure. We use DCellk
to denote a level-k DCell. A DCell0 is simply n servers
connecting to an n-port switch. A level-1 DCell1 is constructed
using n+ 1 DCell0s, each DCell0 is connected to all the other
DCell0s with one link. We treat each DCellk−1 as a virtual
node and fully connect these virtual nodes to form a complete
graph—DCellk. Fig. 1(3) is a DCell1 network with n = 4.

Network performance critically depends on the traffic pattern,
which varies across time and is hard to model [2, 13]. For
simplicity, in Sibyl we restrict ourselves to considering only
the all-to-all traffic pattern where each server communicates
with all the other servers in the network. This is consistent with
much existing work on DCN [7, 8] as it reflects the worst-case
performance for networks.

Network performance also hinges on how traffic is routed
among all the available paths in the network. In practice DCNs
use equal-cost multi-path routing (ECMP) to perform multipath
load balancing uniformly at random across all of the equal-
cost paths [16]. We thus assume each host’s flows are routed
in a round-robin fashion starting from the leftmost path in
Fig. 1. This results in identical performance compared to ECMP
without having to take into account the randomness.

B. Performance Metrics

We consider six common performance metrics widely used
in DCN. Sibyl can be configured to compute all or a subset of

these metrics depending on the need. Before explaining their
definitions we introduce some notations first.

We use l to denote a link, nl to denote the number of flows
traversing l, c to denote capacity of the link, and f to denote a
flow in the network. Flow f traverses through a path pf in the
network. Let n denote the total number of all-to-all flows.

The following metrics are defined with respect to a pair of
hosts or nodes in the network.

Throughput: The fair share rate achievable by TCP on link
l is bl = c/nl. Thus the throughput of flow f is equal to its
bottleneck fair share rate along its path pf : bf = minl∈pl{bl} =
minl∈pl{c/nl}.

Network connectivity: This is defined as the minimum
number of links whose removal disconnects the given two nodes
in the topology, i.e. the min-cut between them.

Path redundancy: To demonstrate the availability of equal-
cost paths, we define path redundancy as the maximum number
of edge-disjoint paths between two given nodes.

Network delay: We define network delay simply as the
length of the shortest path. Modeling queueing delay in DCN
is challenging and beyond the scope of this paper.

The following metrics are defined for the network.
Aggregate bottleneck throughput (ABT): We use the same

definition for ABT from [7] here: ABT = n ∗minf{bf}.
Network throughput: Let T denote the throughput of the

network across all flows. T =
∑

f bf .

C. Metrics and Topological Properties

We observe that all performance metrics are closely related to
the graph theoretical properties of the topology. With the all-to-
all traffic pattern and round-robin based uniform multipath rout-
ing, throughput can be readily determined from shortest-path
calculation, and hence ABT and network throughput. Network
delay is defined based on shortest path. Network connectivity
is related to the min-cut, and path redundancy depends on the
maximum number of edge-disjoint paths. Moreover, we have
the following:

Lemma 1. In a undirected graph, the maximum number of
edge-disjoint paths is equal to the minimum number of edges
whose removal separates the two nodes, i.e. the min-cut [11].

Therefore the following holds:

Theorem 1. All the performance metrics can be calculated
from the shortest path and the maximum number of edge-
disjoint path in a data center network.

Table I summarizes the relationship between metrics and
topological properties of the DCN. We refer to the two proper-
ties, the shortest path and the maximum number of edge-disjoint
paths, as the path tuple between any two nodes in the network.

TABLE I
METHODS OF COMPUTING PERFORMANCE METRICS

Property Network performance metrics
shortest path throughput, network delay, ABT, network

throughput
maximum number of
edge-disjoint paths

path redundancy, network connectivity

4 5

0 1

6 7

2 3

8 9

 (0,1,2,3,4,5,6,7,8,9)

4 5

1 0

6 7

2 3

8 9

6 7

2 3

4 5

0 1

8 9

 (1,0,2,3,4,5,6,7,8,9) (2,3,0,1,6,7,4,5,8,9)

(a) (b) (c)

4

0 1

5

2 3

6 7

6

0 2

7

1 3

4 5

4

1 0

5

3 2

7 6

(0,1,2,3,4,5,6,7) (0,2,1,3,6,7,4,5) (1,0,3,2,4,5,7,6)

(d) (e) (f)

Fig. 2. Examples of graph automorphism.
III. PERFORMANCE INFERENCE ALGORITHMS

We have shown that inferring performance metrics in a DCN
boils down to calculating the path tuple of all node pairs. When
there are N servers in a data center, a naive approach requires
to calculate N(N−1) path tuples for N(N−1) pairs of source-
destination nodes on a general graph. This is computationally
expensive for large-scale DCNs. Since the DCN topology
is largely symmetric even with failures, we propose a new
algorithm to accelerate the path tuple computation. We find
that all three topologies shown in Fig. 1 have automorphism.

A. Graph automorphism

We start by introducing graph automorphism. From [18] we
have the following:

Definition 1. An automorphism of a graph G = (V,E) is a
permutation σ of the vertex set V , such that the pair of vertices
(u, v) form an edge if and only if the pair (σ(u), σ(v)) also form
an edge. That is, it is a graph isomorphism from G to itself.

Theorem 2. If exchanging two nodes in the graph by keeping
the edges of the graph unchanged does not change the positions
of all edges in the graph, these two nodes are automorphic.

An example is as shown in Fig. 2. The three graphs on the
top are the topologies of half of a 4-pod fat-tree with different
labeling of switches. The first graph is the original graph
Fig. 2(a) with the labels from left to right and then bottom up.
To see that all edge switches in the graph are automorphic, we
choose the pairs (0, 1) and (0, 2). When we exchange switches 0

and 1 by keeping their edges unchanged, we obtain the second
graph Fig. 2(b) whose connections are identical with the first
graph. Thus the two graphs are an automorphism of each other,
and nodes 0 and 1 are automorphic.

Moreover we can extend to the following:

Theorem 3. If exchanging two units in the graph by keeping
their edges unchanged does not change the positions of all
edges in the graph, the corresponding nodes in these two units
of the graph are automorphic.

We call these automorphic units. In Fig. 2, we choose the
pods (0, 1, 4, 5) and (2, 3, 6, 7) in Fig. 2(a) to be the units.
After exchanging them in the first graph, we obtain the graph
Fig. 2(c). Clearly (0, 1, 4, 5) corresponds to (2, 3, 6, 7) and they
are automorphic units. As another example, a simple BCube is
shown in Fig. 2(d). We choose (4, 5) and (6, 7) to be units and
exchange them to obtain Fig. 2(e). In order to keep the positions

of edges unchanged, we change the positions of switches 2, 1, 3

and find the graph is the same as the original. Thus the two units
are automorphic correspondingly. Similarly, When we exchange
0 and 1, we obtain Fig. 2(f).

We now introduce the definition of automorphic set as
follows:

Definition 2. An automorphic set is a subset of nodes in graph
G such that two nodes u and v are in the same automorphic
set if there exists an automorphism of G that maps u to v.

We can then prove that all three DCN topologies are com-
posed of extensive automorphic sets.

Theorem 4. A fat-tree topology is composed of four mutually
exclusive automorphic sets: the core/aggregation/edge switch
set, and the server set. BCube is composed of two mutually
exclusive automorphic sets: the server set and the switch set.
DCell1 has two automorphic sets including the server set and
the switch set as well. DCellk, (k > 1) has s/2 automorphic sets
for servers (s stands for the number of servers in DCellk−1).

The proof is omitted here for space and all the proof of
theorems in this paper can be got from our technical report [20].
We sketch the basic idea here. First we find the automorphic
units with the largest cardinality in each topology. Then we
identify that some node pairs in the automorphic unit are
also automorphic. Now we can use the reflexive (node u is
automorphic with itself), symmetric (if node u and node v are
automorphic, v and u are automorphic), and transitive (if node
u and node v are automorphic, v and w are automorphic, then
u and w are automorphic) properties of automorphism relation
to identify and prove the automorphic set in which each node
is automorphic to each other.

B. Algorithm

Using the automorphic property of DCN topologies, we
propose a new algorithm to reduce the number of path tuples
needed to infer performance from N(N − 1) to a constant for
fat-tree, BCube and DCell1. For DCellk, (k > 1), we can also
reduce it using the following lemma although not all the servers
of DCellk are automorphic.

Lemma 2. Given the paths P from u to all other nodes in
an automorphic set, the paths from v to all the other nodes in
the same automorphic set can be readily obtained from P by
applying the permutation σ where σ(v) = u to all the nodes on
a path.

This lemma implies that, since all the servers are automor-
phic in fat-tree, BCube and DCell1, we can reduce the number
of tuples to be calculated from N(N − 1) to N − 1. That is
we only need to calculate all N − 1 path tuples from a server
s to other servers. Path tuples from s′ to other servers can be
obtained by applying automorphism. As an example in Fig. 3,
we know that all the shortest paths from server 0 to all other
servers. Suppose now we want to find the shortest paths from
server 2 to server 0. We know that one permutation for server
2 as shown in the bottom right of Fig. 3 maps 2 to 0, and 0 to

4 5 6 7

8 9

0 1 2 3

0

4 5

1

2 3

8 9

6 7

automorphic sets: automorphisms:

(0,1,2,3),(4,5,6,7),(8,9) path (0,3) 0,1,2,3,4,5,6,7,8,9

cells: 0,1,3,2,4,5,6,7,8,9

 0 1 2 2 3 4 server 1 0,1,2,3,4,5,6,7,8,9

(0),(4,5),(1),(8,9),(6,7)(2,3) 1,0,2,3,4,5,6,7,8,9

server cells: server 2 0,1,2,3,4,5,6,7,8,9

(0),(1),(2,3) 2,3,0,1,6,7,4,5,8,9

server pairs needing to server 3 0,1,2,3,4,5,6,7,8,9

calculating paths:(0,1),(0,2) 3,2,0,1,6,7,4,5,8,9

Reforming BFS

Fig. 3. An example of the algorithm

2. Thus according to automorphism it is equivalent to finding
shortest paths from server 0 to 2. One such path is via switches
4, 8, and 6. The corresponding shortest path from server 2 to
0 is then 6, 8, 4, again according to the same permutation for
server 2.

To further reduce the number of tuples from N to constant for
fat-tree, BCube and DCell1 whose servers are all automorphic,
we need the following:

Definition 3. Starting from a server s, an equal-cost automor-
phic group (ECAG) is the group of nodes that are automorphic
to each other, and have the same length of shortest path to s.
The corresponding nodes in their shortest path to s are also
belonging to corresponding ECAGs.

We can efficiently find equal-cost automorphic groups using
the following procedure based on breadth-first search (BFS),
called reforming BFS. First we identify automorphic sets. Then
choose any arbitrary server s, and run BFS. For all nodes at
the same depth of the search, we see if a node is automorphic
or not to others according to automorphic sets, and form the
ECAGs accordingly. For example in Fig. 3, we start from server
0 and run BFS. With depth 1, BFS finds switches 4 and 5 which
belong to the same ECAG. At depth 2, we have server 1 and
switches 8 and 9. Server 1 is not automorphic to switches 8
and 9. Thus only 8 and 9 form an ECAG, and server 1 forms
another.

Theorem 5. For fat-tree, BCube and DCell1, for a given server
s, the path tuples from s to u and s to v are automorphic if u
and v belong to the same equal-cost automorphic group.

This implies that we only need to calculate path tuples for
once from s to any node in an ECAG, and use automorphism to
obtain path tuples from s to all other nodes in the same ECAG.
In other words, we can further reduce the N − 1 path tuples to
just a constant for fat-tree, BCube and DCell1. Table II shows
the exact number of path tuples that need to be computed for
each of the three topologies we consider. As DCell3 already has
enough servers (e.g. when p=6, DCell3,6 can have 3.26-million
servers), we only list to DCell3. For the same example, we
can reduce 3.26-million*(3.26-million-1) times computation of
paths tuples to 903*(3.26-million-1) times.

TABLE II
THE TIMES OF COMPUTATION OF PATH TUPLE.

Topologies The times of computation of path tuple
fat-tree 3
BCubek k + 1

DCell1 6 (p > 2, p stands for the port number of a switch)
DCell2 (N − 1)p(p+ 1)/2

DCell3 (N − 1)p(p+ 1)(p(p+ 1) + 1)/2

With failures in the network, since a DCN is large-scale and
failures are not extensive, a majority of the topology is still
automorphic and we can still use our algorithm to compute
the affected path tuples. One simple way is that we can record
all the paths during the path tuples computation of constant
node pair shown in Table II for fat-tree, BCube and DCell1.
According to our algorithm, we can get all the paths for the left
node pairs using automorphism. So the difference to compute
the affected path tuples is that we need to judge whether the
path passes through the failed node or link. Note that many
automorphisms can be recorded in a smarter way to save space,
like server 1 in Fig. 3, we only need to record the different parts.
As we can construct the automorphism directly, we can even
save more space by constructing the automorphism when using
it instead of constructing once and saving the automorphism.

IV. EVALUATION

In this section, we perform the evaluations of Sibyl under
different settings using simulations to verify its effectiveness.

A. Setup

We use fat-tree and BCube with different scales as sum-
marized in Table III as the topologies in the simulation. The
number of link failures varies from 5 to 50. The failure patterns
include random failures involving both servers and switches,
server failures only, and switch failures at every level of the
topology.

TABLE III
TOPOLOGIES USED IN EVALUATION.

fat-tree(k) F(40)=18000 F(60)=58500 F(80)=136000
BCube(n, k) B(3,4)=648 B(4,4)=2304 B(5,4)=6250

In the experiments, we first compute the baseline perfor-
mance according to the complete topology of the network.
For each failure pattern, we then generate 10 topologies with
failures by randomly choosing the components to fail. For each
topology, we select the influenced paths to route around the
failures randomly and repeat the performance metric calculation
for 10 times. We compare the performance under failures
against the baseline to obtain the drop ratio of each metric,
and report the average value across the total 100 runs for each
topology with failures. Next we will analyse the experiment
results to answer four questions. 1. Whether the change of
metric is different under different failure patterns? 2. Whether
different performance metrics have different drop ratio under
the same failure pattern? 3. Whether the result can reflect
the automorphic property of DCN topologies? 4. Whether the
failures which have severe impact are few so that the manager
of the data center could repair them first?

5 10 15 20 25 30 35 40 45 50
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

Error number

T
h
e
 d

ro
p
 r

a
ti
o
 o

f
th

ro
u
g
h
p
u
t
o
f
F

a
tT

re
e
 w

it
h
 r

a
n
d
o
m

 e
rr

o
r

FatTree(40)

FatTree(60)

FatTree(80)

random

edge swith

aggregation switch

core switch

Fig. 4. The drop ratio of network throughput of FatTree

5 10 15 20 25 30 35 40 45 50
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Error number

T
h
e
 d

ro
p
 r

a
ti
o
 o

f
a
b
t
o
f
B

C
u
b
e

BCube(3,4)

BCube(4,4)

BCube(5,4)

random

server error

level 0 switch error

level 1 switch error

Fig. 5. The drop ratio of ABT of BCube

B. Impact of failure patterns

Fig.4, 5, and 6 show the drop ratio of throughput in fat-
tree and the drop ratios of throughput and ABT in BCube with
different failure patterns in different scales. We can observe that
under different failure patterns, the metrics all have different
drop ratios. As the network scale increases, the slope of the
curves which represents the relative impact of failures are quite
different. The drop ratio of throughput has the fastest growth
under the failure pattern of aggregation switch. It implies that
when an aggregation switch fails, it has more serious impact
on the network. For BCube, compared with failures in servers,
failures in switches have more serious effect.

C. Various metrics

With the increase of the number of failure, the drop ratio of
ABT (Fig. 5) and throughput (Fig. 6) increase almost linearly,
but their growth rate is different. For example, the drop ratio of
ABT and throughput of BCube(3,4) under 50 failures for level 1
switch error are almost 0.6 and 0.38 respectively. Analysing all
kinds of the metrics for failure diagnosis is necessary, because
we can’t judge the degree of impact of failures on network

5 10 15 20 25 30 35 40 45 50
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Error number

T
h
e
 d

ro
p
 r

a
ti
o
 o

f
th

ro
u
g
h
p
u
t
o
f
B

C
u
b
e

BCube(3,4)

BCube(4,4)

BCube(5,4)

random

server error

level 0 switch error

level 1 switch error

Fig. 6. The drop ratio of network throughput of BCube

0 0.05 0.1 0.15 0.2 0.25
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

The drop ratio of pod throughput in FatTree(80) with 50 errors in different type

C
D

F

random

edge swith

aggregation switch

Fig. 7. CDF of the drop ratio of pod throughput in FatTree(80) with 50 errors
in different types

performance only by the number of failures. Also, different
company may pay attention to different performance metrics.

D. Failure patterns and automorphic property

For both level 0 switch failure and level 1 switch failure pat-
terns of BCube, the curves of drop ratio of ABT and throughput
are almost the same as the number of failures increases. It is
because all the switches for BCube are automorphic, which
means that we can also use the automorphic property of DCN
topologies to reduce the number of failure cases. Conversely,
the curves of drop ratio of metrics for other failure patterns like
edge aggregation and core switch failures are very different, as
they are not automorphic.

E. Failure patterns with severe performance impact

Fig. 7 is the CDF of the drop ratio of pod throughput in
FatTree(80) with 50 errors in different failure patterns. We can
find that the proportion of pods whose drop ratio of throughput
is larger than 0.15 is much small. So the operator can focus
on dealing with those few severe performance impact failures
when designing the routing or load balancing methods.

TABLE IV
THE AVERAGE CALCULATION TIME OF BCUBE

path tuple computing metrics computing
BCube(3,4) 35 ms 28 ms

BCube(4,4) 466 ms 571 ms

BCube(5,4) 3.5 s 7.2 s

According to the above analysis of our results, we can find
that Sibyl can be used in different topologies and deal with
different failure patterns. Table IV further shows the average
computation time of automorphism and the path tuples using
our algorithm, and the average computation time of the metrics.
We can find that the computation time is only several seconds or
smaller for BCube. The computation time for other topologies
is quantitatively the same and omitted here. Thus the overhead
of our algorithm is mild.

V. RELATED WORK

We discuss related work in this section.
Performance monitoring and failure diagnosis: There has
been much work on monitoring performance in DCNs. Most
systems rely on active measurements [15, 17] that introduces
overhead to the network. Sibyl only uses topology information
and does not have any measurement overhead. Failure diagnosis
is also an active research area. FlowDiff [3] adopts a modeling
approach to identify applications and diagnose operational
problems. Everflow [21] debugs faults in the network by tracing
specific packets with a powerful packet filter on top of match
and mirror functionality of commodity switches. Pingmesh [9]
is designed to measure and analyze latency performance in
a large-scale DCN. While these systems focus on diagnosis
after some failures happen, Sibyl aims to better understand the
performance degradation caused by failures before they happen.
Graph automorphism in DCN: Some work also applies graph
automorphism in DCN research. DAC [4] and ETAC [12] for
example uses graph isomorphism and induced graph isomor-
phism to solve the automatic address configuration problem in
DCNs. To our knowledge, Sibyl is the first work that uses graph
automorphism for performance impact inference with failures
in DCNs.

VI. CONCLUSION

In this paper, we proposed a novel topology based per-
formance impact inference system Sibyl for data center net-
works. We demonstrated that a number of network performance
metrics can be inferred from just the shortest path and the
maximum number of edge-disjoint paths. Utilizing the auto-
morphism property of data center topologies (fat-tree, BCube,
and DCell), we developed an efficient algorithm to compute
these topological metrics that reduces the number of path
tuples from N(N − 1) to at most constant. Simulation studies
were conducted to evaluate our system under different failure
scenarios in different topologies.

VII. ACKNOWLEDGEMENTS

This work is partly supported by grants from the Re-
search Grants Council of the Hong Kong Special Admin-
istrative Region, China: ECS 9048007 (CityU 21201714),

GRF 9042179 (CityU 11202315), CRF C7036-15G, the NSFC
(No.61272459), Program for New Century Excellent Talents
in University (NCET-13-0450), and the Fundamental Research
Funds for the Central Universities of China.

REFERENCES

[1] M. Al-Fares, A. Loukissas, and A. Vahdat. A scalable, commodity data
center network architecture. In Proc. ACM SIGCOMM, 2008.

[2] M. Alizadeh, A. Greenberg, D. A. Maltz, J. Padhye, P. Patel, B. Prabhakar,
S. Sengupta, and M. Sridharan. Data center TCP (DCTCP). In Proc. ACM
SIGCOMM, 2010.

[3] A. Arefin, V. K. Singh, G. Jiang, Y. Zhang, and C. Lumezanu. Diagnosing
data center behavior flow by flow. In Proc. IEEE ICDCS, 2013.

[4] K. Chen, C. Guo, H. Wu, J. Yuan, Z. Feng, Y. Chen, S. Lu, and W. Wu.
Generic and automatic address configuration for data center networks. In
Proc. ACM SIGCOMM, 2010.

[5] P. Gill, N. Jain, and N. Nagappan. Understanding network failures in
data centers: Measurement, analysis, and implications. In Proc. ACM
SIGCOMM, 2011.

[6] A. Greenberg, J. Hamilton, D. A. Maltz, and P. Patel. The Cost of a
Cloud: Research Problems in Data Center Networks. SIGCOMM Comput.
Commun. Rev., 39(1):68–73, 2009.

[7] C. Guo, G. Lu, D. Li, H. Wu, X. Zhang, Y. Shi, C. Tian, Y. Zhang, and
S. Lu. BCube: A High Performance, Server-Centric Network Architecture
for Modular Data Centers. In Proc. ACM SIGCOMM, 2009.

[8] C. Guo, H. Wu, K. Tan, L. Shi, Y. Zhang, and S. Lu. DCell: A Scalable
and Fault Tolerant Network Structure for Data Centers. In Proc. ACM
SIGCOMM, 2008.

[9] C. Guo, L. Yuan, D. Xiang, Y. Dang, R. Huang, D. Maltz, Z. Liu,
V. Wang, B. Pang, H. Chen, Z.-W. Lin, and V. Kurien. Pingmesh: A large-
scale system for data center network latency measurement and analysis.
In Proc. ACM SIGCOMM, 2015.

[10] C. Hu, M. Yang, K. Zheng, K. Chen, X. Zhang, B. Liu, and X. Guan.
Automatically configuring the network layer of data centers for cloud
computing. IBM Journal of Research and Development, 2011.

[11] J. Kleinberg and E. Tardos. Algorithm Design. 2005.
[12] X. Ma, C. Hu, K. Chen, C. Zhang, H. Zhang, K. Zheng, Y. Chen, and

X. Sun. Error tolerant address configuration for data center networks with
malfunctioning devices. In Proc. IEEE ICDCS, 2012.

[13] A. Roy, H. Zeng, J. Bagga, G. Porter, and A. C. Snoeren. Inside the Social
Network’s (Datacenter) Network. In Proc. ACM SIGCOMM, 2015.

[14] N. Shelly, B. Tschaen, K.-T. Förster, M. Chang, T. Benson, and L. Van-
bever. Destroying networks for fun (and profit). In Proc. ACM HotNets,
2015.

[15] M. Shibuya, A. Tachibana, and T. Hasegawa. Efficient performance
diagnosis in openflow networks based on active measurements. ICN 2014,
page 279, 2014.

[16] A. Singh, J. Ong, A. Agarwal, G. Anderson, A. Armistead, R. Bannon,
S. Boving, G. Desai, B. Felderman, P. Germano, A. Kanagala, J. Provost,
J. Simmons, E. Tanda, J. Wanderer, U. Hölzle, S. Stuart, and A. Vahdat.
Jupiter rising: A decade of clos topologies and centralized control in
google’s datacenter network. In Proc. ACM SIGCOMM, 2015.

[17] N. L. Van Adrichem, C. Doerr, and F. A. Kuipers. Opennetmon:
Network monitoring in openflow software-defined networks. In Network
Operations and Management Symposium (NOMS), 2014 IEEE, pages 1–
8. IEEE, 2014.

[18] D. B. West. Introduction to Graph Theory. 2001.
[19] X. Wu, D. Turner, C.-C. Chen, D. A. Maltz, X. Yang, L. Yuan, and

M. Zhang. Netpilot: Automating datacenter network failure mitigation.
SIGCOMM Comput. Commun. Rev., 42(4):419–430, Aug. 2012.

[20] C. Zhang, H. Xu, and C. Hu. Performance impact inference with failures
in data center networks. https://www.dropbox.com/s/fkkdkguhs2bq1me/
report.pdf?dl=0, Technical Report, 2016.

[21] Y. Zhu, N. Kang, J. Cao, A. Greenberg, G. Lu, R. Mahajan, D. Maltz,
L. Yuan, M. Zhang, B. Y. Zhao, and H. Zheng. Packet-level telemetry in
large datacenter networks. In Proc. ACM SIGCOMM, 2015.

https://www.dropbox.com/s/fkkdkguhs2bq1me/report.pdf?dl=0
https://www.dropbox.com/s/fkkdkguhs2bq1me/report.pdf?dl=0

	Introduction
	Topology and Performance Metrics
	Background and Assumptions
	Performance Metrics
	Metrics and Topological Properties

	Performance Inference Algorithms
	Graph automorphism
	Algorithm

	Evaluation
	Setup
	Impact of failure patterns
	Various metrics
	Failure patterns and automorphic property
	Failure patterns with severe performance impact

	Related Work
	Conclusion
	Acknowledgements
	References

