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Abstract—Flow scheduling and congestion control are two important techniques to reduce flow completion time in data center
networks. While existing works largely treat them independently, the interactions between flow scheduling and congestion control are in
general overlooked which leads to sub-optimal solutions, especially given that the link capacity is increasing faster than the switch port
buffer size. In this paper, we present Flash, a simple yet effective scheme that integrates scheduling and congestion control.
Specifically, Flash puts forward a congestion-aware scheduling scheme to determine the priority of flows based on the latest network
congestion extent and the flow’s bytes sent. Besides, Flash proposes a priority-based packet dropping scheme in switch port buffers
and implements a priority-aware congestion control scheme. Experiment results show that Flash has superior performance: (1) it has
35.8% lower tail latency than PIAS and performs similar with pFabric in a 10G network without knowing the flow size, (2) in 100G
networks with shallow buffers, the information agnostic Flash has 6.8% lower average FCT than the information-aware pFabric, (3) it
outperforms pFabric by 13.5% in FCT if flow size is also known to Flash.

Index Terms—Data center networking; Flow scheduling; Congestion control

1 INTRODUCTION

WITH the widespread utilization of cloud computing
and its improvements from VM to containers and
serverless [1], [2], [3], [4], various services and applications
are continuing to move to the cloud, thus it is increasingly
important and challenging to build data center networks
(DCN) to satisfy their diverse and stringent performance
requirements [5], [6], [7], [8], [9], [10]. The widely used dis-
tributed machine learning system is a recent example [11],
[12]. These applications usually generate lots of network
flows, and it is crucial to minimize the flow completion time
(FCT) to ensure low latency.

Congestion control and flow scheduling are two im-
portant techniques to reduce the FCT. Congestion control
decides how to adjust the sending rate according to network
congestion, and scheduling determines the priorities of com-
peting flows. In recent years, there is extensive literature on
these two subjects, respectively. As for congestion control,
DCTCP [5] marks packets in switch buffers and estimates
network congestion extent at TCP senders for congestion
window size update. L2DCT [8] adjusts the TCP sender’s
congestion window size according to both the network
congestion extent and the flow bytes sent to realize the
Least Attained Service (LAS) scheduling. MQ-ECN [13] and
TCN [14] are two congestion control schemes in multi-
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service multi-queue scenarios. D2TCP [15] is a deadline-
aware scheme that adjusts congestion window size in or-
der to meet flow deadlines. As for scheduling, pFabric [9]
performs shortest remaining size first scheduling and im-
plements priority-based scheduling and dropping scheme.
PIAS [16] proposes an information-agnostic solution which
implements a multi-level feedback queue using priority
queues in switches. Karuna [17] is a mixed-flow solution
which sets minimum bandwidth to deadline flows to meet
their deadlines just in time and leaves the remaining band-
width to deadline-free flows. Aemon [18] extends PIAS by
considering the deadline agnostic scenario, and proposes a
new flow urgency based mixed-flow scheduling scheme.

However, existing DCN works consider flow scheduling
and congestion control separately without taking their inter-
actions into account. For example DCTCP simply assumes
FIFO as the scheduling discipline. L2DCT incorporates flow
priority to congestion control, but does not use priority
scheduling at switches. Thus there lacks an in-depth sys-
tematic analysis of the impact of these two mechanisms on
each other, possibly leading to suboptimal solutions.

Specifically, the limitations manifest in two ways:

First, scheduling without considering congestion con-
trol issues. Almost all existing scheduling designs leverage
shortest job first (like PIAS) or shortest remaining size first
scheduling (like pFabric), which means they use flow size
information as the only criterion to determine the priority
of a flow. However, given a multi-tier topology of the data
center network and the contention among flows, a flow
could be blocked or congested by any link along its path
if there are higher priority flows on it. Thus, setting the flow
priority according to flow size only could result in inferior
performance (more in Sec. 2.1). A better solution should
estimate the network congestion extent and determine the
priority of a flow accordingly in addition to flow size.
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Fig. 1. Topology for case studies

Second, congestion control without considering schedul-
ing does not work well either. When updating the conges-
tion window size, short latency-sensitive flows are throttled
with the same extent as long elephant flows, which restrains
the performance of short flows. Besides, switches should
also incorporate scheduling into priority-aware congestion
control at senders to achieve better performance (more in
Sec. 2.2). Packet dropping should also take flow priority
into consideration for congestion control purposes. This is
due to the fact that the buffer size per port per Gbps is
dropping [19]. Given that data center network is bursty in
nature, packet drop will become a more severe problem.
Traditional dropping mechanisms do not distinguish short
flows from long flows. As short flows are latency-sensitive,
dropping their packets will have a far more severe impact.

In this paper, we propose Flash, a simple yet effective
solution that integrates flow scheduling and congestion
control in order to solve the problems aforementioned.
For scheduling module, Flash proposes a congestion aware
scheme to determine the priority of flows based on the
estimated network congestion extent it experiences and the
flow bytes sent. For congestion control module, Flash puts
forth a priority-based packet dropping scheme and imple-
ments a priority-aware scheme to adjust the congestion
window size at a TCP sender.

The main contributions of this work are as follows.

» First, we identify the drawbacks of treating schedul-
ing and congestion control separately, thus motivat-
ing the need of jointly considering the two.

e We propose Flash to re-design the flow scheduling
and congestion control schemes from the perspec-
tive of each other. As discussed, Flash adjusts flow
priority according to the network congestion extent
in addition to bytes sent, and enforces priority-based
congestion window size update and packet dropping
schemes.

o Finally, we conduct extensive experiments to eval-
uate the performance of Flash. The results show
that Flash delivers outstanding performance: (1) it
has 35.8% lower tail latency than PIAS and per-
forms similar with pFabric in a 10G network without
knowing the flow size, (2) in 100G networks with
shallow buffers, the information agnostic Flash has
6.8% lower average FCT than the information-aware
pFabric, (3) it outperforms pFabric by 13.5% in FCT
if flow size is also known to Flash.

The rest of this paper is organized as follows. We intro-
duce the motivation for Flash in Sec. 2. We present the design
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Fig. 2. pFabric: shortest remaining size first scheduling

of Flash in Sec. 3. Extensive experiments are conducted to
evaluate the performance of Flash in Sec. 4. We summarize
related work in Sec. 5 and conclude the paper in Sec. 6.

2 MOTIVATION

In this section, we use both case studies and experiments
to show the drawbacks of treating scheduling and conges-
tion control separately, thus motivating the need of jointly
considering two schemes.

2.1 Scheduling without considering congestion con-
trol

In this section, we use a case study to identify the
problem of current flow scheduling schemes without the
consideration of congestion control.

Here, we utilize the network topology shown in Fig. 1. In
this example, Sender 1 is sending Flow 1 (4 Gb) to Receiver 1
and Sender 2 is sending Flow 2 (3 Gb) to Receiver 1. All link
capacity is 1 Gbps and Flow 1 starts at time 0 while Flow
2 starts 2 seconds later. Assume that at time 2s (the same
time as Flow 2 starts), Sender 1 sends Flow 3 to Receiver
2, and Flow 3 has higher priority than Flow 1 and Flow 2,
and occupies 0.5 Gbps bandwidth for 3 seconds. Therefore,
during the 3 seconds when Flow 3 is alive, Flow 1 can only
use 0.5 Gbps bandwidth, which means Flow 1 is congested
by other flows. Here, we use bandwidth occupation by
higher priority flows to denote the network congestion that
the flow is experiencing.

Currently, the best scheduling scheme is pFabric, which
adopts the Shortest remaining size first scheduling scheme,
and the scheduling result of Flow 1 and Flow 2 is shown in
Fig. 2 (we exclude Flow 3 in the figures since it is always
occupying 0.5 Gbps bandwidth when it is alive). As we can
see, when Flow 2 starts, Flow 1 has transmitted 2 Gb and has
2 Gb remaining, and Flow 2 has 3 Gb remaining. Therefore,
according to the shortest remaining size first discipline,
Flow 1 is scheduled first. Since Flow 3 occupies 0.5 Gbps,
Flow 1 can only get 0.5 Gbps, thus Flow 2 gets another
0.5 Gbps bandwidth (due to the bandwidth competition
and sharing on the link between switch and Receiver 1).
After 3 seconds when Flow 3 finishes, Flow 1 has 0.5 Gb
remaining and Flow 2 has 1.5 Gb remaining, then Flow 1
is scheduled first using 1Gbps bandwidth. After 0.5 s when
Flow 1 finishes, Flow 2 transmits the remaining 1.5 Gb with
1 Gbps, and finishes transmission after 1.5 s. As a result,
FCTs of Flow 1 and Flow 2 are 5.5 s and 5 s, thus the average
FCT is 525 s.
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Fig. 3. A congestion-aware scheduling scheme

However, in fact, if the scheduling scheme can detect the
network congestion (bandwidth occupied by higher priority
flows in this example) to determine the priority, a better
scheduling result can be obtained, shown in Fig. 3. That
is, when Flow 2 starts, Flow 1 detects that the available
bandwidth drops to 0.5 Gbps thus the remaining time is
(2/0.5=4) s, and the remaining time for Flow 2 is (3/1=3) s.
Therefore, Flow 2 is scheduled first. When Flow 3 finishes,
Flow 1 can use 1 Gbps to transmit the remaining 2 Gb. As
a result, FCTs of Flow 1 and Flow 2 are 7 s and 3 s, and the
average FCT is 5 s, which is shorter.

Remark 1: When determining the priority for flow schedul-
ing, it is important to obtain and utilize the real-time network
information in addition to flow size.

2.2 Congestion control without considering schedul-
ing

In this section, we use experiments to show the problem
of congestion control schemes without the consideration of
flow scheduling.

(1) Problem of congestion window update without the
cooperation of scheduling at switches

Here, we start with L2DCT [8], which is a congestion
control scheme that aims to minimize the average flow com-
pletion time through updating flow’s congestion window
size according to the flow’s bytes sent. Although L2DCT
considers scheduling issue (priority according to the bytes
sent) at senders, it simply implies a first-in-first-out schedul-
ing at switches, without priority scheduling. On the other
size, PIAS [16] implememts priority scheduling at switches
but missing differentiated congestion window update at
TCP senders. To see how priority scheduling could help
congestion control, we implement a new scheme, called
L2DCT+PIAS. As its name indicates, this scheme leverages
the congestion window size update scheme of L2DCT at
senders and implements priority scheduling of PIAS at
switches, and both of them use bytes sent to determine the
congestion window size and priority for flows. We compare
the performance of L2DCT, PIAS and L2DCT+PIAS, and the
result is shown in Fig. 4 (refer to Section 4.1 for more de-
tails about the experiment setup). As is seen, L2ZDCT+PIAS
performs better than L2DCT, which indicates the necessity
of congestion window update cooperating with priority
scheduling at switches. In fact, the better performance of
L2DCT+PIAS than PIAS also shows that flow scheduling
needs priority aware congestion control at end hosts, to
achieve better performance.

2168-7161 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/|
Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on June 07,2022 at

3
[o}
=2 L2DCT
8| Plas M
| [= renctirias i
7 B
6r =
£ 5 e =
= T I= =
G4 ERRINE =
w O | o—
3t s — 8 g ug =]
1 U2 e e =
LB e E =
o e o= HE " =
50 60 70 80 90
Load(%)

Fig. 4. Comparision of L2DCT, PIAS and L2DCT+PIAS

45000

73 Number of total dropped packets
40000FH == Number of dropped packets in higher priority queues

35000} 7|
30000} ...

Y

25000

[T

N
o
o
o
o

15000
1000

Number of dropped packets

5000

i L E RS

i SRR

©o

(LN ATI A

© [T

wu
[=)]
o]

Load(%)

Fig. 5. Packet drops.

Remark 2: Congestion window update should cooperate with
priority scheduling to achieve better performance.

(2) Problem of packet dropping without the considera-
tion of priority at switches

With the industry trend [19] that link capacity is in-
creasing quickly but the switch buffer size is increasing
slowly, the buffer size per port per Gbps is dropping. Since
DCN is bursty, packet drop will become a more severe
problem. Especially, short flows are more sensitive to packet
dropping, therefore, dropping mechanism should take flow
priority into consideration. However, even schemes with
priority scheduling at switches, like PIAS, fail to identify this
problem and drop short flows (high priority flows) when
there are long flows in low priority queues, as long as the
buffer is full, which has a negetive impact on short flows in
high priority queues. To show how severe the problem is,
we implement PIAS in a 100G network (refer to Section 4.5
for more details about the experiment setup), and measure
the number of total dropped packets and the number of dropped
packets in high priority queues' when lower priority queues
are non-empty, and the result is shown in Fig. 5. As is seen,
both the number of total dropped packets and the number of

1. When a packet is dropped because the buffer is full, if there are
packets in lower priority queues whose priority is lower than that of
the dropped packet, we call this packet as dropped packet in high priority
queues. Here, we count the total number of dropped packets in this case
for this experiment and comparison.
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Fig. 6. Flash framework (the red dotted lines are the core designs of Flash).

dropped packets in high priority queues are increasing with
the increase of network load, and the percentage of the
number of dropped packets in high priority queues over the
number of total dropped packets is also increasing with the
increase of network load, from 81.54% to 88.42%, which
greatly degrades the performance of short flows in high
priority queues. From the perspective of scheduling, short
flows should be given higher priority, thus when they arrive
at the switch and the buffer is full, long flows in lower
priority queues should be dropped, to leave space for the
short flows to enqueue.

Remark 3: It is necessary to consider flow priority when
dropping packets.

In the next section, we solve all problems aforemen-
tioned with the proposed Flash scheme.

3 DESIGN

In general, Flash integrates flow scheduling and conges-
tion control in data center networks, and strives to optimize
each mechanism from the perspective of each other.

3.1 Overview

Inside data centers, servers are inter-connected by layers
of switches. According to the functions of scheduling and
congestion control in servers and switches, we summarize
the framework of Flash in Fig. 6. There are two modules
in the system, scheduling module and congestion control
module.

Scheduling module. We set multiple priority queues in-
side switch buffers and implement strict priority scheduling
among these queues. Packets carry priority information in
the packet header and are enqueued into the corresponding
queue that matches their priorities. Priority is set at TCP
senders and take the estimated network congestion extent
into consideration. The determined priority is also utilized
for packet dropping and congestion window update in
the congestion control module. The core design in Flash’s
scheduling module is that priority setting is based on the
estimated network congestion derived from Flash’s conges-
tion control module.

Congestion control. We set a threshold for the total
queue length of all queues in the switch port buffer and im-
plement a per-port ECN marking scheme. At TCP senders,

Flash utilizes the estimated network congestion extent and
flow priority to determine the updated congestion window
size, and the congestion extent is also used to determine
flow priorities in the scheduling module. For packet drop-
ping in switch buffers, priority determined in the scheduling
module is considered which aims to drop packets in lower
priority queue to leave space for packets for higher priority
queues when the buffer is full. The core design in Flash’s
congestion control module is that both congestion window
update and packet dropping are based on flow priorities
derived from Flash’s scheduling module.

3.2 Flash Design in Detail

In this section, we describe Flash in detail to solve the
problems in Section 2.

3.2.1 Congestion-aware Priority Setting

Like PIAS, our Flash is an information-agnostic scheme
which does not assume flow size information is known.
Therefore, we determine priority based on the flow’s bytes
sent (instead of flow size or remaining flow size, which both
require that the total size of the flow is known at the begin-
ing of flow transmission). Combining with the congestion
extent estimator a derived from DCTCP congestion control
scheme, we use W in Eqn.(1) to determine the priority of
the flow.

Buytes_sent

W< )

1l -«

How to comprehend Eqn.(1)? (1) Many recent works [5],
[20], [21] have shown that the DCN traffic has heavy-tailed
distribution property, which means the majority of flows
are short flows but the majority of bytes come from a small
number of long flows. Therefore, according to [22], the bytes
sent can be used as an approximation of the remaining flow
size. (2) When the network congestion extent is high, it
indicates that the network is highly utilized, thus there is
less available bandwidth, and when the network congestion
extent is low, it means that the network is under-utilized,
thus there is more available bandwidth. Thus (1 — «) in
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Eqn.(1) extimates the extent of available bandwidth?. There-
fore, W in Eqn.(1) is the approximation of remaining flow
size over available bandwidth, which results in the estimated
remaining time of the flow. Thus, in fact, our Flash follows
the shortest remaining time first scheduling discipline, unlike
pFabric using shortest remaining size first scheduling without
considering the real-time network information.

In this paper, we set N priority queues inside each switch
port buffer, thus the total number of priorities is also N,
from 0 to (N — 1), where 0 denotes the highest priority
and (N — 1) denotes the lowest. Therefore, we set (N —
1) thresholds T; (i € [1,N — 1]), where T; « Ty x E®.
Therefore,

e when W is smaller than T, the priority is set to 0;

e when W is larger than or equal to T _1, the priority
issetto (N — 1);

o otherwise, the priority is set to ¢, if W isin [T}, T;41).

Therefore, everytime when sending a new window of
packets, we need to set the priority of a flow. We count the
bytes sent of a flow and get the latest network congestion
extent value a, then calculate W according to Eqn.(1), and
determine the flow priority. Then the priority is set to the
Differentiated Services Code Point (DSCP) field in the IP
header of flow packets, which is used to classify flows into
different priority queues in switch buffers for scheduling.

3.2.2 Priority-aware Congestion Control

In the congestion control module, we need to determine
how to update congestion window size and how to drop
packets with respect to flow priority. For congestion win-
dow size updating, we find L2DCT [8] is a good option, as
it considers both network congestion extent and flow bytes
sent (which can represent flow priorities and is also subject
to the information-agnostic scenario). Therefore, Flash im-
plements L2DCT at TCP senders to update the congestion
window size to incorporate scheduling into congestion con-
trol. Next, we show how Flash drops packets with respect to
flow priorities.

The majority of existing works simply drop the en-
queued packet if the buffer is full, which greatly hurts the
performance if the dropped packet belongs to high priority
flows. pFabric, the best scheduling scheme until now, drops
the packet of the flows with the longest remaining flow size
(or say, with the lowest priority). Comparing flow remaining
size to find the longest one (lowest priority) is not supported
by current switches, thus pFabric is not implementable.

In Flash, we set N priority queues inside each switch
port buffer. Flows inside the lowest priority queues have
the lowest priority and should be dropped when the buffer

2. Firstly, although there are some works that can measure the real-
time bandwidth to make the bandwidth estimation more accurate, we
find that they all incur unnecessary system overhead or network traffic.
In this paper, we aim to leverage built-in functions of current congestion
control schemes, without any excessive system cost. Secondly, although
a positive value of a needs queue build up in switch port buffer to take
effective, its relative value can represent the idleness of the network,
and the change of o denotes the varying bandwidth in the network.
Therefore, we find « is a suitable indicator for estimating the available
bandwidth.

3. Here, the threshold settings are motivated by [23], and we utilize
the unified settings of thresholds for general cases.

5

Algorithm 1 Flash’s dropping (and enqueueing) mechanism
1: if TotalQueueLength + Packet.Size <= Buf ferSize
then
2:  Enqueue this incoming packet to its corresponding
queus;
3: else

4 LNQ <« (N —1); // LNQ is the index of a queue.
5 fori = LNQto0do
6: if Q;.length > 0O then
7: LNQ < ¢;
8: Break;
9: end if
10:  end for
11:  if Packet.priority >= LN( then
12: Drop this incoming packet;
13:  else
14: Drop the tail packet in Qrng;
15: Enqueue this incoming packet to its corresponding
queue;
16:  end if
17: end if

is full. Therefore, motivated by pFabric’s dropping scheme
and with our priority queues, we design the dropping (and
enqueueing) mechanism as in Algorithm 1.

When a packet arrives at the switch port buffer, if the
total queue length of all queues plus the packet size does
not exceed the buffer size, this incoming packet is enqueued
(line 1 to line 2), otherwise, a packet needs to be dropped.
Here, we first need to find the Lowest Non-empty Queue
(whose index is LNQ) (line 4 to line 10) which represents
the lowest priority queue that has packets inside. If this
incoming packet belongs to this queue or its priority is lower
than that of LNQ (line 11)*, then we drop this packet (line
12), otherwise, we drop the tail packet in the lowest non-
empty queue (line 14) and enqueue this incoming packet
to its corresponding queue (line 15). In general, packets (or
flows) in the same queue share the same priority, and only
preempt packets (or flows) in lower priority queues.

4 EXPERIMENTS AND EVALUATIONS

In this section, we implement extensive experiments in
NS2 [24] to evaluate the performance of Flash. We mainly
compare our Flash with the following widely used schemes:

o DCTCP [5] which is a congestion control work with
First in First out (FIFO) scheduling.

o L2DCT [8] which performs priority-based congestion
control scheme to approximate the Least Attained
Service (LAS) scheduling.

e PIAS [16] which mimics shortest job first (SJF)
scheduling with the multi-level feedback queue in
the information agnostic scenario.

o pFabric [9] which requires flow size is known and
realizes the shortest remaining size first scheduling
at switches, and has the currently best performance.

4. A large value of priority indicates lower priority.
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TABLE 1
Default Parameter Setting

Parameter Value
Link capacity 10 Gbps
Packet size 1.5 KB
Port buffer size 240 packets
Queue length threshold for port buffer 65 packets

T 1.2 Mb

E 3
Spine
Switch
Leaf
Switch

Fig. 7. Experiment topology: Leaf-Spine.

We mainly compare the average Flow Completion Time
(FCT) of all five schemes to evaluate their performance. Our
experiments need to answer the following key questions:

How does Flash perform in reducing the average
FCT? Generally, Flash performs much better than DCTCP
and L2DCT, outperforms PIAS, and achieves similar perfor-
mance or better performance in some cases, when compared
with pFabric. For example, Flash reduces the overall average
FCT by up to 21.2%, 16.3%, 8.2% when compared with
DCTCP, L2DCT, PIAS, and achieves similar performance
with pFabric, and even has 0.1% better performance at 60%
load. Given that Flash is informantion-agnostic while pFab-
ric requires flow size in advance, Flash is a quite effective
solution.

How does Flash perform in short flows which domi-
nate the DCN traffic and are latency-sensitive? The perfor-
mance of Flash in short flows is outstanding. For example,
Flash reduces the average FCT of short flows by up to 54.8%,
48.7%, 12.2% when compared with DCTCP, L2DCT, PIAS,
and reduces the 99th percentile FCTs of short flows by up
to 67.2%, 55.5%, 35.8% respectively. Flash’s performance is
very close to that of pFabric.

How does Flash perform in different workloads? Flash
can maintain its superior performance for different individ-
ual workloads.

How does Flash perform in information aware sce-
nario? If flow size is known in advance just like that in
pFabric, Flash can outperform pFabric by up to 13.5%.

How does Flash perform in high speed network with
shallow buffers? We implement Flash in a 100 Gbps net-
work with shallow buffers and the results show that Flash
outperforms existing works like reducing the overall aver-
age FCT by 6.8% and 26.0% when compared with pFabric
and PIAS.

Is Flash robust? We implement Flash with different
numbers of queues, and the results show that the per-
formance difference under different numbers of queues is
small, which indicates that Flash is robust.

[y
[
(©]
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-~ Web search
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Fig. 8. Flow size distributions for individual workload

TABLE 2
Mean Flow Size (MFS) and Number of Flows of Individual Workloads in
Mixed Workload Scenario

Workload MEFS (KB) Number of Flows (S/M/L)
Cache 914 26505 (16034 /10253 /218)
Web Search 1671 14453 (7881/6180/392)
Hadoop 4149 5829 (4131/1523/175)
Data Mining 7495 3213 (2638/420/155)

4.1 Experiment Setup

To ensure fair comparison, the majority of experiment
settings are consistent with those in the PIAS paper [16], in-
cluding the same Leaf-Spine topology, the same workloads
and so on.

Parameters: Unless stated explicitly, we set the param-
eters to the default values shown in Table 1. For DCTCP,
L2DCT, PIAS and pFabric, we set all relevant parameters to
the default values in their original papers [5], [8], [16], [9].

Network topology: We use one of the most popular
topologies, Leaf-Spine topology shown in Fig. 7 as our
experiment topology. In our experiments, we have 12 Leaf
switches, 12 Spine switches and 144 hosts (servers). Each
Leaf switch connects to 12 Spine switches through 10 Gbps
uplinks, and connects to 12 hosts through 10 Gbps down-
links, thus forming a non-blocking network. ECMP [25]
is adopted for routing and load balancing in the multi-
path environment. We set 8 queues for each switch port
by default for flow scheduling. We enable per-port ECN
marking instead of per-queue ECN marking, to ensure both
high throughput and low latency in the multiple queue
scenario [16], [13]. We set initial TCP window size to 10
packets, and both initial and minimum RTOs to 5ms for all
schemes, as many recent works recommend [14], [13], [26].

Workloads: In this paper, we run four different work-
loads for experiments, including a cache workload [21], a
web search workload [5], a Hadoop workload [21], and a
data mining workload [20], and the flow size distributions
for these four workloads are shown in Fig. 8. We first run
two sets of experiments, each with one single workload
where the first is web search workload and the other is data
mining worload. We generate 50000 flows in total for each
experiment. Then, we run all four workloads together to
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mimic the mixed workload scenario, and generate totally
50000 flows. For each workload, the inter-flow arriving
interval ¢ is inversely proportional to the network Load, i.e.,

C' x Load 1

~ MeanFlowSize’ b= 1 @

where C is the link capacity, so £ represents the number of
flows arriving in unit time. As we can see, the higher the
load, the lower the inter-flow arriving interval, leading to
higher flow contention. And the inter-flow arriving intervals
for different workloads are also different, i.e., proportional
to the mean flow size. Thus the smaller mean flow size, the
smaller inter-flow arriving interval, and the larger number
of flows given the same experiment running time for all
workloads. We summarize the mean flow size and the
number of flows for each workload in the mixed workload
scenario, as shown in Table 2.

Comparison metrics: According to the flow sizes, flows
are divided into three classes including short flows ((0,100]
KB), medium flows ((100 KB,10 MB]) and long flows ((10
MB,00)). For example, in the mixed workload scenario, the
numbers in the brackets in Table 2 show the numbers of
flows in each class, e.g., Web Search workload has 14453
flows in total, among which there are 7881 short flows, 6180
medium flows and 392 long flows. We compute the overall
average FCT for all flows, the average FCT of flows in each
class, and the 99th percentile FCTs of short flows as the
comparison metrics.

4,2 Performance in Average FCT

To evaluate Flash’s performance in reducing the average
FCT, we first implement experiments for the five schemes
based on the default settings aforementioned using web
search workload and data mining workload, and the ex-
periment results are shown in Fig. 9 and Fig. 10. In this
paper, experiment results of all schemes are normalized to
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the results of PIAS, for convenient and intuitive comparison.
For example, if the FCTs for L2DCT, PIAS and Flash are
2.2s, 2s, and 1.8s, the normalized FCTs are 1.1, 1 and 0.9
respectively (thus, normalized FCTs for PIAS are always 1).
According to the comparison results, we have the following
observations:

Overall: As shown in Fig. 9(a) and Fig. 10(a), Flash per-
forms better than DCTCP, L2DCT and PIAS across all loads.
For example, Flash has 9.0% to 12.3% lower FCT than PIAS
in web search workload, and has 6.3% to 9.8% lower FCT
than PIAS in data mining workload. When compared with
DCTCP and L2DCT, the performance improvement is more
significant. For example, Flash has average 21.3% lower FCT
than L2DCT in web search workload and average 14.5%
lower FCT than L2DCT in data mining workload, and when
compared with DCTCP, the improvements are 24.1% in web
search workload and 14.3% in data mining workload. When
compared with pFabric, the performance gap is from 5.1%
to 7.6% for web search workload and 10.1% to 15.7% for
data mining workload. The main reason for the performance
gap is because our Flash is information-agnostic which does
not require the flow size information for scheduling while
pFabric needs flow size to determine priority (if flow size is
also aware in Flash like that in pFabric, Flash can perform
better than pFabric (see more in Section 4.4)). Therefore,
Flash is effective in reducing the average FCT.

Short flows and tail: Flash performs better than PIAS,
and greatly outperforms DCTCP and L2DCT in short flows.
For example, in web search workload, Flash reduces the
FCT for short flows by 10.9% to 11.02%, 37.7% to 57.2%,
and 42.9% to 61.3% when compared with PIAS, L2DCT
and DCTCP respectively, and the improvements in the 99th
percentile are more significant, which are 26.3% to 35.3%,
52.6% to 62.6% and 62.9% to 69.5% when compared with
PIAS, L2DCT and DCTCP respectively. Flash is slightly
inferior to pFabric in short flows, and the reason is that Flash
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Fig. 12. Comparison of FCT for individual workload in mixed workloads scenario.

is information agnostic. In data mining workload, PIAS,
Flash and pFabric outperform L2DCT and DCTCP a lot
because PIAS, Flash and pFabric all implement scheduling
at switches while L2DCT and DCTCP do not, but the per-
formance gap between Flash and pFabric is minimal. This
is because data mining workload is more skewed. In fact,
in data mining workload, around 82% flows are short flows
which are smaller than 100KB. Thus they finish transmission
in the highest priority queue (or the highest few queues)
before they are demoted to lower priority queues, thus the
scheduling mechanism does not function much for these
flows.

Long flows: In web search workload, both Flash and
pFabric perform worse than PIAS, L2DCT and DCTCP.
This is expected because both Flash and pFabric more sig-
nificantly prioritize short flows over long flows through
dropping low priority flows, thus having a reverse impact
on long flows. However, to our surprise, in data mining
workload, both Flash and pFabric perform better than PIAS,
L2DCT and DCTCP. We analyze the reason as follows. Since
data mining workload is more skewed, whose 82% flows
are short flows smaller than 100KB, therefore, short flows
leave little network footprints and seldom occupy network
bandwidth or switch port buffers. Therefore, they have little
impact on long flows in data mining workload. In this case,
long flows are gradually demoted to lower priority queue
as more bytes are transmitted, during which time flow
scheduling using multiple priority queues take effect for
these flows. Therefore, Flash and pFabric could have better
performance in long flows in data mining workload.

4.3 Performance for Mixed Workload

To evaluate Flash’s performance for mixed workload
scenario, we repeat above experiments while mix four wor-
loads together and generate 50000 flows in total according
to Section 4.1, and the mean flow size and the number of
flows are shown in Table 2. The comparison results are
shown in Fig. 11. As we can see, Flash maintains the superior

performance in the mixed workload scenario. For example,
For example, Flash has 2.2% to 8.2% lower FCT than PIAS.
When compared with DCTCP and L2DCT, the performance
improvement is more significant. For example, Flash has
average 16.3% lower FCT than L2DCT and 21.2% lower FCT
than DCTCP. For short flows, Flash reduces the FCT for short
flows by 10.8% to 12.2%, 34.7% to 48.7% and 41.8% to 54.8%
when compared with PIAS, L2DCT and DCTCP respec-
tively. The performance improvement in the 99th percentile
is more significant, which has a reduction of 26.1%-35.8%,
46.8%-55.5% and 61.7%-67.2%. In the meanwhile, Flash has
similar performance with pFabric. For long flows, both Flash
and pFabric perform slightly worse than PIAS, L2DCT and
DCTCP.

Furthermore, to evaluate Flash’s performance for in-
dividual workload in the mixed workload scenario, we
break down the comparison into individual workload in
the mixed workload scenario, and the results are shown
in Fig. 12. As we can see, Flash maintains its better per-
formance in most cases, especially in cache workload and
web search workload which have short mean flow size,
and the performance improvement is less significant in
Hadoop workload and data mining workload. This is ex-
pected, since the percentage of long flows ((10 MB,o0)) in
Hadoop workload and data mining workload are higher
than those in cache workload and websearch workload, and
the mean flow sizes of Hadoop workload and data mining
workload are also larger than those of cache workload and
websearch workload. Since Flash has better performance in
short flows ((0,100] KB), the performance in cache workload
and websearch workload is better.

4.4 Performance with information aware

Note that the currently best scheme pFabric requires
flow size is known while our Flash does not. We would
like to see if Flash’s performance could be further improved
if flow size is known. Like pFabric, if we know the flow
size in advance and count the bytes sent as flows are
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Fig. 14. Comparison of FCT in high speed network with shallow buffers.

transmitting, we can obtain the remaining flow size. We use
remaining flow size to replace the Bytes_sent in Eqn.(1), and
all other mechanisms remain un-changed. We call this new
scheme as Flash-IA, which is an Information-Aware version
of Flash. We compare Flash, pFabric and Flash-IA, and the
comparison results are shown in Fig. 13 where all results are
normalized to the results of pFabric. As we can see, Flash-IA
ourperforms pFabric by 7.1%-13.5% in overall performance,
which shows the superiority of our scheme, which jointly
considers flow scheduling and congestion control.

4.5 Performance in High Speed Network with Shallow
Buffers

As [19] indicates, DCN link capacity is increasing fast
while switch buffer size is increasing slowly, leading to a
high speed shallow buffer scenario. Here we implement
experiments to evaluate Flash’s performance in high speed
networks with shallow buffers. We set link capacity to
100 Gbps, per port buffer size to 512K and per port ECN
marking threshold to 250K, all according to [19], then repeat
the experiments with four workloads in Section 4.2 and
the comparison results are shown in Fig. 14. As we can
see, Flash achieves better performance than pFabric and
PIAS with 2.8%-6.8% and 20.7%-26.0% overall improvement
respectively, and also outperforms other schemes more.
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4.6 Impact of Number of Queues

Finally, to assess Flash’s robustness, we evaluate Flash’s
performance with different numbers of queues. Since we
use the priority queues in switch buffer for flow scheduling,
the number of queues limits the number of priorites for
scheduling. Current commodity switches support 8 queues,
but system operators may reserve some queues for other
purpose, for example, reserve highest priority queue for
control traffic in SDN area [14]. Thus, the number of avail-
able queues becomes less. It is also expected that in the near
future, switches can support more queues. To this end, we
implement experiments with different numbers of queues,
ranging from 2, 4, 8 and 16, to see the robustness of Flash,
and the results are shown in Fig. 15. In general, more queues
lead to better overall performance, since better separations
are possible between long flows and short flows with more
queues, leading to less competition among different classes
of flows, thus resulting in better scheduling performance.
But the performance gap among differnt numbers of queues
is marginal, which indicates that our Flash is robust.

4.7 Impact on Timeouts

Algorithm 1 aims to leave space for high priority queues
thus drop packets in the lowest priority queue when the
buffer is full, which might lead to more timeouts for lower
priority flows. However, this has little impact on the overall
performance. This is because DCN traffic follows heavy-
tailed distribution, thus short flows contribute a small frac-
tion of the overall traffic, hence prioritizing them has little
impact on long flows and helps them because they complete
quickly which reduces network contention.

To quantify the effect, we repeat the experiments in Sec-
tion 4.3 with mixed workloads and compare the numbers of
timeouts of Flash with PIAS and pFabric in four categories
including overall flows, short flows, medium flows and long
flows, and the comparison results are shown in the Table
3. For example, at 50% load, Flash has totally 118 timeouts,
among which there are 0, 32 and 86 timeouts for short flows,
medium flows and long flows respectively.

From Table 3, we can see that, Flash did increase the
overall timeouts when compared with PIAS, but much less
than pFabric. To break down the comparison, we see that for
short flows and medium flows, Flash successfully reduces
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TABLE 3
The comparison of numbers of timeouts (overall(short/medium/long) flows)

Scheme 50% load 60% load 70% load 80%load 90%load
PIAS 34(0/23/11) 80(1/51/28) 129(1/78/50) 177(0/80/97) 291(2/110/179)
Flash 118(0/32/86) 187(0/29/158) 345(0/44/301) 481(0/57/424) 821(0/104/717)

pFabric 37K(0/13K/24K) 51K(0/17K/34K) 70K(0/24K/46K) 95K(1/32K/63K) 123K(0/42K/81K)

the numbers of timeouts when compared to PIAS. The main
increase of timeouts derives from long flows. However, we
can see that Flash only increases the numbers of timeouts by
3 to 6.8 times more when compared the PIAS, unlike pFabric
which increases by 452 to 2188 times more.

In fact, when the buffer is full, Flash drops packets in the
lowest priority queues which may lead to more timeouts
for long flows. However, Flash mitigates this side-effect
through per-port ECN marking. Switches mark packet for
congestion notification when the total queue length exceeds
the threshold, and the threshold is typically smaller than the
buffer size. In this case, when a packet of a short flow (higher
priority) enqueues and the total queue length of all packets
in the buffer (including all packets in high and low priority
queues) exceeds the per-port threshold, this packet will be
marked. Therefore, this short flow will be slowed down by
reducing the CWND. In this case, high priority queues are
more likely to be empty and packets in low priority queues
will be transmitted, thus the size-effect to lowest priority
queue is mitigated.

5 RELATED WORK

Flow scheduling and congestion control are two impor-
tant techniques in DCN areas. Here we summarize main
works in these areas respectively.

5.1 Flow Scheduling

DeTail [27] leverages cross-layer information to prioritize
latency-sensitive flow and distribute network load, in order
to reduce the long tail of FCT. PDQ [6] utilizes switch
arbitration and allows flow preemption which performs
flow scheduling in a distributed manner, in order to reduce
FCT and meet deadlines. Karuna [17] considers the mixed-
flow scenario where some flows are with deadlines and
some are not, and proposes to set minimum bandwidth
for deadline-sensitive flows to finish flow transmission just
in time and leave remaining bandwidth to deadline-free
flows, thus satisfies both types of flows. PASE [10] is a syn-
thesized solution which combines self-adjusting endpoints,
in-network prioritization and arbitration to reduce average
FCT. pFabric [9] is currently the best scheduling scheme in
DCN. pFabric requires flow size information to carry in
packet header and performs shortest remaining size first
scheduling at switches. [28] adopts Least Slack Time First
(LSTF) scheduling on top of programmable switches so that
it can approximate the state-of-the-art works and achieve
different goals like reducing latency and ensuring fairness.
Homa [29] proposes a new scheduling scheme which deter-
mines the flow priority at receiver side. 2D [30] proposes
a workload adaptive scheduling scheme which includes
coarse time-scale decisions based on workload and per-flow

serialization decisions in a distributed fashion, which can
ensure tail performance and also decrease FCT.

However, the majority of existing works assume infor-
mation is aware, which means flow size is known in ad-
vance, and the flow size (or remaining flow size) is utilized
as the metric for scheduling. But for many applications, flow
size is hard to know in advance, making most of exiting
works less effective. To solve this problem, PIAS [16] utilizes
the multi-level feedback queue to mimic the shortest job
first scheduling scheme without the flow size information in
advance. Aemon [18] extends PIAS’s information-agnostic
scenario and considers the case that some flows have dead-
lines and some do not, and proposes a mix-flow transport
based on flow urgency.

5.2 Congestion Control

DCTCP [5] sets a threshold for the queue length in
switch buffers and uses ECN marking to convey network
congestion, and end hosts estimate the congestion extent in
order to adjust congestion window size. L2DCT [8] adopts
the Least Attained Service (LAS) scheduling discipline and
uses bytes sent of a flow to adjust the congestion window
size, which helps reduce the average FCT. ICTCP [31] targets
at TCP incast and proposes to adjust TCP receive window
proactively to avoid packet loss. DX [32] measures one-way
queueing delay and uses the latency feedback for congestion
control. TIMELY [33] leverages the RTT information mea-
sured at end hosts to perform congestion control. D2TCP
[15] is a deadline-aware scheme which adjusts congestion
window size according the flow deadlines. Flowtune [34]
proposes to perform congestion control in the granularity of
flowlets. PCC [35] puts forward the performance-oriented
congestion control scheme, where TCP senders perform
congestion control based on the empirically experienced
performance.

5.3 Summary

While existing DCN works in these two areas work well,
the interactions between flow scheduling and congestion
control are overlooked which leads to sub-optimal solu-
tions. For example, while PIAS, pFabric and other works
achieve good results, they fail to consider the varying
available bandwidth [36] or traffic burst issue [37] for
flow scheduling, which leads to inferior performance. Our
Flash is different from other works in that we use real-
time network congestion extent information to evaluate the
available bandwidth in order to determine flow priority for
flow scheduling, which brings better results in the dynamic
and bursty network. Besides, our Flash jointly considers flow
scheduling and congestion control, and re-designs the two
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schemes from the perspective of each other, which achieves
good results.

While our Flash does not explicitly provide band-
width/fairness guarantee like [38], Flash can provide overall
better performance and ensure fairness in an implicit way.
First, using ECN marking scheme and standard threshold
for total queue length can sure both overall high throughput
and low latency. Second, as the majority of DCN traffic are
short flows, using multiple priority queues and strict prior-
ity scheduling can ensure short flows finish transmission in
the first few queues, thus ensure low latency for short flows.
Besides, since the flow demotion (to lower priority queues)
thresholds are uniform for all workloads and flows, fairness
is implicitly ensured among flows, in that, (1) When flows
are in high priority queues, anytime when the bytes sent of a
flow exceeds the demotion threshold of this queue, the flow
will be demoted. Since the demotion thresholds are uniform
for all flows, each flow can transmit the same maximum
amount of data in each queue (except the lowest priority
queue). (2) When flows are demoted to the lowest priority
queue, all flows are served in a first in first out manner,
which approximates fair sharing among flows.

6 CONCLUSION

DCN requires low FCT to ensure the quality of ser-
vice, and flow scheduling and congestion control are two
important techniques to reduce the average FCT in DCN.
While there are many existing works in these two areas,
the interactions between them are in general overlooked,
leading to suboptimal solutions. To solve this problem, we
propose Flash, a simple yet effective scheme which integrates
scheduling and congestion control and re-designs these two
mechanisms from the perspective of each other. First, Flash
proposes a congestion extent aware scheduling scheme to
determine the flow priority based on the latest network
congestion extent and flow’s bytes sent. Then, Flash puts
forward a priority-based packet dropping scheme and im-
plements a priority-based congestion window size update
scheme. Finally, we implement extensive experiments to
evaluate the performance of Flash, and the results show
that Flash delivers outstanding performance: (1) it has 35.8%
lower tail latency than PIAS and performs similar with
pFabric in a 10G network without knowing the flow size,
(2) in 100G networks with shallow buffers, the informa-
tion agnostic Flash has 6.8% lower average FCT than the
information-aware pFabric, (3) it outperforms pFabric by
13.5% in FCT if flow size is also known to Flash.
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