
a

b

N
6
F
C

m

Contents lists available at ScienceDirect

Journal of Systems Architecture

journal homepage: www.elsevier.com/locate/sysarc

Packet-in request redirection: A load-balancing mechanism for minimizing
control plane response time in SDNs✩

Rui Xia a, Haipeng Dai a,∗, Jiaqi Zheng a,∗, Hong Xu b, Meng Li a, Guihai Chen a,∗

State Key Laboratory for Novel Software Technology, Nanjing University, Nanjing, 210023, China
Department of Computer Science and Engineering, Chinese University of Hong Kong, Shatin, Hong Kong Special Administrative Region of China

A R T I C L E I N F O

Keywords:
Software defined networking (SDN)
Distributed control plane
Load balancing
Lyapunov optimization
Approximation algorithm

A B S T R A C T

A distributed control plane is more scalable and robust in software defined networking. This paper focuses
on controller load balancing using packet-in request redirection, that is, given the instantaneous state of the
system, determining whether to redirect packet-in requests for each switch, such that the overall control plane
response time (CPRT) is minimized. To address the above problem, we propose a framework based on Lyapunov
optimization. First, we use the drift-plus-penalty algorithm to combine CPRT minimization problem with
controller capacity constraints, and further derive a non-linear program, whose optimal solution is obtained
with brute force using standard linearization techniques. Second, we present a greedy strategy to efficiently
obtain a solution with a bounded approximation ratio. Third, we reformulate the program as a problem of
maximizing a non-monotone submodular function subject to matroid constraints. We implement a controller
prototype for packet-in request redirection, and conduct trace-driven simulations to validate our theoretical
results. The results show that our algorithms can reduce the average CPRT by 81.6% compared to static
assignment, and achieve a 3× improvement in maximum controller capacity violation ratio.
1. Introduction

Software defined networking (SDN) provides a logically central-
ized controller that decouples the routing logic from the underlying
forwarding elements. Since SDN delivers a flexible network manage-
ment platform and enables operators to deploy new network functions
rapidly, it has been widely used in the areas of data centers [2–4],
WAN [5–7], and edge computing [8–11].

As the scale of SDN expands, a single controller needs to take
charge of more and more switches, which leads to overload on pro-
cessing capacity. Especially, controllers at edge have limited computing
and bandwidth resources, and are prone to reach the performance
bottleneck. Besides, unstable wireless connections in edge networks
result in long communication delays between edge devices and a single
controller. Thus, the controller cannot timely get the status of the data
plane, and the edge devices suffer from a long response time from the
controller. Thus, [12–14] introduce the distributed controller system
where multiple controllers jointly manage switches in the data plane.

✩ This paper is an extended version of work published in [1]. This work was supported in part by the National Key R&D Program of China under Grant
o. 2018YFB1004704, in part by the National Natural Science Foundation of China under Grant No. 61502229, 61872178, 61832005, 61672276, 61872173,
1802172, and 61321491, in part by the Natural Science Foundation of Jiangsu Province under Grant No. BK20181251, in part by the Fundamental Research
unds for the Central Universities under Grant 021014380079, in part by funding from the Research Grants Council of Hong Kong (GRF 11209520) and from
UHK (4937007, 4937008, 5501329, 5501517).
∗ Corresponding authors.
E-mail addresses: xiarui@smail.nju.edu.cn (R. Xia), haipengdai@nju.edu.cn (H. Dai), jzheng@nju.edu.cn (J. Zheng), hongxu@cuhk.edu.hk (H. Xu),

enson.smail.nju.edu.cn (M. Li), gchen@nju.edu.cn (G. Chen).

One crucial problem in a distributed controller system is to mini-
mize the control plane response time (CPRT), which can be regarded as
the elapsed time from the arrival to the completion for a network event.
The distribution of the data plane traffic is uneven [15], e.g., traffic
reaches peak volume at around 8PM [16], and switches at different
layers of hierarchical topologies significantly vary in flow arrival rates.
Therefore, some controllers sometimes endure excessive network events
and experience long CPRT, which leads to the deterioration of the
network transfer performance. Moreover, long CPRT has an impact on
the agility of the control plane, and consequently the network changes
cannot be detected and handled timely.

In this paper, we address the problem of CPRT minimization using
packet-in request redirection among controllers. Packet-in requests are
the messages sent by switches when network events happen. In our
scenario, each switch is statically assigned to a fixed controller [17–19].
Formally, given the instantaneous states of the system (e.g., controller
https://doi.org/10.1016/j.sysarc.2022.102590
Received 16 February 2022; Received in revised form 13 May 2022; Accepted 25 M
ay 2022

http://www.elsevier.com/locate/sysarc
http://www.elsevier.com/locate/sysarc
mailto:xiarui@smail.nju.edu.cn
mailto:haipengdai@nju.edu.cn
mailto:jzheng@nju.edu.cn
mailto:hongxu@cuhk.edu.hk
mailto:menson.smail.nju.edu.cn
mailto:gchen@nju.edu.cn
https://doi.org/10.1016/j.sysarc.2022.102590

R. Xia et al.

l
w
a
o

2
a

w
h
q
w
o
f
c
c
t
i
c
i
w
e
t
p
t

p
c
s
r
s
C
l
d
e

d
c
l
(
i
b
f
i
t
c
r
l
W
w
a
t
f
w
u
w
o

l
t
w
s
t
a
a
C
p

2

C
c
m
H
d
t
t
i
p
t
t
t
o
p
c
H
a
d
t

Fig. 1. Packet-in request redirection scheme.

oad, packet-in requests arrival rate, etc.), our goal is to determine
hether to redirect packet-in requests, such that the overall CPRT for
ll switches is minimized, while confining to the capacity constraints
f the controllers.

There are two lines of work on CPRT minimization. First, [20–
3] attempt to dynamically assign switches to controllers. For ex-
mple, in Fig. 1, controller 𝐶1 is overloaded, and switch 𝑆3 can be

reassigned to 𝐶2 or 𝐶3. This leads to unavoidable deployment cost
during controller migration (e.g., switch-controller connection setup).
Among these works, [21] proposes an algorithm with a non-constant
approximation ratio, which requires several iterations to achieve a
Nash stable solution. However, our algorithm obtains a result with a
constant approximation ratio in one round. Second, [24] proposes flow
redirection in the data plane. For example, in Fig. 1, flows arriving at 𝑆3
can be redirected to 𝑆4, and 𝑆4 reports packet-in requests. In this way,
𝐶2 substitutes 𝐶1 for processing 𝑆3’s packet-in requests. This incurs
the expense of pre-installing wildcard rules in the flow tables of 𝑆3,
𝑆5, and 𝑆4 for establishing the path between 𝑆3 and 𝑆4. Besides, [24]
needs to predict the arrival distributions of new flows, while our work
observes the instantaneous states and feed them to an online algorithm.
Moreover, existing work neglects the capacity constraint of buffers in
a controller. Most of them leverage the queuing theory and ensure
that the average processing rate is greater than the average arrival
rate. The above constraint on buffer capacity is weak and prone to
cause buffer overflow. Note that the overflow leads to packet loss,
which significantly affects the tail response time of packet-in requests.
Our work defines the constraint of buffer capacity explicitly in the
optimization problem and have a fine-grained control over the queue
length in the buffer.

In this paper, we propose a new scheme based on packet-in request
redirection. We depict it in Fig. 1, where 𝐶1 meets a spike in packet-
in requests and causes long CPRT for 𝑆1, 𝑆2, and 𝑆3. In our scheme,

e redirect the packet-in requests of one switch (e.g., 𝑆1) to 𝐶2, and
arness underutilized processing capacity of 𝐶2 to handle these re-
uests. On one hand, our scheme does not require controller migration
hich is needed in dynamic switch assignment. On the other hand,
ur scheme avoids pre-installing wildcard rules to establish paths for
low redirection. This is because we can utilize the connection among
ontrollers, e.g., in Fig. 1, 𝐶1 and 𝐶2 are connected through the in-band
onnection [25]. Note that our network model tracks the round-trip
ime (RTT) between two controllers, e.g., RTT between 𝐶1 and 𝐶2
n the above example. Furthermore, we consider different capacity
onstraints of controllers in our scheme, and achieve a 3× improvement
n maximum controller capacity violation ratio compared to the related
orks on CPRT minimization. We argue that our scheme has little
ffect on the traffic overhead among controllers. For example, using
he reactive flow caching scheme proposed in SoftRing [2], a large
roportion of packet-in messages carry only the first 128 Bytes of a
able-miss flow.
 t
We face two main technical challenges when dealing with the
acket-in request redirection problem for CPRT minimization. The first
hallenge is that we need to make the redirection decision for each
witch without a priori knowledge of the arrival rates of packet-in
equests. The algorithm should capture the instantaneous state of the
ystem, and make the redirection decisions by jointly considering the
PRT minimization and the capacity constraints of controllers in an on-

ine manner. The second challenge is to efficiently obtain a redirection
ecision with performance guarantee, for the online algorithm cannot
ndure the long-time waiting for decision making.

We propose a framework based on Lyapunov optimization to ad-
ress the above two challenges. First, we substitute virtual queues for
apacity constraints of controllers, and combine a queue stability prob-
em with the CPRT minimization problem using the drift-plus-penalty
DPP) algorithm. Then, on each time slot, we derive a non-linear
nteger program from the DPP algorithm, whose optimal solution can
e obtained with brute force using linearization techniques. Second, we
ind that time overhead of obtaining redirection decisions is significant,
f simply leveraging Lyapunov optimization. Thus, we employ two
echniques for different purposes, which cooperatively ease the time
omplexity of DPP algorithm in Lyapunov optimization. For faster
unning speed, we use the greedy strategy to efficiently get an initial so-
ution, and recursively optimize it with the multiple knapsack problem.

e theoretically prove the approximation ratio of the greedy strategy,
hich is related to the system parameters. To further pursue a constant
pproximation ratio, we prove that the reformulated problem falls into
he scope of the problem of maximizing a non-monotone submodular
unction subject to matroid constraints. Both the second and the third
ays provide approximate results, but each one has special advantages
nder different settings, e.g., the second way has a faster running time,
hile the third way has a more optimal performance improvement ratio
n average.

We construct a distributed controller system with Floodlight [26] by
everaging the SyncManager module. For packet-in request redirec-
ion, we temporarily connect two controllers with a network channel,
hich is kept active in a customized time interval to reduce connection

etup time for subsequent request redirection. We periodically measure
he round-trip time between any two controllers and report it to our
lgorithm. Then, we conduct simulations to evaluate our proposed
lgorithms. The results show our algorithms can reduce the average
PRT by 81.6% compared to static matching, and are 3× better than
revious works on CPRT minimization in terms of capacity constraints.

. Related work

PRT minimization. Previous works on CPRT Minimization problem
onsist of two types of treatments, i.e., dynamic controller assign-
ent [20–23,27,28] and flow redirection in the data plane [24,29,30].
owever, our approach is free from the controller migration, and
oes not need to pre-install wildcard rules for establishing paths in
he execution of flow redirection. [21,22] focus on the dynamic con-
roller assignment mechanism, which have been already implemented
n [4,31]. Wang et al. [21] considered the switch-controller assignment
roblem as a stable matching problem with transfer, and proposed a
wo-phase algorithm, which combined the matching theory with coali-
ional games. Wang et al. [24] minimized the maximum value of CPRT
hrough flow redirection, which needed to pre-install wildcard rules
n switches. Wang et al. [29] studied the low delay route deployment
roblem, which concerned the QoS performance degradation when the
ontrol channels between switches and the controller were overloaded.
uang et al. [28] offloaded control plane’s workloads to data plane,
nd dynamically made the switch-controller association and control
evolution based on predicted request arrivals. Chai et al. [32] studied
he capacitated controller deployment problem, which achieves the

radeoff between CPRT and the cost of controllers.

R. Xia et al.

a
t
c
i
e
A
b

3

n
T
r
p

3

i
O
a
d
d

𝑐
{
a
o
n
o
r
d
a
a
e
i
r
d

t
𝐴
c
r
f
W
l
a
𝑀
f

3

d
t
i
p
o
r
p

𝜃

T
e
i

Controller placement and assignment. The placement and assign-
ment of controllers are of vital importance to make the most of a
distributed controller system. Our problem can adapt the existing
works [17–19,33–36] to provide an initial controller-switch assign-
ment, and further reduces CPRT as the system is up and running. Heller
et al. [37] were the first to reveal two specific questions: how many
controllers are needed, and where should they go? Lange et al. [19]
presented POCO, a framework provided operators with Pareto opti-
mal placements with respect to different performance metrics. Yao
et al. [17] defined a capacitated controller placement problem, which
attached importance to the load of controllers. Moreover, Das et al. [38]
provided a comprehensive survey on the controller placement problem,
and illustrated its significance.
Connections among distributed controllers. Distributed controllers
are physically distributed across the network, but should have a con-
sistent view of the data plane. Some SDN controllers [39–42] design
various coordination protocols to logically connect the distributed con-
trollers. Other works [43–48] propose network models of distributed
controllers and optimize synchronization overhead. These network
models focus on the communication cost among controllers, which is
consistent with the model of packet-in request redirection. Namely, the
network conditions among controllers affect the decision of redirection.
Poularakis et al. [44] learned the SDN synchronization problem by
considering two different objectives, i.e., synchronization levels and
pplication performance. Zhang et al. [43] analyzed and quantified
he influence of synchronization levels on the average cost of the
onstructed routing paths. Muqaddas et al. [48] studied the pattern of
nter-controller traffic under different consistency levels, and developed
mpirical models to quantify the traffic. Sakic et al. [49] used Stochastic
ctivity Networks (SAN) to model a distributed control plane connected
y Raft, and analyzed the response time and availability metrics.

. Models and problem statement

In this section, we first present the basic models of SDN and and
etwork event handling, and list the related notations in Table 1.
hen, we introduce the packet-in request redirection model, and list the
elated notations in Table 2. Finally, we define the CPRT minimization
roblem (CMP).

.1. Network model in SDN

We consider the network topology in SDN as a two-tier structure,
.e., the control and data plane, which are communicated through the
penFlow protocol. The control plane consists of 𝐾 controllers, which
re denoted as 𝐶 = {𝑐1,… , 𝑐𝐾}. Since these controllers may locate in
ifferent racks or sites, we use 𝐷(𝑗1, 𝑗2) to represent the communication
elay between controller 𝑐𝑗1 and controller 𝑐𝑗2 . Namely, 𝐷(𝑗1, 𝑗2) is the

time cost for a packet-in request to redirect from 𝑐𝑗1 to 𝑐𝑗2 , and return to
𝑗1 after processing. The processing rates of controllers are denoted as
𝛼1,… , 𝛼𝐾}. The data plane consists of 𝑁 switches, which are denoted
s 𝑆 = {𝑠1,… , 𝑠𝑁}. During the configuration of SDN, a network
perator can associate a switch with one and only one controller for
etwork events handling. We denote 𝐴(𝑖) as the associated controller
f 𝑠𝑖. Besides, we consider a discrete time model where the arrival
ate of packet-in requests for a switch can be precisely measured. The
uration of a time slot is an alternative variable, denoted as 𝛿. For
ll switches in 𝑆, we denote 𝝀(𝒕) = [𝜆1(𝑡),… , 𝜆𝑁 (𝑡)] as the vector of
verage arrival rates of packet-in requests on slot 𝑡. We present a toy
xample of our model on slot 𝑡 in Fig. 2, where there exist four switches,
.e., {𝑠1, 𝑠2, 𝑠3, 𝑠4}, and two controllers, i.e., {𝑐1, 𝑐2}. The processing
ates of 𝑐1 and 𝑐2 are 𝛼1 and 𝛼2, respectively, and the communication
elay between them is 𝐷(1, 2). For a switch, e.g., 𝑠1, its arrival rate of
packet-in requests is 𝜆1(𝑡), and its associated controller 𝐴(1) is 𝑐1. 𝑐
Fig. 2. Model of the packet-in request redirection.

Table 1
Basic notations.

Symbol Meaning

𝑆 𝑆 = {𝑠1 ,… , 𝑠𝑁}, set of switches
𝐴(𝑖) Associated controller for 𝑠𝑖
𝐶 𝐶 = {𝑐1 ,… , 𝑐𝐾}, set of controllers
𝑡 𝑡 ∈ {1, 2,… , 𝑇 }, time slots
𝛿 Duration of a time slot
𝐷(𝑗1 , 𝑗2) Communication delay between 𝑐𝑗1 and 𝑐𝑗2
𝛼𝑗 Processing rate of 𝑐𝑗
𝝀(𝒕) Vector of switches’ arrival rates of packet-in requests
𝑀𝑗 Capacity constraint of 𝑐𝑗

Table 2
Notations for redirection model.

Symbol Meaning

𝑸(𝒕) Vector of controllers’ waiting queue length
𝑋𝑖𝑗 (𝑡) Indicator of whether to redirect 𝑠𝑖 ’s packet-in requests to 𝑐𝑗 on slot 𝑡

𝜃𝑗 (𝑡) Total arrival rates of packet-in requests for 𝑐𝑗 on slot 𝑡

𝐶𝑇
𝑖 (𝑡) Transmission cost of processing 𝑠𝑖 ’s packet-in requests on slot 𝑡

𝐶𝑄
𝑖 (𝑡) Queueing cost of processing 𝑠𝑖 ’s packet-in requests on slot 𝑡

𝐶𝑖(𝑡) Total time cost of processing 𝑠𝑖 ’s packet-in requests on slot 𝑡

3.2. Network event handling model

When a network event happens, a switch reports the event to its
associated controller. Thus, 𝑠𝑖 sends packet-in requests to 𝐴(𝑖) with
he rate of 𝜆𝑖(𝑡) on slot 𝑡. When receiving packet-in requests from 𝑠𝑖,
(𝑖) may process them itself or immediately redirect them to another
ontroller. If 𝑠𝑖’s requests are processed on 𝐴(𝑖), 𝐴(𝑖) will push these
equests into its FIFO waiting queue. 𝐴(𝑖) continuously pull a request
rom its queue and process it using the global network information.

e use vector 𝑸(𝒕) = [𝑄1(𝑡),… , 𝑄𝐾 (𝑡)] to represent the waiting queue
ength of controllers in 𝐶 at the start of time slot 𝑡. Furthermore, 𝑐𝑗 has
capacity constraint of the waiting queue length, which is denoted as
𝑗 . As shown in Fig. 2, the waiting queue length of 𝑐1, i.e., 𝑄1(𝑡), is

our, and does not exceed the capacity constraint, i.e., 𝑀1.

.3. Packet-in request redirection model

We try to redirect packet-in requests to reduce their CPRT. We
enote a decision variable as 𝑋𝑖𝑗 (𝑡), which is an indicator of whether
o redirect 𝑠𝑖’s packet-in requests to 𝑐𝑗 on slot 𝑡. Note that all packet-
n requests from one switch on slot 𝑡 are not divided into multiple
arts, for some flexible NICs [50] can directly forward a packet based
n its header fields and speed up the operation of packet-in request
edirection. Consequently, we refer 𝜃𝑗 (𝑡) as the total arrival rates of
acket-in requests for 𝑐𝑗 on slot 𝑡, and express it as

𝑗 (𝑡) =
𝑁
∑

𝑖=1
𝑋𝑖𝑗 (𝑡)𝜆𝑖(𝑡). (1)

he waiting queue length of 𝑐𝑗 on slot 𝑡 + 1, i.e., 𝑄𝑗 (𝑡 + 1), can be
stimated as 𝑄𝑗 (𝑡+1) = max{𝑄𝑗 (𝑡)+(𝜃𝑗 (𝑡)−𝛼𝑗)⋅𝛿, 0}. For example, 𝑋31(𝑡)
s set to one in Fig. 2, and thus 𝑠3’s packet-in requests are redirected to
. We derive that 𝜃 (𝑡) =

∑3 𝜆 (𝑡) and 𝜃 (𝑡) = 𝜆 (𝑡).
1 1 𝑖=1 𝑖 2 4

R. Xia et al.

t

w
T
c

𝑇

For packet-in requests from a switch, their CPRT consists of two
parts, i.e., the transmission cost and the queueing cost. First, the trans-
mission cost is derived from the packet dissemination between the
associated controller and the packet-in requests processing controller.
We denote the transmission cost of 𝑠𝑖 on slot 𝑡 as 𝐶𝑇

𝑖 (𝑡), which is
represented as

𝐶𝑇
𝑖 (𝑡) =

𝐾
∑

𝑗=1
𝑋𝑖𝑗 (𝑡)𝐷(𝐴(𝑖), 𝑗). (2)

In Fig. 2, we redirect 𝑠3’s packet-in requests to 𝑐1. The processing results
of these requests are returned back 𝑐2, and directly sent to 𝑠3. Thus,
he transmission cost of 𝑠3’s packet-in requests, i.e., 𝐶𝑇

3 (𝑡), is 𝐷(1, 2).
Besides, for 𝑠1, 𝑠2, and 𝑠4, the transmission costs are all zero, for their
packet-in requests do not need to be redirected.

Second, the queueing cost is generated by the packet-in requests
processing controller, whose waiting queue is not empty. The packet-in
requests will be queued until all earlier arrived requests have finished
processing. Since the accurate waiting queue length is hard to estimate,
we use the worst case of the queueing length on slot 𝑡, which is at most
𝑄𝑗 (𝑡)+𝛿 ⋅𝜃𝑗 (𝑡) for 𝑐𝑗 . Intuitively, the above worst case seems to batch all
packet-in requests of 𝑠𝑖 in the associated controller 𝐴(𝑖) and redirects
the packet-in requests at the end of a slot. However, the implementation
of request redirection is in a streaming mode. A packet-in request of 𝑠𝑖
will be promptly redirected to its processing controller 𝑐𝑗 . The worse
case aims to estimate the upper bound of queueing cost and does not
affect the implementation of redirection. Therefore, we denote 𝐶𝑄

𝑖 (𝑡) as
the queueing cost of 𝑠𝑖’s packet-in requests, and express it as

𝐶𝑄
𝑖 (𝑡) =

𝐾
∑

𝑗=1
𝑋𝑖𝑗 (𝑡) ⋅

𝑄𝑗 (𝑡) + 𝛿 ⋅ 𝜃𝑗 (𝑡)
𝛼𝑗

. (3)

In Fig. 2, the queueing costs of 𝑠1, 𝑠2, and 𝑠3 are all 𝑄1(𝑡) + 𝛿 ⋅ 𝜃1(𝑡),
while that of 𝑠4 is 𝑄2(𝑡) + 𝛿 ⋅ 𝜃2(𝑡).

Finally, CPRT of the packet-in requests from switch 𝑠𝑖 on slot 𝑡 is
the summation of the above two costs, and we denote it as

𝐶𝑖(𝑡) = 𝐶𝑇
𝑖 (𝑡) + 𝐶𝑄

𝑖 (𝑡). (4)

Note that, the redirection decision is affected by two factors: the
inter-controller communication delay and the real-time queue length.
Intuitively, the redirection decision prefers a controller which has small
communication delay and is lightly loaded.

3.4. CPRT minimization problem

The distributed control plane for request redirection is a two-layer
structure. The upper layer is a central controller, which monitors
the real-time metrics of controllers and switches, e.g., 𝑸(𝒕) and 𝝀(𝒕).
The lower layer consists of multiple worker controllers, which receive
packet-in requests and process them. The central controller instructs
worker controller to redirect packet-in requests.

The CPRT minimization problem (CMP) aims to minimize the over-
all CPRT by updating the redirection decision at the start of each
slot. After gathering metrics from controllers and switches, the central
controller constructs a new instance of CMP and calculates a new
redirection decision. At the start of the next slot, the central controller
updates the redirection decision of worker controllers to the new one.
An instance of CMP is formulated as follows:

min
𝑋𝑖𝑗 (𝑡)

𝑇
∑

𝑡=1

𝑁
∑

𝑖=1
𝐶𝑖(𝑡)

𝑠.𝑡. 𝑄𝑗 (𝑡) ≤ 𝑀𝑗 , ∀𝑗 (5)
𝐾
∑

𝑗=1
𝑋𝑖𝑗 (𝑡) = 1, ∀𝑖, 𝑡 (6)

𝑋𝑖𝑗 (𝑡) ∈ {0, 1}, ∀𝑖, 𝑗
Note that 𝑋𝑖𝑗 (𝑡)s (𝑖 = 1,… , 𝑁 ; 𝑗 = 1,… , 𝐾; 𝑡 = 1,… , 𝑇) are the decision
variables. Constraint (5) forces the waiting queue length not to exceed
the controller’s capacity. Constraint (6) ensures that packet-in requests
will be processed by only one controller.

CMP can be viewed as a variant of generalized assignment problem
(GAP), which is NP-hard. Furthermore, if we can observe the distribu-
tion function of 𝝀(𝒕), a common way is to minimize the expectation
of the objective function in CMP to obtain the offline optimal result.
However, an offline algorithm is not suitable for scenarios such as the
data center, where network traffic volume is rapidly changing.

4. Scheme based on Lyapunov optimization

This section goes step by step in explaining our design of the
online analysis scheme. Note that Lyapunov optimization can provide
control over waiting queues of controllers and make a compromise
between CPRT minimization and controller capacity constraints using
the drift-plus-penalty (DPP) algorithm. Thus, we leverage Lyapunov
optimization in our model and prove that the gap between our online
decision and the offline optimal result is bounded. Specifically, we
first transform each controller capacity constraint in the time average
form, and further convert it to a queue stability problem. Then, we use
the DPP algorithm to solve CMP, and define the redirection decision
problem (RDP) derived from the DPP algorithm.

4.1. Conversion of capacity constraints

In CMP, waiting queue length of each controller should not exceed
its capacity, i.e., 𝑄𝑗 (𝑡) ≤ 𝑀𝑗 on slot 𝑡.

Definition 4.1. For each 𝑐𝑗 ∈ 𝐶, we define 𝑄𝑗 (𝑇) as the time average
of 𝑄𝑗 (𝑡) over the first 𝑇 slots:

𝑄𝑗 (𝑇) =
1
𝑇

𝑇
∑

𝑡=1
𝑄𝑗 (𝑡),

and define 𝑄𝑗 as the limiting value of 𝑄𝑗 (𝑇), when 𝑇 → ∞.

Due to traffic fluctuation, it is infeasible to guarantee that the
aiting queue length would not exceed the capacity on each time slot.
hus, we leverage its time average, and limit it within the capacity
onstraint, i.e., 𝑄𝑗 ≤ 𝑀𝑗 . We convert the controller capacity constraint

into the time average form, and further transform it into a queue
stability problem.

Definition 4.2 (Virtual Queue). we define a virtual queue 𝑍𝑗 (𝑡) for each
𝑗 ∈ {1,… , 𝐾}, with update equation:

𝑍𝑗 (𝑡 + 1) = max{𝑍𝑗 (𝑡) +𝑄𝑗 (𝑡 + 1) −𝑀𝑗 , 0}. (7)

We propose the following theorem, which shows that the rate
stability of the virtual queue 𝑍𝑗 (𝑡) can infer 𝑄𝑗 ≤ 𝑀𝑗 .

Theorem 4.1. For each 𝑐𝑗 ∈ 𝐶, we define the rate stability of the virtual
queue 𝑍𝑗 (𝑇) as

lim sup
𝑇→∞

E[𝑍𝑗 (𝑇)]∕𝑇 = 0,

which can ensure the constraint of 𝑄𝑗 ≤ 𝑀𝑗 .

Proof. Using the update equation of 𝑍𝑗 (𝑡) in Eq. (7), we get its lower
bound:

𝑍𝑗 (𝑡 + 1) ≥ 𝑍𝑗 (𝑡) +𝑄𝑗 (𝑡 + 1) −𝑀𝑗 . (8)

Then, we add up In Eq. (8) from time slot 1 to 𝑇 , and dividing 𝑇 at
the both sides, we have E[𝑍𝑗 (𝑇)]∕𝑇 ≥ −𝑀𝑗 +

∑𝑇
𝑡=1 E[𝑄𝑗 (𝑡)]∕𝑇 . When

→ ∞,

𝑄𝑗 ≤ 𝑀𝑗 + lim supE[𝑍𝑗 (𝑇)]∕𝑇 = 𝑀𝑗 . □

𝑇→∞

R. Xia et al.

𝐿

f

𝐿

𝜖

S
w
i

s
o

T
y

o

P

4.2. Lyapunov Optimization and DPP algorithm

Definition 4.3 (Lyapunov Function). We let 𝒁(𝒕) = [𝑍1(𝑡),… , 𝑍𝐾 (𝑡)]
be the vector of all virtual queue backlogs, and define the Lyapunov
function 𝐿(𝒁(𝒕)) as follows:

(𝒁(𝒕)) = 1
2

𝐾
∑

𝑗=1
𝑍2

𝑗 (𝑡).

We use Eq. (7) to compute a bound on the shift in the Lyapunov
unction from one time slot to the next:

(𝒁(𝒕+ 𝟏)) − 𝐿(𝒁(𝒕)) = 1
2

𝐾
∑

𝑗=1
(𝑍2

𝑗 (𝑡 + 1) −𝑍2
𝑗 (𝑡))

≤
𝐾
∑

𝑗=1

[1
2
[𝑄𝑗 (𝑡 + 1) −𝑀𝑗]2 +𝑍𝑗 (𝑡)[𝑄𝑗 (𝑡 + 1) −𝑀𝑗]

]

.

(9)

Definition 4.4 (Lyapunov Drift). We define 𝛥(𝒁(𝒕)) as the conditional
Lyapunov drift for time slot 𝑡:

𝛥(𝒁(𝒕)) = E[𝐿(𝒁(𝒕+ 𝟏)) − 𝐿(𝒁(𝒕))|𝒁(𝒕)].

Theorem 4.2. We bound the value of 𝛥(𝒁(𝒕)) as follows:

𝛥(𝒁(𝒕)) ≤ 𝐵 +
𝐾
∑

𝑗=1
𝑍𝑗 (𝑡) ⋅ E[(𝑄𝑗 (𝑡 + 1) −𝑀𝑗)|𝒁(𝒕)], (10)

where 𝐵 is a constant value.

Proof. Using In Eq. (9), 𝛥(𝒁(𝒕)) is bounded by

𝛥(𝒁(𝒕)) = E[𝐿(𝒁(𝒕 + 1)) − 𝐿(𝒁(𝒕))|𝒁(𝒕)]

≤ E
{

𝐾
∑

𝑗=1

[1
2
[𝑄𝑗 (𝑡 + 1) −𝑀𝑗]2 +𝑍𝑗 (𝑡)[𝑄𝑗 (𝑡 + 1) −𝑀𝑗]

]

|𝒁(𝒕)
}

.

Here, for each 𝑐𝑗 ∈ 𝐶, we let

𝑗 = max{𝜖′ ∶ 𝑄𝑗 (𝑡) + 𝜖′ ≤ 𝑀𝑗}, for all 𝑡 = 1, 2,…

The values of {𝜖1,… , 𝜖𝐾} exist for they can be generated from a feasible
redirection decision. Therefore, we get the bound as follows:
𝐾
∑

𝑗=1
E
{ 1
2
[𝑄𝑗 (𝑡 + 1) −𝑀𝑗]2|𝒁(𝒕)

}

≤
𝐾
∑

𝑗=1
max{𝑀2

𝑗 , 𝜖
2
𝑗 } ≜ 𝐵.

Thus, the theorem follows. □

Definition 4.5 (Drift Plus Penalty). We define the drift plus penalty
(DPP) expression on slot 𝑡:

𝐷𝑃𝑃 (𝑡) = 𝛥(𝒁(𝒕)) + 𝑉 ⋅ E[𝐶(𝑡)|𝒁(𝒕)], (11)

where 𝑉 ≥ 0 is a parameter that represents the weight on how much
we emphasize CPRT Minimization.

We combine CPRT minimization with the virtual queue stability
problem, which indicates controllers’ capacity constraints. We further
bound the DPP expression in Eq. (11) with the following theorem.

Theorem 4.3. We bound the value of 𝐷𝑃𝑃 (𝑡) as follows:

𝐷𝑃𝑃 (𝑡) ≤ 𝐵′ + E
{

𝑉 ⋅
𝑁
∑

𝑖=1

𝐾
∑

𝑗=1
𝑋𝑖𝑗 (𝑡)

[

𝐷(𝐴(𝑖), 𝑗) +
𝑄𝑗 (𝑡)
𝛼𝑗

]

+ 𝛿 ⋅
𝐾
∑

𝑗=1
𝜃𝑗 (𝑡)

[

𝑁
∑

𝑖=1

𝑉 ⋅𝑋𝑖𝑗 (𝑡)
𝛼𝑗

+𝑍𝑗 (𝑡)
]

|

|

|

𝒁(𝒕)
}

,

where 𝐵′ = 𝐵 +
∑𝐾

𝑗=1 𝑍𝑗 (𝑡)[𝑄𝑗 (𝑡) − 𝛼𝑗 ⋅ 𝛿 −𝑀𝑗].

Proof. Substitute Eqs. (2), (3), (4), and Inequality (10) to Equality (11),

and the result follows. □
Algorithm 1: Analysis Scheme for CMP
Input: Time slot interval 𝛿, weighted parameter 𝑉 , capacity

constraints of controllers {𝑀1, ...,𝑀𝐾}
Output: Redirection decision 𝑿(𝒕)

1 for the start of each time slot 𝑡 ∈ {1, ..., 𝑇 } do
2 Get 𝑸(𝒕), and update 𝒁(𝒕).
3 Get the packet-in requests arrival rates 𝝀(𝒕) perceived

during the previous time slot.
4 Construct a new instance of RDP.
5 Get the current redirection decision 𝑿(𝒕) by solving the

program in the new instance of RDP.

Rather than directly minimize the DPP expression in Eq. (11), our
strategy aims to minimize the bound provided by Theorem 4.3. We
describe the analysis scheme for CMP in Algorithm 1. In Step 1–3,
the algorithm makes redirection decision at the start of each time slot,
when the leader controller learns the system states, i.e., 𝑸(𝒕), 𝝀(𝒕). In
tep 4, we construct an instance of redirection decision problem (RDP),
hich attempts to minimize the upper bound given in Theorem 4.3 and

s presented as follows:

min
𝑋𝑖𝑗 (𝑡)

𝑉 ⋅
𝑁
∑

𝑖=1

𝐾
∑

𝑗=1
𝑋𝑖𝑗 (𝑡)

[

𝐷(𝐴(𝑖), 𝑗) +
𝑄𝑗 (𝑡)
𝛼𝑗

]

+ 𝛿 ⋅
𝐾
∑

𝑗=1
𝜃𝑗 (𝑡)

[

𝑁
∑

𝑖=1

𝑉 ⋅𝑋𝑖𝑗 (𝑡)
𝛼𝑗

+𝑍𝑗 (𝑡)
]

(12)

𝑠.𝑡.
𝐾
∑

𝑗=1
𝑋𝑖𝑗 (𝑡) = 1, ∀𝑖

𝑋𝑖𝑗 (𝑡) ∈ {0, 1}, ∀𝑖, 𝑗.

In Step 5, we get the redirection decision, i.e., 𝑿(𝒕), by solving RDP.
However, the objective function in Eq. (12) is nonlinear, for the values
of {𝜃1(𝑡),… , 𝜃𝐾 (𝑡)} are related to 𝑿(𝒕). In the next section, we try to
tudy RDP using three different algorithms, which provide the optimal
r approximate solutions to the problem.

heorem 4.4. The gap between the online decision provided by our anal-
sis scheme and the offline optimal result is at most 𝑂(1∕𝑉). Furthermore,
we can ensure that the time average of each waiting queue length 𝑄𝑗 is not
ver 𝑀𝑗 .

roof. For a better flow of this paper, we move the proof to Ap-
pendix A. □

5. Algorithms for redirection decision

In this section, we address redirection decision problem (RDP)
using three different algorithms. We start by converting RDP to a
mixed integer program (MIP) problem, which can provide the optimal
solution to the problem. Following that, we propose two approximation
algorithms, which are much efficient than the above one. For faster
running speed, we greedily make an initial redirection decision, and
recursively optimize it with the multiple knapsack problem. To pursue
a constant approximation ratio, we resort to submodular optimization.

5.1. Optimal solution using MIP

RDP has quadratic terms in the objective function, and standard
linear program approaches cannot be used. However, we can apply
standard linearization techniques to obtain an MIP formulation, which
only consists of linear objective function and constraints. We denote

R. Xia et al.

T

(

o
b
𝑸

w
3

w

d
c
e

l

w
r
r
a

Algorithm 2: RDP-MIP Algorithm for RDP
Input: Waiting queue length 𝑸(𝒕), packet-in requests arrival

rates 𝝀(𝒕), virtual queue length 𝒁(𝒕)
Output: Redirection decision 𝑿(𝒕)

1 Linearize the program in RDP by involving new variables with
constraints expressed in Inequation (13), (14), and (15).

2 Get the redirection decision 𝑿(𝒕) by solving the MIP after
substituting new variables into RDP.

the algorithm using MIP as RDP-MIP, and describe it in Algorithm 2.
In Step 1, we introduce a set of new {0, 1} variables as follows:

𝑌𝑖𝑙𝑗 (𝑡) ≤ 𝑋𝑖𝑗 (𝑡), (13)

𝑌𝑖𝑙𝑗 (𝑡) ≤ 𝑋𝑙𝑗 (𝑡), (14)

𝑌𝑖𝑙𝑗 (𝑡) ≥ 𝑋𝑖𝑗 (𝑡) +𝑋𝑙𝑗 (𝑡) − 1, (15)

where 𝑖, 𝑙 ∈ {1,… , 𝑁}, 𝑗 ∈ {1,… , 𝐾}. We observe that 𝑌𝑖𝑙𝑗 (𝑡) is equal
to one, if and only if both 𝑋𝑖𝑗 (𝑡) and 𝑋𝑙𝑗 (𝑡) are set to one; otherwise,
it will be zero. Furthermore, it is obvious that 𝑋𝑖𝑗 (𝑡) = 𝑌𝑖𝑖𝑗 (𝑡). Thus, we
reformulate RDP as an MIP, which is presented as follows:

min
𝑋𝑖𝑗 (𝑡),𝑌𝑖𝑙𝑗 (𝑡)

𝑉 ⋅
𝑁
∑

𝑖=1

𝐾
∑

𝑗=1
𝑌𝑖𝑖𝑗 (𝑡)

[

𝐷(𝐴(𝑖), 𝑗) +
𝑄𝑗 (𝑡)
𝛼𝑗

]

+ 𝛿 ⋅
𝐾
∑

𝑗=1

𝑁
∑

𝑖=1

𝑁
∑

𝑙=1
𝜆𝑙(𝑡)

[𝑉 ⋅ 𝑌𝑖𝑙𝑗 (𝑡)
𝛼𝑗

+𝑍𝑗 (𝑡)𝑌𝑙𝑙𝑗 (𝑡)
]

𝑠.𝑡.
𝐾
∑

𝑗=1
𝑌𝑖𝑖𝑗 = 1, ∀𝑖

𝑌𝑖𝑙𝑗 (𝑡) ∈ {0, 1}, 𝑋𝑖𝑗 (𝑡) ∈ {0, 1}, ∀𝑖, 𝑙, 𝑗

(13), (14), (15).

Existing LP solvers can be directly used to solve an MIP. These solvers
mainly apply branch-and-bound techniques and are primarily fit to
small-scale scenarios. In the next two subsections, we aim at solving
RDP in large-scale instances. We attempt to pursue high time-efficient
algorithms with bounded approximation ratios to the optimal solution.

5.2. Algorithm with recursive optimization

We reorder the terms in RDP, and construct it in a more understand-
able way named as transformed RDP (TRDP):

min
𝑋𝑖𝑗 (𝑡)

𝑁
∑

𝑖=1

𝐾
∑

𝑗=1
𝑋𝑖𝑗 (𝑡) ⋅ 𝐶𝑜𝑠𝑡(𝑖, 𝑗) +

𝑁
∑

𝑖=1

𝐾
∑

𝑗=1
𝑋𝑖𝑗 (𝑡) ⋅ 𝜃′𝑗 (𝑡) (16)

𝑠.𝑡.
𝐾
∑

𝑗=1
𝑋𝑖𝑗 (𝑡) = 1, ∀𝑖, 𝑗 (17)

𝑋𝑖𝑗 (𝑡) ∈ {0, 1}, ∀𝑖, 𝑗.

he expressions of 𝐶𝑜𝑠𝑡(𝑖, 𝑗) and 𝜃′𝑗 (𝑡) in TRDP are presented as follows:

𝐶𝑜𝑠𝑡(𝑖, 𝑗) = 𝑉
[

𝐷(𝐴(𝑖), 𝑗) +
𝑄𝑗 (𝑡)
𝛼𝑗

]

+ 𝛿 ⋅𝑍𝑗 (𝑡)𝜆𝑖(𝑡), (18)

𝜃′𝑗 (𝑡) =
𝛿 ⋅ 𝑉
𝛼𝑗

𝑁
∑

𝑖=1
𝑋𝑖𝑗 (𝑡)𝜆𝑖(𝑡).

The underlying insight of TRDP is that we consider two types of
cost, when redirecting a switch’s (𝑠𝑖) packet-in requests to a controller
𝑐𝑗), or namely, setting the value of the decision variable (𝑋𝑖𝑗 (𝑡)) to one.

Definition 5.1 (Type-one Cost). The type-one cost, denoted as 𝐶𝑜𝑠𝑡(𝑖, 𝑗),
nly relates to the system parameters, i.e., the communication delay
etween controllers, and the known instantaneous system states, i.e.,

(𝒕), 𝒁(𝒕), and 𝝀(𝒕). u
Algorithm 3: RDP-G Algorithm for RDP
Input: Waiting queue length 𝑸(𝒕), packet-in requests arrival

rates 𝝀(𝒕), virtual queue length 𝒁(𝒕)
Output: Redirection decision 𝑿(𝒕)

1 Reconstruct the terms, and transform RDP into TRDP.
2 For switch 𝑠𝑖 and controller 𝑐𝑗 , compute 𝐶𝑜𝑠𝑡(𝑖, 𝑗).
3 Get the initial redirection decision 𝑿(𝟎)(𝒕) using the strategy

expressed in Equation (19).
4 𝑓 ← 0. Construct a instance of MKP using 𝑿(𝟎)(𝒕), and get

𝑿(𝒇+𝟏)(𝒕) by solving the new instance.
5 𝑖𝑚𝑝𝑟_𝑟𝑎𝑡𝑖𝑜 ← the improvement ratio of 𝑿(𝒇)(𝒕) to 𝑿(𝟎)(𝒕) in

terms of the objective function for TRDP in Equation (16).
6 while 𝑖𝑚𝑝𝑟_𝑟𝑎𝑡𝑖𝑜 ≥ a predefined threshold do
7 𝑓 ← 𝑓 + 1. Construct MKP using 𝑿(𝒇)(𝒕), and get 𝑿(𝒇+𝟏)(𝒕)

by solving the MKP.
8 Update the value of 𝑖𝑚𝑝𝑟_𝑟𝑎𝑡𝑖𝑜.
9 return 𝑿(𝒇)(𝒕).

Definition 5.2 (Type-two Cost). The type-two cost, denoted as 𝜃′𝑗 (𝑡), has
relation to the decision variables, i.e., 𝑿(𝒕).

The values of the type-one costs can be thought as constants when
we solve TRDP. However, the values of the type-two costs are varied as
the decision variables change, and thus cannot be viewed as constants.
When redirecting packet-in requests to a same controller 𝑐𝑗 , all switches
share an identical type-two cost 𝜃′𝑗 (𝑡), while the type-one cost for each
switch is unique, e.g., 𝐶𝑜𝑠𝑡(𝑖, 𝑗) for 𝑠𝑖.

Using the implication of TRDP, we propose the greedy algorithm
ith recursive optimization, which is denoted as RDP-G in Algorithm
. In Step 3, 𝑿(0)(𝒕) = {𝑋(0)

𝑖𝑗 (𝑡)|𝑖 ∈ {1,… , 𝑁}, 𝑗 ∈ {1,… , 𝐾}} is the initial
redirection decisions, each of which is expressed as follows:

𝑋(0)
𝑖𝑗 (𝑡) =

⎧

⎪

⎨

⎪

⎩

1 , 𝑗 = argmin
𝑗

[𝐶𝑜𝑠𝑡(𝑖, 𝑗) ⋅ 𝐶𝑗]

0 , 𝑒𝑙𝑠𝑒,
(19)

here 𝐶𝑗 = 1
𝛼𝑗

∑𝑁
𝑖=1

1
𝐶𝑜𝑠𝑡(𝑖,𝑗) . The intuition of the initial redirection

ecision is the following: for each switch, we aim at assigning the
ontroller with the minimum type-one cost, yet keeping an eye on the
ffects of other switches.

In Step 4, we construct an instance of the multiple knapsack prob-
em (MKP) [51] with the following two steps. First, substituting 𝑿(0)(𝒕)

into Eq. (1), we obtain the aggregated arrival rates of switches for a
controller, e.g., 𝑐𝑗 , as follows:

𝜃(0)𝑗 =
𝑁
∑

𝑖=1
𝑋(0)

𝑖𝑗 (𝑡)𝜆𝑖(𝑡). (20)

Second, we substitute Eq. (20) into TRDP, and get the following
integer linear program (ILP):

min
𝑋𝑖𝑗 (𝑡)

𝑁
∑

𝑖=1

𝐾
∑

𝑗=1
𝑋𝑖𝑗 (𝑡)

(

𝐶𝑜𝑠𝑡(𝑖, 𝑗) +
𝛿 ⋅ 𝑉 (𝜃(0)𝑗 + 𝛾)

𝛼𝑗

)

(21)

𝑠.𝑡.
𝐾
∑

𝑗=1
𝑋𝑖𝑗 (𝑡) = 1, ∀𝑖

𝑁
∑

𝑖=1
𝑋𝑖𝑗 (𝑡) ⋅ 𝜆𝑖(𝑡) ≤ 𝜃(0)𝑗 (𝑡) + 𝛾, ∀𝑗, (22)

here 𝛾 > 0 is the maximum violation of the aggregated arrival
ates of packet-in requests for each controller, compared to the initial
edirection decision, i.e., 𝑿(0)(𝒕). We add Constraint (22) to limit the
ggregated arrival rates for a controller. In this way, we can get the
pper bound of the type-two cost for each controller, and use this

R. Xia et al.

b
i

d

m

i
m

f

d
F

w
𝑓
f
e
t
o

T
t

T
|

𝑓

w

P
p
𝑃
d
p

t
t
f

6

C
g
t

Fig. 3. A toy example for Algorithm 3.

ound to acquire an improved solution. The value of the cost term
n Eq. (21), i.e., 𝐶𝑜𝑠𝑡(𝑖, 𝑗)+𝛿 ⋅𝑉 (𝜃(0)𝑗 +𝛾)∕𝛼𝑗 , is only a constant. Thus, the

above ILP can be viewed as an instance of MKP, whose optimal solution
is denoted as 𝑿(1)(𝒕).

In Step 6, we recursively construct a new instance of MKP based
on the current solution until the improvement ratio of the objective
function for TRDP in Eq. (16) is within a predefined threshold, and
obtain the final redirection decision.

Toy example. In Fig. 3, we provide a toy example to illustrate Al-
gorithm 3. 𝑠1 is directly connected to 𝑐1, while 𝑠2 and 𝑠3 are connected
to 𝑐2. We list 𝛼, 𝑄, 𝑍, and 𝜆 in the figure. Besides, 𝐷(1, 2), 𝛿, and 𝑉 are
set to one. Using Algorithm 3, we get 𝐶𝑜𝑠𝑡(1, 1) = 3, 𝐶𝑜𝑠𝑡(2, 1) = 5.5,
𝐶𝑜𝑠𝑡(3, 1) = 3.5, 𝐶𝑜𝑠𝑡(1, 2) = 6, 𝐶𝑜𝑠𝑡(2, 2) = 9, and 𝐶𝑜𝑠𝑡(3, 1) = 5, and
erive that 𝐶1 = 0.400 and 𝐶2 = 0.239. According to Eq. (19), 𝑋11, 𝑋22,

and 𝑋31 are set to one, and total cost in Eq. (16) becomes 17.7, while
the cost of default setting, where 𝑋11, 𝑋22, and 𝑋32 are set to one, is
19.95. Moreover, we use MKP to further optimize the result, and set
𝛾 = 2 in Eq. (21). Consequently, 𝑋11, 𝑋21, and 𝑋32 are set to one, and
the cost of the optimized result becomes 16.7.

Obviously, 𝑿(0)(𝒕) is a feasible solution to the new instance of
MKP, so that 𝑿(1)(𝒕) is superior to 𝑿(0)(𝒕) in terms of the objective
function in Eq. (21). Even though we cannot ensure that 𝑿(1)(𝒕) is a

ore optimal solution to TRDP compared to 𝑿(0)(𝒕), we will show that
the approximation ratio of the initial redirection decision, i.e., 𝑿(0)(𝒕),
s already a constant in the following theorem. We denote 𝐶𝑚𝑎𝑥 as
ax{𝐶1,… , 𝐶𝐾}, and 𝐶𝑚𝑖𝑛 as min{𝐶1,… , 𝐶𝐾}.

Theorem 5.1. For RDP-G, the approximation ratio of the initial redirec-
tion decision, i.e., 𝑿(0)(𝒕) is bounded by (1 + 𝜂)

[

1 + 𝛿 ⋅ 𝑉 max{𝝀(𝒕)}𝐶𝑚𝑎𝑥
]

,
where 1 + 𝜂 = 𝐶𝑚𝑎𝑥∕𝐶𝑚𝑖𝑛.

Proof. For a better flow of this paper, we move the proof to Ap-
pendix B. □

5.3. Algorithm using submodular optimization

In this subsection, we try to use techniques in submodular optimiza-
tion to solve RDP. The following analysis is based on the transformed
expression in TRDP, which has been discussed in Section 5.2.

First, we define a type of set functions called supermodular.

Definition 5.3 (Supermodular). Let 𝑊 be a finite set of elements
(ground set). A set function 𝑓 ∶ 2𝑊 → R is called supermodular if
for all subsets 𝐴,𝐵 ⊆ 𝑊 with 𝐴 ⊆ 𝐵 and every element 𝑒 ∈ 𝑊 ∖𝐵, it
holds that

𝑓 (𝐴 ∪ {𝑒}) − 𝑓 (𝐴) ≤ 𝑓 (𝐵 ∪ {𝑒}) − 𝑓 (𝐵).

Next, we introduce the way to construct the ground set and set
function for our problem, respectively.

Definition 5.4 (Ground Set). The ground set 𝑊 is defined as 𝑊 =
{𝑒11,… , 𝑒1𝐾 , 𝑒21,… , 𝑒2𝐾 ,… , 𝑒𝑁1,… , 𝑒𝑁𝐾}. The subsets 𝑊𝑖∙ and 𝑊∙𝑗 are
denoted as {𝑒𝑖1,… , 𝑒𝑖𝐾} and {𝑒1𝑗 , ..., 𝑒𝑁𝑗}, respectively, for 𝑖 ∈ {1,… ,

𝑁} and 𝑗 ∈ {1,… , 𝐾}.
Algorithm 4: RDP-SO Algorithm for RDP
Input: Waiting queue length 𝑸(𝒕), packet-in requests arrival

rates 𝝀(𝒕), virtual queue length 𝒁(𝒕)
Output: Redirection decision 𝑿(𝒕)

1 Construct the set function 𝑓 (𝑈) and ground set 𝑊 .
2 Get 𝑿(𝒕) by the algorithms for maximizing the non-monotone

submodular function, i.e., 𝑓 (𝑈) = 𝑓 𝑢𝑏 − 𝑓 (𝑈), subject to
matroid constraints.

Definition 5.5 (Set Function). we define the set function of the problem
as follows:

𝑓 (𝑈) =
∑

𝑒∈𝑈
𝑐(𝑒) + 𝛿 ⋅ 𝑉

{ 𝐾
∑

𝑗=1

{

|𝑈 ∩𝑊∙𝑗 | ⋅
∑

𝑒∈𝑈∩𝑊∙𝑗

𝜆(𝑒)
}

+
𝑁
∑

𝑖=1

{

1(|𝑈 ∩𝑊𝑖∙| = 0) ⋅ 𝑃
}

}

,

(23)

where 𝑈 ⊆ 𝑊 , 𝑐(𝑒𝑖𝑗) = 𝐶𝑜𝑠𝑡(𝑖, 𝑗), 𝜆(𝑒𝑖𝑗) = 𝜆𝑖(𝑡)∕𝛼𝑗 , 1(∙) is an indicator
unction, and 𝑃 is a penalty factor.

To obtain a redirection decision, we select a subset of 𝑊 , which is
enoted as 𝑈 , and set the corresponding decision variables in 𝑈 to one.
or example, if we let 𝑈 = {𝑒11, 𝑒21}, then setting 𝑋11(𝑡) = 1 and 𝑋21(𝑡) =

1. Furthermore, Constraint (17), which ensures a feasible solution, can
be formulated as a partition matroid constraint, e.g., |𝑈 ∩𝑊𝑖∙| ≤ 1.

Theorem 5.2. The set function 𝑓 (𝑈) is supermodular.

Proof. For a better flow of this paper, we move the proof to Ap-
pendix C. □

We denote the algorithm using submodular optimization as RDP-
SO, and describe it in Algorithm 4. In Step 2, we let 𝑓 (𝑈) = 𝑓 𝑢𝑏−𝑓 (𝑈),

here 𝑓 𝑢𝑏 indicates an upper bound to the highest possible value of
(𝑈), such that 𝑓 (𝑈) is a non-negative, non-monotone and submodular

unction. Moreover, we would like to obtain its maximum value in an
fficient way. The problem mentioned above has been well-studied in
heoretical computer science, which can be seamlessly involved into
ur algorithm. Thus, we obtain the following theorem.

heorem 5.3. Algorithm 4 provide a solution to RDP with the approxima-
ion ratio, i.e., 𝑓𝑆𝑂𝐿∕𝑓𝑂𝑃𝑇 ≥ 𝛽, where 𝛽 can be 0.372 in [52].

heorem 5.4. For a set 𝑈 ⊆ 𝑊 and a switch 𝑠𝑖 ∈ 𝑆, if the condition
𝑈 ∩𝑊𝑖∙| = 0, holds, we can derive that

(𝑈) > 𝑓 (𝑈 ∪ {𝑒}), ∀𝑒 ∈ 𝑊𝑖∙, (24)

hen the penalty parameter, i.e., 𝑃 , is large enough.

roof. In the case that 𝑈 has no element in 𝑊𝑖∙, we note that the
enalty term in 𝑓 (𝑈) will have a non-zero value. Thus, we can choose
large enough. In this way, picking any element in 𝑊𝑖∙ will cause a

ecreasing of 𝑓 (𝑈). Therefore, In Eq. (24) holds for the case that the
enalty parameter, i.e., 𝑃 , is large enough. □

Theorem 5.4 shows that the set function defined in Eq. (23) tends
o the minimal value, when the subset 𝑈 maps to a feasible solution
o TRDP. Furthermore, if 𝑈 achieves the minimum value of the set
unction, 𝑈 will correspond exactly to the optimal solution to TRDP.

. Discussion

ommunication between controllers. A redirected packet-in request
oes the other controller first and then comes back to its own con-
roller. Our network model in Section 3.1 captures the communication

R. Xia et al.

o
b
n
t
s
W

T
t
a
r
p
c
B
l
o
l
p
W
r
a

t
o
1
t
r
i
a

i
c
c
c
c
n
t
d
b

3
a
c
s
S
i
r

delay between controllers 𝑐𝑗1 and 𝑐𝑗2 with 𝐷(𝑗1, 𝑗2). However, real net-
work deployment has more constraints on the communication between
distributed controllers. Network providers usually divide the global
network into small network domains, and deploy multiple controllers
in a domain. Real-time network states are shared within one domain,
and cannot easily shared across network boundaries. Thus, a packet-in
request cannot be processed by a controller in other network domains.
Though two controllers in different network domains have an in-band
connection, the communication delay of the two controllers is manually
set to infinity.

Packet loss is another issue on the communication between con-
trollers. Temporary network congestion drops redirected packet-in re-
quests, and the dropped requests suffer a long response time. Thus,
the control plane loses the benefits of redirection even though some
controllers are lightly loaded. To relieve the effect of unstable network
condition, we dynamically configure the communication delay between
two controllers. If a packet is dropped between two controllers, we
will increase the communication delay between them, which avoids
consequent redirection. When the network condition becomes stable,
we set the communication delay to the normal value.
Buffers in controllers. In practice, a controller has finite buffers,
and packet-in requests will be dropped when the buffer violates the
controller’s capacity. The optimization based on the DPP expression
in Eq. (11) combines CPRT minimization with the stability of con-
trollers’ virtual queues. We use parameter 𝑉 to adjust the proportion
f the two objectives. During runtime, a controller reserves some extra
uffers to cope with the instantaneous violation of buffer capacity. We
eed to make a trade-off between the size of the reserved buffers and
he value of parameter 𝑉 . For example, if the reserved buffers are
ufficient, parameter 𝑉 can put more emphasis on CPRT minimization.
e experimentally study the choice of parameter 𝑉 in Section 7.3.
The central controller monitors the queue length on each time slot.

he instance of CMP obtains the real-time queue length and updates
he redirection decision. Though the capacity constraint is in the time
verage format (Definition 4.1), the redirect decision is based on the
eal-time queue length. Consequently, the online optimization scheme
rovides a fine-grained control over the queue length of buffers in
ontrollers, and avoids the instantaneous violation of buffer capacity.
enefit for edge networks. Packet-in request redirection is suitable for

oad balancing of controllers in edge networks. The inter-connectivity
f integrated edge–cloud environments varies from wireless links with
imited bandwidth and transmission distance in the edge layer, to
owerful cellular area and backbone networks in the cloud layer [53].
hen an edge controller is overloaded, we can redirect packet-in

equests of an edge device to cloud controllers. Note that the size of
packet-in request is small (128 Bytes), and the bandwidth overhead

between edge and cloud networks is marginal. On the contrary, neither
dynamic controller assignment nor flow redirection in the data plane is
fit for edge networks. For dynamic controller assignment, an edge de-
vice cannot arbitrarily assign to another edge controller, for the delay of
wireless connection has a large variance. Thus, the assignment of edge
devices and controllers is tightly bound after initial deployment. For
flow redirection in the data plane, flow redirection occupies valuable
bandwidth resource in wireless edge networks.
Request redirection to multiple controllers. Redirecting packet-in
requests to multiple controllers incurs extra performance overhead. A
controller needs to divide the packet-in requests into multiple parts,
e.g., partitioning with hashing. The partitioning needs to deserialize
packet-in requests, which is time-consuming. In contrast, when redi-
recting all packet-in requests to a single controller, some flexible NICs
can directly forward a packet based on its header fields without packet
deserialization. Consequently, request redirection to a single controller
is more lightweight. Recently, SmartNICs supported by data processing
units (DPUs) can execute more complex operations. Those SmartNICs
may accelerate the request redirection to multiple controllers. We will

consider this situation in future work.
7. Evaluation result

In this section, we first introduce our approach to implementing
a controller prototype based on Floodlight [26] to support packet-
in request redirection. Then, we conduct simulations to verify the
performance of our proposed algorithms with three other algorithms.

7.1. Simulation setup

Implementation. Our implementation of packet-in request redirection
uses Floodlight [26], an easy-to-extend controller in Java. Using the
SyncManager module provided by Floodlight, we enable multiple
Floodlight controllers to behave as a distributed control plane and coop-
eratively handle network events. Furthermore, we force the Floodlight
controller to process LLDP packets that are not generated by itself,
such that we can detect the links between two switches, which are
not assigned to a same controller. When the packet-in requests need
to be redirected between two controllers, we set up a network channel
with pre-allocated network buffer, which is kept active and carefully
maintained in a customized time interval to reduce extra setup time
for subsequent request redirection.
Topology and testbed. We conduct our simulations on the two wide-
used topologies, i.e., fat-tree [54] and VL2 [55]. For fat-tree, the
network consists of 8 pods and possesses 80 switches and 128 hosts in
otal. For VL2, the degree of intermediate switches (𝐷𝐼) and the degree
f aggregate switches (𝐷𝐴) are set to 20, and thus the network possesses
30 switches and 100 racks with three hosts each. We deploy 10 con-
rollers in the network for network events handling, and the processing
ate of each controller is 18k packet-in requests per second [31], which
s sufficient to accommodate the peak of total packet-in requests from
ll switches. One switch is statically assigned to one controller.

For edge networks, we use the MANIAC mobile ad hoc network
n [56], which contains 14 nodes (edge devices). We deploy 10 edge
ontrollers and 1 cloud controller. The processing rate of an edge
ontroller is 4k packet-in requests per second, while that of a cloud
ontroller is 18k packet-in requests per second. The total processing
apacity of edge controllers is sufficient to process all flows in the
etworks. The cloud controller can help all edge controllers to process
emporarily overloaded requests. The connection between an edge
evice and its assigned controller is wireless, while the connection
etween an edge controller and the cloud controller is wired.

We run experiments on three cloud servers with 32 GB of RAM and
2 physical cores. We construct the topologies using Mininet [57] in
desktop PC, and serve cloud servers as controllers. We deploy four

ontroller instances in one server. Consequently, controllers in a same
erver have low delay, while those in different servers suffer long delay.
ystem parameters and settings. We set the duration of a time slot,
.e., 𝛿, to five minutes, considering that the packet-in requests arrival
ates slightly change in that time period. Besides, we extend 𝛿 to
20 minutes for RDP-MIP in VL2 for the fast growing scale of MIP. The
distribution of packet-in requests arrival rates follows the data captured
in the real-world data center [15]. Moreover, the system perceives the
instantaneous arrival rate for each switch, and updates the values in
𝝀(𝒕) every five minutes.

7.2. Comparison algorithms

We not only compare our algorithms, i.e., RDP-MIP, RDP-G, and
RDP-SO but involve three other comparison schemes. (1) SM: The static
matching (SM) scheme, where the association between controllers and
switches is fixed. We consider the results of SM as the baseline. (2)
SMT: Wang et al. [21] proposed a controller load balance scheme
named as stable matching with transfer (SMT), where a switch can dy-
namically change its associated controller. (3) GFRD: Wang et al. [24]
considered flow redirection in the data plane to achieve the same goal

in [21], and presented the greedy flow redirecting (GFRD) algorithm.

R. Xia et al.

7

A

c
4
t
f
s
M
a
M
v
t
t
w
5
a
b
n
M
v
O
r
c
n
i
1
i
W
t
v

i

Fig. 4. Average CPRT for different topologies.

Fig. 5. Maximum queue length violation for different topologies.

.3. Performance comparison

verage CPRT. Our simulation results show in the worst case (largest
number of flows), RDP algorithms can reduce average CPRT by 81.7%
ompared to SM, with similar effects to SMT and GFRD. Figs. 4(a) and
(b) show that average CPRT of RDP algorithms, SMT, and GFRD fluc-
uates slightly, while that of SM linearly increases with the number of
lows. Since SM does not execute workload balancing, some controllers
uffer from requests overload at the peak of requests arrival rate.
oreover, we observe that on average RDP-MIP outperforms RDP-G

nd RDP-SO by 46.1% and 28.4%, respectively.
aximum waiting queue length violation ratio. We specify the

alues of capacity constraints of waiting queues {𝑀1,… ,𝑀𝐾} within
he range of 100 MB to 400 MB at random. Our simulation results show
hat RDP algorithms can well control the backlog in each controller
ithout seriously violating the capacity constraints. Figs. 5(a) and
(b) show the maximum waiting queue length violation ratios of RDP
lgorithms are around 3× smaller than those of SMT and GFRD. This is
ecause SMT and GFRD operate load balancing on all controllers and
eglect the capacity difference.
aximum link utilization. We represent RDP-AVG as the average

alue of maximum link utilization for RDP-MIP, RDP-G, and RDP-SO.
ur simulation results in Figs. 6(a) and 6(b) show that the increasing

atio of maximum link utilization of RDP algorithms is less than 8%
ompared to SM in both fat-tree and VL2. For the cases that the
umbers of flows are small, the impact of packet-in request redirection
s negligible. It is because the packet-in messages only carry the first
28 Bytes of the table-miss flows, and cost little link resource overhead
n the network.
eighted parameter and running time. Fig. 7(a) shows that the

radeoff between average CPRT and the maximum waiting queue length
iolation ratio can be achieved by varying the weighted parameter 𝑉 .

We observe that the decline rate of average CPRT slows down as 𝑉
ncreases, so that we can select a moderate value of 𝑉 , e.g., around

three. Fig. 8 shows that on average the running time of RDP-G and
RDR-SO is less than five seconds, however, that of RDP-MIP rapidly
increases as the scale of the MIP expands. Therefore, RDP-MIP is not
Fig. 6. Maximum link utilization of all links with packet-in request redirection.

Fig. 7. Impact on weighted parameter 𝑉 for different topologies.

Fig. 8. Average running time of RDP algorithms.

Fig. 9. Impact on controller capacity constraints.

suitable for use as the number of switches exceeds 100. In this case,
RDP-G and RDP-SO can efficiently obtain a solution and are of practical
use.
Controller capacity constraints. We let the distribution of controller
capacity constraints, i.e., {𝑀1,… ,𝑀𝐾}, comply with the normal distri-
bution, of which the mean is 200 MB, while the variance is a variable
and within the range of [0, 35]. Fig. 9 shows that the maximum waiting
queue violation ratios for RDP-MIP, RDP-G, and RDP-SO are on average
1.09, 2.22, and 1.56, respectively. Thus, RDP algorithms can provide
accurate control on packet-in request redirection to meet the capacity
constraints of controllers.

R. Xia et al.

7

A
R
i
t
a
a
p
t
M
t
b
r
o
l
G
p
l

8

f
c
m
p
o
r
u
r
8
m
w

D

p
e
e
c
t

A

P
t
o
E
a

𝛥

N
A

S

F

E

T

0

W
t

W
t
M

𝑋

a

L
t

P
o

Fig. 10. Average CPRT in edge networks.

Fig. 11. Maximum link utilization of all links in edge networks.

.4. Performance in edge networks

verage CPRT. Fig. 10 presents the average CPRT in edge networks.
DP algorithms can reduce average CPRT by 76.7% compared to SM

n the worst case. The average CPRT of SMT and GFRD goes up with
he increase of the number of flows. For SMT, the switch-controller re-
ssignment enlarges the communication delay between an edge device
nd its assigned controller. For GFRD, the flow redirection in the data
lane needs extra hops in the wireless network, which takes 43.7% more
ime compared to RDP algorithms.
aximum link utilization. Our simulation results in Fig. 11 show

hat RDP-AVG has little overhead of bandwidth usage. The connection
etween an edge controller and the cloud controller is wired, and the
equest redirection between them occupies little bandwidth resources
f the wired connection. However, the increasing ratio of maximum
ink utilization of GFRD is 19.6% compared to the RDP algorithms.
FRD requires more bandwidth resources to reroute flows in the data
lane, and the flow redirection aggravates the utilization of the wireless
inks in the edge.

. Conclusion

The key novelty of this paper is on studying the first scheme
or CPRT minimization using packet-in request redirection. The key
ontribution of this paper is building the packet-in request redirection
odel, developing an online framework, and implementing a controller
rototype for packet-in request redirection. The key technical depth
f this paper is in involving Lyapunov optimization into online redi-
ection decision making and proposing two approximation algorithms
sing the greedy strategy and submodular optimization. Our simulation
esults show that our proposed algorithms reduce average CPRT by
1.6% compared to static matching, and achieve a 3× improvement in
aximum waiting queue length violation ratio compared to the related
orks on CPRT minimization.

eclaration of competing interest

One or more of the authors of this paper have disclosed potential or
ertinent conflicts of interest, which may include receipt of payment,
ither direct or indirect, institutional support, or association with an
ntity in the biomedical field which may be perceived to have potential
onflict of interest with this work. For full disclosure statements refer

o https://doi.org/10.1016/j.sysarc.2022.102590.
ppendix A. Proof of Theorem 4.4

roof. Assuming the distribution of 𝝀(𝒕) is known, we consider 𝑿∗(𝒕) as
he offline optimal result, which is the optimal solution to the problem
f minimizing the expectation of overall CPRT on slot 𝑡, such that
[𝐶(𝑡)] = 𝐶∗. We denote 𝑸∗(𝒕) as the queue backlogs for 𝑿∗(𝒕). Our
lgorithms attempt to minimize the objective function in RDP, and thus

(𝒁(𝒕)) + 𝑉 ⋅ E[𝐶(𝑡)]

≤ 𝐵′ + 𝑉 ⋅ 𝐶∗ +
𝐾
∑

𝑗=1
𝑍𝑗 (𝑡) ⋅ E[(𝑄∗

𝑗 (𝑡 + 1) −𝑀𝑗)|𝒁(𝒕)]

≤ 𝐵′ + 𝑉 ⋅ 𝐶∗. (25)

ote that 𝑿∗(𝒕) is a feasible solution, so that E[(𝑄∗
𝑗 (𝑡+1)−𝑀𝑗)|𝒁(𝒕)] ≤ 0.

dd up In Eq. (25) from 𝑡 = 1 to 𝑇 , and divide 𝑉 ⋅ 𝑇 at the both sides:

1
𝑉 ⋅ 𝑇

𝑇
∑

𝑡=1
𝛥(𝒁(𝒕)) + 1

𝑇

𝑇
∑

𝑡=1
E[𝐶(𝑡)] ≤ 𝐵′

𝑉
+ 𝐶∗. (26)

ince 𝐿(𝒁(𝟎)) = 0 and 𝐿(𝒁(𝒕)) ≥ 0, we imply that

1
𝑇

𝑇
∑

𝑡=1
E[𝐶(𝑡)] ≤ 𝐶∗ + 𝐵′

𝑉
.

Therefore, we prove that the gap between our online decision and the
offline optimal result is at most 𝑂(1∕𝑉).

For the time average of each waiting queue 𝑄𝑗 , we first bound the
Lyapunov function using In Eq. (26):

𝐿(𝒁(𝑻)) ≤ 𝑇 (𝐵′ + 𝑉 ⋅ 𝐶∗).

urthermore, we can derive that

[𝑍2
𝑗 (𝑇)] ≤ 𝑇 (𝐵′ + 𝑉 ⋅ 𝐶∗).

herefore, we get the lower and upper bounds of E[𝑍𝑗 (𝑡)]∕𝑇 :

≤ E[𝑍𝑗 (𝑇)]∕𝑇 ≤
√

E[𝑍2
𝑗 (𝑇)]

/

𝑇 ≤
√

(𝐵′ + 𝑉 ⋅ 𝐶∗)∕𝑇 .

hen 𝑇 → ∞, we have lim sup𝑇→∞ E[𝑍𝑗 (𝑇)]∕𝑇 = 0, which infers our
arget, i.e., 𝑄𝑗 ≤ 𝑀𝑗 , using Theorem 4.1. □

Appendix B. Proof of Theorem 5.1

Proof. For the redirection decision in Eq. (19), we use shorthand to
represent its type-one and type-two costs:

𝐴 =
𝑁
∑

𝑖=1

𝐾
∑

𝑗=1
𝑋(0)

𝑖𝑗 (𝑡)𝐶𝑜𝑠𝑡(𝑖, 𝑗), 𝐵 =
𝑁
∑

𝑖=1

𝐾
∑

𝑗=1
𝑋(0)

𝑖𝑗 (𝑡)𝜃′𝑗 (𝑡).

e denote 𝑆𝑂𝐿 as the value of the objective function derived from
he initial redirection decision, and specifically, 𝑆𝑂𝐿 is equal to 𝐴+𝐵.
oreover, we define another greedy redirection decision as follows:

′
𝑖𝑗 (𝑡) =

⎧

⎪

⎨

⎪

⎩

1 , 𝑗 = argmin
𝑗

𝐶𝑜𝑠𝑡(𝑖, 𝑗)

0 , 𝑒𝑙𝑠𝑒,

nd its type-one costs as 𝐴′ =
∑𝑁

𝑖=1
∑𝐾

𝑗=1 [𝑋
′
𝑖𝑗 (𝑡)𝐶𝑜𝑠𝑡(𝑖, 𝑗)].

emma B.1. Given 1+𝜂 = 𝐶𝑚𝑎𝑥∕𝐶𝑚𝑖𝑛, the ratio of 𝐴 to 𝐴′ is within 1+𝜂,
hat is, 𝐴∕𝐴′ ≤ 1 + 𝜂.

roof. Since the initial redirection decision is greedily selected based
n 𝐶𝑜𝑠𝑡(𝑖, 𝑗) ⋅ 𝐶𝑗 , we have

𝐾
∑

𝑁
∑

𝑋(0)
𝑖𝑗 (𝑡)

[

𝐶𝑜𝑠𝑡(𝑖, 𝑗) ⋅ 𝐶𝑗
]

≤
𝐾
∑

𝑁
∑

𝑋′
𝑖𝑗 (𝑡)

[

𝐶𝑜𝑠𝑡(𝑖, 𝑗) ⋅ 𝐶𝑗
]

.

𝑗=1 𝑖=1 𝑗=1 𝑖=1

https://doi.org/10.1016/j.sysarc.2022.102590

R. Xia et al.

𝐶

c

S

𝑔

F
i
w
u

w

𝑔

T

a
i

𝛥

w
t
t
i
o

𝛥

T

𝛥

𝛥

R
i

Extracting the term of 𝐶𝑗 in above inequation, we obtain

𝑚𝑖𝑛

𝑁
∑

𝑖=1

𝐾
∑

𝑗=1
𝑋(0)

𝑖𝑗 (𝑡)𝐶𝑜𝑠𝑡(𝑖, 𝑗) ≤ 𝐶𝑚𝑎𝑥

𝑁
∑

𝑖=1

𝐾
∑

𝑗=1
𝑋′

𝑖𝑗 (𝑡)𝐶𝑜𝑠𝑡(𝑖, 𝑗).

We imply that 𝐴∕𝐴′ ≤ 𝐶𝑚𝑎𝑥∕𝐶𝑚𝑖𝑛 = 1 + 𝜂, and the lemma holds. □

We denote 𝑂𝑃𝑇 as the optimal solution to RDP. Note that 𝑂𝑃𝑇 ≥
𝐴′, and we can bound the approximation ratio as follows:

𝑆𝑂𝐿∕𝑂𝑃𝑇 ≤ 𝑆𝑂𝐿∕𝐴′ ≤ (𝐴 + 𝐵)∕𝐴′.

Lemma B.2. Ratio 𝐵 to 𝐴 is within 𝛿 ⋅ 𝑉 max{𝝀(𝒕)}𝐶𝑚𝑎𝑥.

Proof. Using the definition of 𝐵, we derive that

𝐵 = 𝛿 ⋅ 𝑉
𝐾
∑

𝑗=1

1
𝛼𝑗

𝑁
∑

𝑖=1

𝑁
∑

𝑙=1
𝑋(0)

𝑖𝑗 (𝑡)𝑋(0)
𝑙𝑗 (𝑡) ⋅ 𝜆𝑙(𝑡)

≤ 𝛿 ⋅ 𝑉
𝐾
∑

𝑗=1

1
𝛼𝑗

(

𝑁
∑

𝑖=1
𝑋(0)

𝑖𝑗 (𝑡)
)(

𝑁
∑

𝑙=1
𝑋(0)

𝑙𝑗 (𝑡) ⋅ 𝜆𝑙(𝑡)
)

≤ 𝛿 ⋅ 𝑉 max{𝝀(𝒕)}
𝐾
∑

𝑗=1

{ 1
𝛼𝑗

(

𝑁
∑

𝑖=1
𝑋(0)

𝑖𝑗 (𝑡)
)2
}

∗
≤ 𝛿 ⋅ 𝑉 max{𝝀(𝒕)} ⋅

𝐾
∑

𝑗=1

{ 1
𝛼𝑗

(

𝑁
∑

𝑖=1
𝑋(0)

𝑖𝑗 (𝑡)𝐶𝑜𝑠𝑡(𝑖, 𝑗)
)(

𝑁
∑

𝑙=1

1
𝐶𝑜𝑠𝑡(𝑙, 𝑗)

)

}

≤ 𝛿 ⋅ 𝑉 max{𝝀(𝒕)}
𝐾
∑

𝑗=1

{

(

𝑁
∑

𝑖=1
𝑋(0)

𝑖𝑗 (𝑡)𝐶𝑜𝑠𝑡(𝑖, 𝑗)
)

⋅ 𝐶𝑗

}

≤ 𝛿 ⋅ 𝑉 max{𝝀(𝒕)}𝐶𝑚𝑎𝑥𝐴.

The inequation (∗) is caused by the Cauchy Schwarz’s inequality. This
completes the proof. □

Combining Lemmas B.1 and B.2, we have

𝑆𝑂𝐿∕𝑂𝑃𝑇 ≤ (𝐴 + 𝐵)∕𝐴′ ≤ (𝐴∕𝐴′) ⋅
(

1 + 𝛿 ⋅ 𝑉 max{𝝀(𝒕)}𝐶𝑚𝑎𝑥
)

≤ (1 + 𝜂)
(

1 + 𝛿 ⋅ 𝑉 max{𝝀(𝒕)}𝐶𝑚𝑎𝑥
)

.

Thus, the theorem follows. □

Appendix C. Proof of Theorem 5.2

Proof. We assume that 𝐴 ⊆ 𝐵 ⊆ 𝑊 , and there exists a new
element 𝑒 ∈ 𝑊 ∖𝐵. We denote 𝐸(𝑒, 𝐴) as the event, that the value of
∑𝑁

𝑖=1 1(|𝐴 ∩𝑊𝑖∙| ≠ 0) keeps unchanged after adding the element 𝑒, and
express it formally as follows:
𝑁
∑

𝑖=1
1(|𝐴 ∩𝑊𝑖∙| ≠ 0) =

𝑁
∑

𝑖=1
1(|{𝐴 ∪ {𝑒}} ∩𝑊𝑖∙| ≠ 0).

Namely, when 𝐸(𝑒, 𝐴) happens, an element in 𝑊𝑖∙, where the element 𝑒
is, has already been selected by 𝐴. On the contrary, we denote 𝐸(𝑒, 𝐴)
as the event that the value of ∑𝑁

𝑖=1 1(|𝐴 ∩𝑊𝑖∙| ≠ 0) is incremented by
one after adding the element 𝑒. Similarly, we define 𝐸(𝑒, 𝐵) and 𝐸(𝑒, 𝐵)
for the set 𝐵 with the same meanings as 𝐸(𝑒, 𝐴) and 𝐸(𝑒, 𝐴).

We denote the marginal return of adding the element 𝑒 to the subset
𝐴 as 𝛥𝑓 (𝑒|𝐴) = 𝑓 (𝐴 ∪ {𝑒}) − 𝑓 (𝐴). For each 𝑐𝑗 ∈ 𝐶, the mathematical
formula of the switches associated with 𝑐𝑗 can be presented as 𝑈 ∩
𝑊∙𝑗 . Thus, for the corresponding switches in 𝑈 ∩ 𝑊∙𝑗 , we express the
summation of their type-two costs as follows:

𝑔(𝑈) =
𝐾
∑

𝑗=1
|𝑈 ∩𝑊∙𝑗 | ⋅

∑

𝑒∈𝑈∩𝑊∙𝑗

𝜆(𝑒).

Combining {𝐸(𝑒, 𝐴), 𝐸(𝑒, 𝐴)} with {𝐸(𝑒, 𝐵), 𝐸(𝑒, 𝐵)}, we have four
onditions to discuss.
Condition One. 𝐸(𝑒, 𝐴) ∧ 𝐸(𝑒, 𝐵). In this case, both events incur
identical type-one cost increments. Whereas the type-two cost incre-
ments for set 𝐴 and set 𝐵 are different, we present the gap of marginal
returns for set 𝐴 and set 𝐵 as follows:

𝛥𝑓 (𝑒|𝐵) − 𝛥𝑓 (𝑒|𝐴) = 𝛿 ⋅ 𝑉
{

[

𝑔(𝐵 ∪ {𝑒}) − 𝑔(𝐵)
]

−
[

𝑔(𝐴 ∪ {𝑒}) − 𝑔(𝐴)
]

}

.

pecifically, the value of marginal return for 𝑔(𝑈) is

(𝑈 ∪ {𝑒𝑖𝑗}) − 𝑔(𝑆) = |𝑈 ∩𝑊∙𝑗 | ⋅ 𝜆(𝑒𝑖𝑗) +
∑

𝑒∈𝑈∪𝑊∙𝑗

𝜆(𝑒). (27)

or a new element 𝑒𝑖𝑗 ∈ 𝑊 , the first part of RHS in Eq. (27) is the cost
ncrement for already selected elements. Note that, only the elements
ithin 𝑈 ∩ 𝑊∙𝑗 have cost increment, and the costs of the rest remain
nchanged. The second part is the type-two cost for the new element.

Assuming 𝐴 ⊆ 𝐵, we have |𝐴 ∩𝑊∙𝑗 | ≤ |𝐵 ∩𝑊∙𝑗 |. Furthermore,
e can derive (𝐴 ∩𝑊∙𝑗) ⊆ (𝐵 ∩𝑊∙𝑗), and thus

(𝐵 ∪ {𝑒𝑖𝑗}) − 𝑔(𝐵) ≥ 𝑔(𝐴 ∪ {𝑒𝑖𝑗}) − 𝑔(𝐴).

he supermodularity of 𝑓 (𝑈) is proved in the condition one.
Condition Two. 𝐸(𝑒, 𝐴) ∧ 𝐸(𝑒, 𝐵). In this case, 𝛥𝑓 (𝑒|𝐵) is as same

s that in the condition one, while 𝛥𝑓 (𝑒|𝐴) has a little difference, and
s expressed as

𝑓 (𝑒|𝐴) = 𝛿 ⋅ 𝑉
[

𝑔(𝐴 ∪ {𝑒}) − 𝑔(𝐴)
]

− 𝑃 ,

here 𝑃 is a penalty parameter. The penalty value will be added to
he cost, whenever the intersection of 𝑈 and 𝑊𝑖∙ is empty. Namely,
he current selected set 𝑈 is not a feasible solution to TRDP, when 𝑃
s attached to the objective function. Using the result in the condition
ne, we infer that

𝑓 (𝑒|𝐵) ≥ 𝛿 ⋅ 𝑉
[

𝑔(𝐴 ∪ {𝑒}) − 𝑔(𝐴)
]

≥ 𝛿 ⋅ 𝑉
[

𝑔(𝐴 ∪ {𝑒}) − 𝑔(𝐴)
]

− 𝑃 = 𝛥𝑓 (𝑒|𝐴).

he supermodularity of 𝑓 (𝑈) is proved in the condition two.
Condition Three. 𝐸(𝑒, 𝐴) ∧ 𝐸(𝑒, 𝐵). In this condition, both 𝛥𝑓 (𝑒|𝐵)

and 𝛥𝑓 (𝑒|𝐴) have the term of 𝑃 , specifically,

𝑓 (𝑒|𝐴) = 𝛿 ⋅ 𝑉
[

𝑔(𝐴 ∪ {𝑒}) − 𝑔(𝐴)
]

− 𝑃 , (28)

𝑓 (𝑒|𝐵) = 𝛿 ⋅ 𝑉
[

𝑔(𝐵 ∪ {𝑒}) − 𝑔(𝐵)
]

− 𝑃 . (29)

emoving the term of 𝑃 in Eqs. (28) and (29), we see that this condition
s analogous to the condition one.
Condition Four. 𝐸(𝑒, 𝐴) ∧ 𝐸(𝑒, 𝐵). Assuming 𝐴 ⊆ 𝐵, we assert that

this condition can never happen. □

References

[1] R. Xia, H. Dai, J. Zheng, H. Xu, M. Li, G. Chen, Packet-in request redirection
for minimizing control plane response time, in: IEEE IPDPS, 2020.

[2] C. Hu, K. Hou, H. Li, R. Wang, P. Zheng, P. Zhang, H. Wang, SoftRing: Taming
the reactive model for software defined networks, in: IEEE ICNP, 2017.

[3] A. Panda, W. Zheng, X. Hu, A. Krishnamurthy, S. Shenker, SCL: Simplifying
distributed SDN control planes, in: USENIX NSDI, 2017.

[4] A. Krishnamurthy, S.P. Chandrabose, A. Gember-Jacobson, Pratyaastha: an
efficient elastic distributed sdn control plane, in: ACM HotSDN, 2014.

[5] C.-Y. Hong, S. Kandula, R. Mahajan, M. Zhang, V. Gill, M. Nanduri, R.
Wattenhofer, Achieving high utilization with software-driven WAN, in: ACM
SIGCOMM, 2013.

[6] C.-Y. Hong, S. Mandal, M. Al-Fares, M. Zhu, R. Alimi, B.K. Naidu, C. Bhagat, S.
Jain, J. Kaimal, S. Liang, K. Mendelev, S. Padgett, F. Rabe, S. Ray, M. Tewari,
M. Tierney, M. Zahn, J. Zolla, J. Ong, A. Vahdat, B4 and after: Managing
hierarchy, partitioning, and asymmetry for availability and scale in google’s
software-defined WAN, in: ACM SIGCOMM, 2018.

[7] S. Jain, A. Kumar, S. Mandal, J. Ong, L. Poutievski, A. Singh, S. Venkata,
J. Wanderer, J. Zhou, M. Zhu, J. Zolla, U. Hölzle, S. Stuart, A. Vahdat, B4:
Experience with a globally-deployed software defined wan, ACM SIGCOMM

(2013).

R. Xia et al.
[8] D. Espinel Sarmiento, A. Lebre, L. Nussbaum, A. Chari, Decentralized SDN control
plane for a distributed cloud-edge infrastructure: A survey, IEEE Commun. Surv.
Tutor. 23 (1) (2021) 256–281.

[9] Q. Qiaofeng, P. Konstantinos, I. George, T. Leandros, SDN controller placement
at the edge: Optimizing delay and overheads, in: IEEE INFOCOM, 2018.

[10] E. Ahvar, S. Ahvar, S.M. Raza, J. Manuel Sanchez Vilchez, G.M. Lee, Next gener-
ation of SDN in cloud-fog for 5G and beyond-enabled applications: Opportunities
and challenges, Network 1 (1) (2021) 28–49.

[11] B. Alzahrani, N. Fotiou, Enhancing internet of things security using
software-defined networking, J. Syst. Archit. 110 (2020) 101779.

[12] T. Koponen, M. Casado, N. Gude, J. Stribling, L. Poutievski, M. Zhu, R. Ra-
manathan, et al., Onix: A distributed control platform for large-scale production
networks, in: USENIX OSDI, 2010.

[13] M. Yu, J. Rexford, M.J. Freedman, J. Wang, Scalable flow-based networking with
DIFANE, in: ACM SIGCOMM, 2010.

[14] P. Berde, M. Gerola, J. Hart, Y. Higuchi, M. Kobayashi, T. Koide, B. Lantz, B.
O’Connor, P. Radoslavov, W. Snow, et al., ONOS: towards an open, distributed
SDN OS, in: ACM HotSDN, 2014.

[15] T. Benson, A. Akella, D.A. Maltz, Network traffic characteristics of data centers
in the wild, in: ACM IMC, 2010.

[16] W. John, S. Tafvelin, T. Olovsson, Trends and differences in connection-behavior
within classes of internet backbone traffic, in: International Conference on
Passive and Active Network Measurement, Vol. 4979, Springer, 2008, pp.
192–201.

[17] G. Yao, J. Bi, Y. Li, L. Guo, On the capacitated controller placement problem in
software defined networks, IEEE Commun. Lett. 18 (8) (2014) 1339–1342.

[18] A. Sallahi, M. St-Hilaire, Optimal model for the controller placement problem in
software defined networks, IEEE Commun. Lett. 19 (1) (2015) 30–33.

[19] S. Lange, S. Gebert, T. Zinner, P. Tran-Gia, D. Hock, M. Jarschel, M. Hoffmann,
Heuristic approaches to the controller placement problem in large scale SDN
networks, IEEE Trans. Netw. Serv. Manag. 12 (1) (2015) 4–17.

[20] M.F. Bari, A.R. Roy, S.R. Chowdhury, Q. Zhang, M.F. Zhani, R. Ahmed, R.
Boutaba, Dynamic controller provisioning in software defined networks, in: IEEE
CNSM, 2013.

[21] T. Wang, F. Liu, J. Guo, H. Xu, Dynamic SDN controller assignment in data
center networks: Stable matching with transfers, in: IEEE INFOCOM, 2016.

[22] X. Huang, S. Bian, Z. Shao, H. Xu, Dynamic switch-controller association and
control devolution for SDN systems, in: IEEE ICC, 2017.

[23] G. Cheng, H. Chen, Z. Wang, S. Chen, DHA: Distributed decisions on the switch
migration toward a scalable SDN control plane, in: IFIP Networking, 2015.

[24] P. Wang, H. Xu, L. Huang, C. Qian, S. Wang, Y. Sun, Minimizing controller
response time through flow redirecting in SDNs, IEEE/ACM Trans. Netw. 26 (1)
(2018) 562–575.

[25] L. Schiff, S. Schmid, P. Kuznetsov, In-band synchronization for distributed SDN
control planes, ACM SIGCOMM Comput. Commun. Rev. 46 (1) (2016) 37–43.

[26] Floodlight, 2016, http://www.projectfloodlight.org/floodlight/.
[27] J. Cui, Q. Lu, H. Zhong, M. Tian, L. Liu, A load-balancing mechanism for

distributed SDN control plane using response time, IEEE Trans. Netw. Serv.
Manag. 15 (4) (2018) 1197–1206.

[28] X. Huang, S. Bian, Z. Shao, H. Xu, Predictive switch-controller association and
control devolution for SDN systems, in: IEEE/ACM IWQoS, 2019.

[29] P. Wang, H. Xu, L. Huang, J. He, Z. Meng, Control link load balancing and
low delay route deployment for software defined networks, IEEE J. Sel. Areas
Commun. 35 (11) (2017) 2446–2456.

[30] H. Xu, J. Liu, C. Qian, H. Huang, C. Qiao, Reducing controller response time
with hybrid routing in software defined networks, Comput. Netw. 164 (2019)
106891.

[31] A. Dixit, F. Hao, S. Mukherjee, T. Lakshman, R. Kompella, Towards an elastic
distributed SDN controller, in: ACM HotSDN, 2013.

[32] R. Chai, X. Yang, C. Du, Q. Chen, Network cost optimization-based capacitated
controller deployment for SDN, Comput. Netw. 197 (2021) 108326.

[33] M. He, A. Basta, A. Blenk, W. Kellerer, Modeling flow setup time for controller
placement in sdn: Evaluation for dynamic flows, in: IEEE ICC, 2017.

[34] S. Petale, J. Thangaraj, Failure-based controller placement in software defined
networks, IEEE Trans. Netw. Serv. Manag. 17 (1) (2020) 503–516.

[35] Y. Fan, L. Wang, X. Yuan, Controller placements for latency minimization of
both primary and backup paths in SDNs, Comput. Commun. 163 (2020) 35–50.

[36] T. Hu, Q. Ren, P. Yi, Z. Li, J. Lan, Y. Hu, Q. Li, An efficient approach to robust
controller placement for link failures in software-defined networks, Future Gener.
Comput. Syst. 124 (2021) 187–205.

[37] B. Heller, R. Sherwood, N. McKeown, The controller placement problem, in: ACM
HotSDN, 2012.

[38] T. Das, V. Sridharan, M. Gurusamy, A survey on controller placement in SDN,

IEEE Commun. Surv. Tutor. 22 (1) (2020) 472–503.
[39] OpenDayLight, 2014, https://www.opendaylight.org.
[40] A. Tootoonchian, Y. Ganjali, HyperFlow: A distributed control plane for Open-

Flow, in: Proceedings of the 2010 Internet Network Management Conference on
Research on Enterprise Networking, 2010, pp. 1–6.

[41] S. Hassas Yeganeh, Y. Ganjali, Kandoo: A framework for efficient and scalable
offloading of control applications, in: ACM HotSDN, 2012.

[42] ONOS, 2014, http://onosproject.org.
[43] Z. Zhang, L. Ma, K.K. Leung, F. Le, More is not always better: An analytical

study of controller synchronizations in distributed SDN, IEEE/ACM Trans. Netw.
29 (4) (2021) 1580–1590.

[44] K. Poularakis, Q. Qin, L. Ma, S. Kompella, K.K. Leung, L. Tassiulas, Learning the
optimal synchronization rates in distributed SDN control architectures, in: IEEE
INFOCOM, 2019.

[45] S.-C. Lin, P. Wang, I.F. Akyildiz, M. Luo, Towards optimal network planning
for software-defined networks, IEEE Trans. Mob. Comput. 17 (12) (2018)
2953–2967.

[46] M. Aslan, A. Matrawy, Adaptive consistency for distributed SDN controllers, in:
International Telecommunications Network Strategy and Planning Symposium,
2016, pp. 150–157.

[47] E. Sakic, F. Sardis, J.W. Guck, W. Kellerer, Towards adaptive state consistency
in distributed SDN control plane, in: IEEE ICC, 2017.

[48] A.S. Muqaddas, P. Giaccone, A. Bianco, G. Maier, Inter-controller traffic to
support consistency in ONOS clusters, IEEE Trans. Netw. Serv. Manag. 14 (4)
(2017) 1018–1031.

[49] E. Sakic, W. Kellerer, Response time and availability study of RAFT consensus
in distributed SDN control plane, IEEE Trans. Netw. Serv. Manag. 15 (1) (2018)
304–318.

[50] A. Kaufmann, S. Peter, N.K. Sharma, T. Anderson, A. Krishnamurthy, High
performance packet processing with flexnic, in: ACM ASPLOS, 2016.

[51] C. Chekuri, S. Khanna, A polynomial time approximation scheme for the multiple
knapsack problem, SIAM J. Comput. 35 (3) (2005) 713–728.

[52] A. Ene, H.L. Nguyen, Constrained submodular maximization: Beyond 1/e, in:
IEEE FOCS, 2016.

[53] K. Alwasel, D.N. Jha, F. Habeeb, U. Demirbaga, O. Rana, T. Baker, S. Dustdar,
M. Villari, P. James, E. Solaiman, R. Ranjan, IoTSim-Osmosis: A framework for
modeling and simulating IoT applications over an edge-cloud continuum, J. Syst.
Archit. 116 (2021) 101956.

[54] M. Al-Fares, A. Loukissas, A. Vahdat, A scalable, commodity data center network
architecture, in: ACM SIGCOMM, 2008.

[55] A. Greenberg, J.R. Hamilton, N. Jain, S. Kandula, C. Kim, P. Lahiri, D.A. Maltz,
P. Patel, S. Sengupta, VL2: a scalable and flexible data center network, in: ACM
SIGCOMM, 2009.

[56] A. Hilal, J.N. Chattha, V. Srivastava, M.S. Thompson, A.B. MacKenzie, L.A.
DaSilva, P. Saraswati, CRAWDAD dataset vt/maniac (v. 2011-07-21), 2011,
Downloaded from https://crawdad.org/vt/maniac/20110721.

[57] B. Lantz, B. Heller, N. McKeown, A network in a laptop: rapid prototyping for
software-defined networks, in: ACM Hotnets, 2010, pp. 1–6.

Rui Xia received the B.S. degree at the Department of
Software Engineering, Nankai University, China, in 2017. He
is currently working toward the Ph.D. degree at the Depart-
ment of Computer Science, Nanjing University, China. His
current research interests include software-defined network
and network function virtualization.

Haipeng Dai received the B.S. degree in the Department of
Electronic Engineering from Shanghai Jiao Tong University,
Shanghai, China, in 2010, and the Ph.D. degree in the
Department of Computer Science and Technology in Nanjing
University, Nanjing, China, in 2014. His research interests
are mainly in the areas of data mining, Internet of Things,
and mobile computing. He is an associate professor in the
Department of Computer Science and Technology in Nanjing
University. His research papers have been published in
many prestigious conferences and journals such as ACM
UbiComp, IEEE INFOCOM, VLDB, IEEE ICDE, ACM WWW,
ACM SIGMETRICS, ACM MobiHoc, ACM MobiSys, IEEE
ICNP, IEEE ICDCS, ACM/IEEE TON, IEEE JSAC, IEEE TPDS,

http://www.projectfloodlight.org/floodlight/
https://www.opendaylight.org
http://onosproject.org
https://crawdad.org/vt/maniac/20110721

R. Xia et al.
IEEE TMC, IEEE TKDE, IEEE TDSC, and IEEE TIFS. He is
an IEEE and ACM member. He serves/ed as Poster Chair
of the IEEE ICNP’14, Track Chair of the ICCCN’19 and
the ICPADS’21, TPC member of the ACM MobiHoc’20–
21, IEEE INFOCOM’20–22, IJCAI’21–22, IEEE SC’22, IEEE
ICDCS’20–21, IEEE ICNP’14, IEEE IWQoS’19–21, and IEEE
IPDPS’20–22. He received Best Paper Award from IEEE
ICNP’15, Best Paper Award Runner-up from IEEE SECON’18,
and Best Paper Award Candidate from IEEE INFOCOM’17.

Jiaqi Zheng is currently a Research Assistant Professor
from Department of Computer Science and Technology,
Nanjing University, China. His research area is computer
networking, particularly data center networks, SDN/NFV,
machine learning system and online optimization. He was
a Research Assistant at the City University of Hong Kong
in 2015 and collaborated with Huawei Noah’s Ark Lab. He
visited CIS center at Temple University in 2016. He received
the Best Paper Award from IEEE ICNP 2015, Outstanding
Doctoral Dissertation Award from ACM SIGCOMM China
2018, the First Prize of Jiangsu Science and Technology
Award in 2018, Outstanding Doctoral Dissertation Award
from CCF, Jiangsu Province and Nanjing University in 2019.
He is a member of ACM and IEEE.

Hong Xu is an Associate Professor in Department of Com-
puter Science and Engineering, The Chinese University of
Hong Kong. His research area is computer networking
and systems, particularly big data systems and data center
networks. From 2013 to 2020 he was with City University
of Hong Kong. He received his B.Eng. from The Chinese
University of Hong Kong in 2007, and his M.A.Sc. and Ph.D.
from University of Toronto in 2009 and 2013, respectively.
He was the recipient of an Early Career Scheme Grant
from the Hong Kong Research Grants Council in 2014. He
received three best paper awards, including the IEEE ICNP
2015 best paper award. He is a senior member of IEEE and
ACM.
Meng Li received his B.E. degree in Computer Science from
Nanjing University, Jiangsu, China, in 2016. He is currently
a Ph.D. student in Nanjing University. His research interests
are in the area of data mining.

Guihai Chen received B.S. degree in computer software
from Nanjing University in 1984, M.E. degree in computer
applications from Southeast University in 1987, and Ph.D.
degree in computer science from the University of Hong
Kong in 1997. He is a professor and deputy chair of
the Department of Computer Science, Nanjing University,
China. He had been invited as a visiting professor by many
foreign universities including Kyushu Institute of Technol-
ogy, Japan in 1998, University of Queensland, Australia in
2000, and Wayne State University, USA during Sept. 2001
to Aug. 2003. He has a wide range of research interests
with focus on sensor networks, peer-to-peer computing,
high-performance computer architecture and combinatorics.

	Packet-in request redirection: A load-balancing mechanism for minimizing control plane response time in SDNs
	Introduction
	Related work
	Models and problem statement
	Network model in SDN
	Network event handling model
	Packet-in request redirection model
	CPRT minimization problem

	Scheme based on Lyapunov optimization
	Conversion of capacity constraints
	Lyapunov Optimization and DPP algorithm

	Algorithms for redirection decision
	Optimal solution using MIP
	Algorithm with recursive optimization
	Algorithm using submodular optimization

	Discussion
	Evaluation result
	Simulation setup
	Comparison algorithms
	Performance comparison
	Performance in edge networks

	Conclusion
	Declaration of competing interest
	Appendix A. Proof of Theorem 4.4
	Appendix B. Proof of Theorem 5.1
	Appendix C. Proof of Theorem 5.2
	References

