
Bohr: Similarity Aware Geo-Distributed
Data Analytics

Hangyu Li

City University of Hong Kong

Hong Kong, China

hangyuli3@my.cityu.edu.hk

Hong Xu

City University of Hong Kong

Hong Kong, China

henry.xu@cityu.edu.hk

Sarana Nutanong

Vidyasirimedhi Institute of Science

and Technology

Wangchan, Thailand

snutanon@vistec.ac.th

ABSTRACT
We propose Bohr, a similarity aware geo-distributed data analytics

system that minimizes query completion time. The key idea is to

exploit similarity between data in different data centers (DCs), and

transfer similar data from the bottleneck DC to other sites with

more WAN bandwidth. Though these sites have more input data

to process, these data are more similar and can be more efficiently

aggregated by the combiner to reduce the intermediate data that

needs to be shuffled across the WAN. Thus our similarity aware

approach reduces the shuffle time and in turn the query completion

time (QCT).

We design Bohr based on OLAP data cubes to perform efficient

similarity checking among datasets in different sites. We implement

Bohr on Spark and deploy it across ten sites of AWS EC2. Our

extensive evaluation using realistic query workloads shows that

Bohr improves the QCT by up to 50% and reduces the intermediate

data by up to 6x compared to state-of-the-art solutions that also

use OLAP cubes.

CCS CONCEPTS
• Information systems → Data analytics; • Computer sys-
tems organization → Cloud computing; • Networks → Wide

area networks;

KEYWORDS
Data Analytics, Cloud Computing, WAN

ACM Reference Format:
Hangyu Li, Hong Xu, and Sarana Nutanong. 2018. Bohr: Similarity Aware

Geo-Distributed Data Analytics. In The 14th International Conference on
emerging Networking EXperiments and Technologies (CoNEXT ’18), December
4–7, 2018, Heraklion, Greece. ACM, New York, NY, USA, 13 pages. https:

//doi.org/10.1145/3281411.3281418

1 INTRODUCTION
Cloud service providers like Google and Microsoft deploy geo-

distributed data centers (DCs) to serve their users across the world.

Services running on these geo-distributed DCs constantly generate

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

CoNEXT ’18, December 4–7, 2018, Heraklion, Greece
© 2018 Association for Computing Machinery.

ACM ISBN 978-1-4503-6080-7/18/12. . . $15.00

https://doi.org/10.1145/3281411.3281418

and procure large volumes of data about users, their activities, the

infrastructure, etc. [13] As a result, it is increasingly common to

perform analytics over data dispersed across geo-distributed sites

[27, 32, 33].

A simple solution for geo-distributed data analytics is to aggre-

gate data to a central site and perform analytics there. This is soon

deemed undesirable due to the massive bandwidth resources it re-

quires and the excessive delay it incurs [27, 33]. A better solution is

to rely on distributed data processing frameworks such as Spark to

perform geo-distributed data analytics. Data are processed in-place.

Yet, since WAN bandwidth is scarce and highly variable across sites,

frameworks designed for homogeneous clusters do not work well

out-of-the-box.

Past work has then proposed to optimize data and task placement

in such a setting [27, 32, 33]. The idea is that we strategically move

data out of the bottleneck sites (with low uplink bandwidth and

large datasets) and assign more reduce tasks to these sites. This

approach exploits the fact that many queries are recurring, so it

is possible to know which data the query needs, and execute the

data and task placement before it arrives next time. It balances the

transfer times among the WAN links, and has been shown to speed

up queries significantly [27].

In this work, we argue that one should carefully optimize which
data to be moved out of the bottleneck, in addition to how much

as studied before. In all previous work [27, 32, 33], it is assumed

that all data are the same and they are chosen randomly for data

placement. This tends to be an oversimplification. Given the high

dimensionality of data [15], if we move data that are “similar” to

those in the destination DC, the amount of intermediate data during

the shuffle stage can be reduced even further due to the common

use of combiners [17], and latency of processing queries can be

further improved.

Figure 1 shows a toy example to motivate our idea. Suppose

we want to execute a page rank query on our DCs in Oregon and

Tokyo, and Tokyo is the bottleneck DC. The logs, which simply

record the score of a website using its URL as the key, are generated

and stored in each DC, or site.
1
If we process these logs in-place, the

intermediate data contains four records in total. Now consider the

case whenwemove one record from Tokyo to the other site. If we do

not consider data similarity, as shown in Figure 1b we may transfer

Url-B to Oregon, and end up with five records of intermediate data

which is even worse than leaving data in-place. A similarity aware

approach, on the other hand, moves similar data across the sites.

This means that Url-A is moved to Oregon as shown in Figure 1c,

resulting in just three records of intermediate data.

1
We use “sites” and “DCs” interchangeably throughout the paper.

https://doi.org/10.1145/3281411.3281418
https://doi.org/10.1145/3281411.3281418
https://doi.org/10.1145/3281411.3281418

CoNEXT ’18, December 4–7, 2018, Heraklion, Greece Hangyu Li, Hong Xu, and Sarana Nutanong

Tokyo

Oregon

Mapper 2
(with

combiner)

Reducer 2

Reducer 1

Input:
UrlA,1
UrlA,1
UrlA,1

UrlA,3

Input:
UrlA,1
UrlB,1
UrlB,1
UrlC,1

UrlA,1
UrlB,2
UrlC,1

Mapper 1
(with

combiner)

(a) Processing data in-place.

Tokyo

Oregon

Mapper 2
(with

combiner)

Reducer 2

Reducer 1

Input:
UrlA,1
UrlA,1
UrlA,1
UrlB,1

UrlA,3
UrlB,1

Input:
UrlA,1
UrlB,1
UrlC,1

UrlA,1
UrlB,1
UrlC,1

Mapper 1
(with

combiner)

(UrlB, 1)

(b) Similarity agnostic data placement.

Tokyo

Oregon

Mapper 2
(with

combiner)

Reducer 2

Reducer 1

Input:
UrlA,1
UrlA,1
UrlA,1
UrlA,1

UrlA,4

Input:
UrlB,1
UrlB,1
UrlC,1

UrlB,2
UrlC,1

Mapper 1
(with

combiner)

(UrlA, 1)

(c) Similarity aware data placement.

Figure 1: A motivating example. Each record here uses the website URL as the key and its score as the value.

Motivated by this intuition, we present Bohr,
2
a novel similarity

aware geo-distributed analytics system based on Spark. In designing

and implementing Bohr, we make three important contributions.

Our first contribution is an efficient similarity checking mech-

anism that can obtain accurate similarity information between

datasets in different sites. Similarity checking should be done with-

out having to exchange bulks of data across sites given the ex-

pensive WAN links. Meanwhile it also needs to be accurate not

just for different datasets, but also for different queries accessing

the same dataset, in the sense that it should reflect the very data

attributes that pertain to the query of interest. We rely on OLAP

(online analytical processing) cubes [14], a multi-dimensional array

data structure, to perform efficient and accurate similarity checking.

Bohr stores data with many attributes as OLAP cubes with many di-

mensions, and performs similarity search [12] using various OLAP

operations based on the attributes/dimensions needed by the query

to sort the data. Similarity checking can then be done using simple

probes, which contain a few representative records of the dataset

in question.

Our second contribution is to consider similarity aware data and

task placement jointly. Similarity is used mainly for data placement,

which determines how to re-balance the input data across the sites

so similar data can be combined and the amount of intermediate

data can be reduced. Data placement directly impacts task place-

ment, since moving data to a site entails that we assign more reduce

tasks there, so that processing and sending the shuffle data does

not become the bottleneck. Prior work typically tackles the two

problems separately using heuristics [27, 32, 33]. In Bohr, we con-

sider them jointly to maximize the performance improvement. We

2
Niels Bohr is the famous Danish physicist who received the Nobel Prize in 1922. His

son, Aage Bohr, also received the Nobel Prize in Physics in 1975. How similar that is!

take a principled approach and formulate the joint optimization as

a linear program, which can be solved efficiently offline during the

gap of recurrent query arrivals.

Our third contribution is that we introduce, as an enhancement

of Spark-based Bohr, a runtime RDD similarity checking mecha-

nism that further exploits similarity between RDD partitions on

the same machine. Conventionally RDD partitions are randomly

assigned to executors for processing. Instead, we can assign similar

RDD partitions that contain identical records to the same executor,

so that shuffle communication across executors can be minimized,

and query execution can be further accelerated. To our knowledge,

RDD similarity has not been well explored. To avoid the high com-

binatorial complexity of comparing all possible RDD pairs, Bohr

trades off accuracy for efficiency and probabilistically skips RDD

pairs that are highly likely to be dissimilar based on algorithms in

[34]. Similar RDDs are then clustered using for example K-means

and assigned to the same executor.

We implement Bohr based on Spark to demonstrate the feasibility

of our idea. We deploy the prototype across ten regions of AWS EC2

to emulate a geo-distributed setting, and evaluate its performance

and overhead using empirical workloads. Our results show that

Bohr improves QCT of various queries by up to 50% and reduces the

intermediate data by up to 8x compared to state-of-the-art Iridium

[27] enhanced with OLAP cubes. We also provide microbenchmarks

for each design component, and show that the overhead of Bohr is

small.

2 BACKGROUND
We start by presenting the background of geo-distributed analytics

and OLAP data cubes.

Bohr: Similarity Aware Geo-Distributed
Data Analytics CoNEXT ’18, December 4–7, 2018, Heraklion, Greece

2.1 Geo-Distributed Analytics
A geo-distributed analytics system works atop a number of WAN-

connected DCs, or sites. The WAN links have heterogeneous uplink

and downlink bandwidths due to different network infrastructures

and applications sharing the links. Data are generated at each site

and originally stored where it was generated. The entire dataset is

thus geo-distributed. When a query arrives, a logically centralized

controller compiles the query into a directed acyclic graph (DAG) of

processing stages, each of which comprises of parallel map-reduce

tasks that run on different sites. The controller coordinates all

aspects of query execution across sites, including data placement,

data movement, as well as task assignment [27, 32, 33].

In practice queries are usually recurring, as they need to be

periodically executed to analyze new data generated during the pre-

vious period [27, 33]. For example, a search company may execute

a query to identify the popular keywords every hour or even every

minute to better understand the user behavior trend. It is therefore

feasible to know a priori the queries that will run on a particular

dataset before they arrive, and optimize the system for them.

Our goal is to minimize the average query completion times

(QCT). In a geo-distributed setup, QCT is dominated by the transfer

times of intermediate data during the shuffle stage, due to their

sheer amount and the relatively limited WAN bandwidth [27].

2.2 OLAP Cubes
Bohr utilizes OLAP cubes to store raw data in order to facilitate

similarity checking. Here we present the basics of OLAP cubes.

AnOLAP (on-line analytical processing) cube is amulti-dimensional

array data structure [14]. The term “cube” here refers to a multi-

dimensional dataset. For the same dataset, different dimensional

cubes can be generated according to the attributes in need. Figure 2

illustrates an OLAP cube which stores the sales information of all

products of a company in all regions it operates in between years

2012 to 2014. There are 3 dimensions: time, region, and product.

Figure 2: An example of an OLAP cube with three dimen-
sions.

Conceiving data as a cube with hierarchical dimensions leads to

conceptually straightforward OLAP operations to facilitate analysis.

Common OLAP operations include slice, dice, drill down, roll up,

and pivot [14]. These operations allow us to prepare data according

to the queries and facilitate similarity checking, which will be in-

troduced in more detail in §4. For instance, the slice operation picks

a rectangular subset of a cube by choosing a single value for one of

its dimensions, creating a new cube with one fewer dimension. For

example, we can perform a slice operation to the time dimension in

Figure 2 to get the sales information of all products in all regions in

2014. The dice operation produces a subcube by allowing the user

to choose specific values of multiple dimensions. For example, we

can perform a dice operation to get the sales of product A in all

regions in 2014.

Further, one can extract subcubes that contain only aggregated

data for a subset of the dimensions of the OLAP cube. These sub-

cubes are referred to as dimension cubes. For example, a dimension

cube derived from the OLAP cube in Figure 2 may only contain

information about product and time (with data aggregated along

the region dimension); another dimension cube may contain only

region and time information. When different queries come, we can

feed the most suitable dimensional cube to the query to maximize

efficiency.

3 OVERVIEW
Bohr is designed to reduce the QCT of geo-distributed analytics

by: (1) identifying similarity among datasets in different sites; (2)

moving similar data from bottleneck sites to those with more band-

width to minimize the amount of intermediate data with combiners;

and (3) optimizing runtime task execution according to data simi-

larity between RDDs on the same machine. The data movement is

executed in the lag between data generation and query arrival.

Figure 3 depicts the system overview of Bohr with two sites for

simplicity. In each site, Bohr formats raw data that are continu-

ously generated and stores them in OLAP cubes. It also performs

pre-processing to prepare the data for similarity-aware placement

when the recurring query arrives again (§4.1). Bohr then runs data

similarity checking by using simple probes (§4.2). A probe contains

a small number of samples for a dataset. Since queries access dif-

ferent datasets, multiple probes are used to detect similarity. Upon

receiving the probes sent from site A, site B can quickly identify

similar data in its corresponding cubes. The similarity information

is aggregated to the Bohr controller.

The controller then solves a linear program that uses similarity

information to calculate the optimal data and task placement, taking

into account all datasets (§5). The intuition is to balance the number

of tasks and amount of data according to data similarity, so each site

finishes at the same time. The data placement result is dispatched

to each site, which then carries out data transfer accordingly.

When the query arrives, each site executes the map and reduce

tasks according to the controller’s decision. During the map stage,

Bohr also runs RDD similarity checking to group similar RDD

partitions on a machine to the same executor in order to further

speed up the execution (§6). Lastly, the intermediate results are

shuffled across the sites whenever necessary, and the final result is

assembled by collecting each site’s output. This is omitted in the

figure for brevity.

CoNEXT ’18, December 4–7, 2018, Heraklion, Greece Hangyu Li, Hong Xu, and Sarana Nutanong

Site A

1. Data
pre-processing

Probes

Similarity
info

2. Similarity
Checking

LP
solver

3. Data and
Task Placement

OLAP
Cubes

Schedule

4. Input data transfer

5. RDD similarity
checking

Machines …

…

…

…

Figure 3: System overview of Bohr. We use two sites as an example.

4 DATA SIMILARITY CHECKING
Organizations perform geo-distributed analysis for many purposes.

As a result, queries may access different attributes of a record.

In this section, we introduce our similarity checking mechanism

that can efficiently gauge similarity of two datasets along different

attributes.

4.1 Data Pre-Processing
Data are pre-processed in Bohr to efficiently conduct similarity

checking among datasets. One naive solution to pre-processing is

to sort the dataset according to the attributes the recurring queries

need. This does not work well in practice as there are different

queries accessing different attributes even for the same dataset.

Another method is to use record-level similarity scores. There are

two shortcomings with this approach. First, usually the similarity

between two records is not high especially given the high dimen-

sionality of data. Second, even when two records are similar overall,

it does not necessarily imply that they are indeed similar on the

attributes that the query needs, which makes the accuracy of this

approach questionable.

Therefore we propose to use OLAP cubes [12] introduced in §2.2

for pre-processing which we detail now. Figure 4 illustrates the

pre-processing workflow.

Data Formating. Bohr stores the datasets as OLAP cubes. We

embed OLAP cube generation into the original data generation

procedure in order to reduce cost. Inserting a new record into

an OLAP cube only incurs little overhead to the data generation

process. Note that OLAP cube generation is done offline; as queries

are recurring, OLAP cubes can be generated in the interval between

two consecutive queries. Thus it does not add additional processing

delay. Formatting the raw data into OLAP cubes, on the other

hand, does incur extra storage overhead. We show that the storage

overhead is mild in §8.5.

We consider two types of data: (1) text based logs on which

similarity checking can directly be performed; and (2) images which

are difficult to be aggregated and need processing such as feature

extraction to perform similarity checking. We create two types of

cubes correspondingly in Bohr. For logs we construct the OLAP

cube according to the schema of the logs in the dataset. For images,

we construct the cube according to the feature vectors of each

image. In practice, vector space model (VSM) [29] is usually used to

transform data into feature vectors. Then similarity between two

records can be calculated by applying some distance function to

their feature vectors [16].

If new data are generated during query execution, they are

buffered until the query finishes. The new data may affect many

dimensions and updating all of the related dimension cubes imposes

too much overhead. Thus we can just update the dimension cube

used by the coming query with new data first, and update the other

dimension cubes in the background.

Bottleneck
Site

1.Data formatting

OLAP
Cube

2.Similarity Searching

Raw
Data

Receiving
Site

OLAP
Cube

Raw
Data

Bottleneck
Site

OLAP
Cube

Receiving
Site

OLAP
Cube

Dimension
Cubes

Dimension
Cubes

Figure 4: Pre-processing of Bohr.

Similarity Search.When a query arrives for the first time, Bohr

uses OLAP operations discussed in §2.2 to retrieve the attributes

Bohr: Similarity Aware Geo-Distributed
Data Analytics CoNEXT ’18, December 4–7, 2018, Heraklion, Greece

needed by the query from the corresponding OLAP cube. Bohr

then performs similarity search [18] to sort the data according

to their similarity on these attributes. This effectively prepares

the dataset for similarity checking across different sites. It also

facilitates similarity-aware data movement as similar local records

have already been clustered in the cube.

When multiple queries access the same dataset, their similar-

ity metrics can be different. This is handled by using dimension

cubes within an OLAP cube [23] as explained in §2.2. As shown in

Figure 4, a specific query only accesses a specific dimension cube

that contains the dimensions pertinent to the query. Upon query

arrivals, we analyze them and identify the attributes needed. For

queries accessing the same attributes we classify them as the same

type. Then we provide the specific dimension cube to each query
type.

4.2 Similarity Checking using Probes
As shown in Figure 3, we utilize simple probes to check data simi-

larity between two sites. The probes are sent from the bottleneck

site. As mentioned in §4.1, for each query type, the queries only

access the corresponding dimension cube. In the similarity search

phase, all records have already been sorted and clustered in that

dimension cube according to their similarity on these attributes.

We then retrieve the top-k records according to the record cluster

size in the bottleneck site for a query type to compose a probe.

To handle different query types for the same dataset, we choose

k records in total for all query types, by considering the relative

weight of each query type. The weight is defined simply as the

fraction of the query type among all query types of the dataset. If

there are in total 500 queries accessing the same dataset, and one

query type consists of 100 queries, the weight for this query type

is 0.2. For k = 30, this query type has 6 records in the probe.

For logs, since each attribute is low dimensional data such as

characters and numbers, we can compare them directly. For images,

the dimensionality of the feature vectors is high. We use locality

sensitive hashing [18] to reduce the dimensionality in order to

process them efficiently.

4.3 Multiple Datasets
We have discussed similarity checking for one dataset. When mul-

tiple datasets are queried, it is clear that the benefit from similarity

varies depending on how we transfer different datasets out of the

bottleneck site. Prior work [27] uses heuristics to identify and move

the high-value datasets sequentially. High-value datasets are those

that are accessed by more queries, and those whose movement

results in large improvements in the intermediate data transfer of

their queries.

There are two drawbacks with such an approach. First, sending

datasets one after another according to the scores computed by

heuristics are clearly sub-optimal. Second, the heuristics do not

take data similarity into account. This implies the “best” dataset

to be moved out may contain many data that differ from those in

the receiving sites, which may actually result in more intermediate

data in the shuffle stage and deteriorate performance.

We handle multiple datasets using a principled approach. We

choose to send multiple datasets concurrently in Bohr. We deter-

mine which datasets and how many data to be moved out by uti-

lizing a linear program formulation with similarity information.

The LP also takes into account reduce task placement, which we

introduce now.

5 DATA AND TASK PLACEMENT
In this section, we describe our solution for similarity aware data

and task placement across the sites. As explained we consider mul-

tiple datasets.

For ease of presentation, we consider the links between the sites

and the Internet backbone as the only bottleneck. This is valid

based on empirical measurements [5]. We assume that the sites

have abundant compute and storage capacity. We also assume that

the data reduction ratio between the amount of intermediate data

after the map stage and that of input data is known. This can be

obtained by profiling the recurring queries that access the dataset.

Table 1 summarizes the key notations.

Table 1: Notations used in the paper

Symbol Meaning

i, j,k index variables for sites

a index variable for datasets

Sai similarity of the data at site i for dataset a
Sai, j similarity between sites i and j for dataset a

Iai amount of original input data for a on i
Ra data reduction ratio for dataset a
Ui uplink bandwidth on site i
Di downlink bandwidth on site i
T length of time lag between query arrivals

xai, j amount of data moved from i to j for dataset a

ri fraction of reduce tasks executed at site i
f ai (xa) amount of shuffle data at site i for dataset a after

data movement

Initially before data movement, for a given dataset a, the amount

of input data is Iai at site i , which results in Iai R
a
intermediate data

after the map stage. After the combiners combining similar records,

this amounts to Iai R
a (1 − Sai) intermediate data for shuffling at site

i . By the same token, after data movement, we move

∑
j,i x

a
i, j data

out from i , and receive

∑
k,i x

a
k,i from other sites to i . The total

amount of shuffle data then becomes

f ai (xa) =
©­«Iai −

∑
j,i

xai, j +
∑
k,i

xak,i
ª®¬Ra (1 − Sai). (1)

If we assign ri fraction of reduce tasks to i , in the all-to-all

shuffle communication pattern, i needs to upload (1 − ri) fraction
of its shuffle data to other sites for a total of (1 − ri)f

a
i (xa), and to

download ri fraction of shuffle data from each of the other sites for

a total of ri
∑
j,i f

a
j (x

a).

CoNEXT ’18, December 4–7, 2018, Heraklion, Greece Hangyu Li, Hong Xu, and Sarana Nutanong

Thus, the data and task placement problem can be formulated

as follows:

min t (2)

s.t.

∑
a
(1 − ri)f

a
i (xa)/Ui ≤ t , ∀i, (3)∑

a
ri
∑
j,i

f aj (x
a)/Di ≤ t , ∀i, (4)∑

a

∑
j,i

xai, j/Ui ≤ T , ∀i, (5)∑
a

∑
k,i

xak,i/Di ≤ T , ∀i . (6)∑
i
ri = 1, ri ≥ 0, ∀i . (7)

We aim to minimize the total shuffle time for all datasets. In the

formulation, constraint (3) characterizes total time to upload shuffle

data at site i for all the datasets, and constraint (4) captures the total
time to download shuffle data from other sites to i across all datasets.
Constraint (5) characterizes the upload time to move data out from i
to the other sites before shuffling, while (6) is the download time to

download data to i from other DCs before shuffling. Note that data

movement needs to be completed within T , the time lag between

query arrivals. The decision variables are {xai, j } for data placement,

and {ri } for task placement.

Note that the above formulation jointly considers data and (re-

duce) task placement, and is different from Iridium [27] which

considers them separately. Intuitively, data placement directly im-

pacts task placement as moving data to a site means we should

assign more tasks there, so that the uploading of the shuffle data

to other sites do not become the bottleneck. Our formulation is a

linear program, and can be efficiently solved by many centralized

solvers. We evaluate the LP solving time in §8.5 to show that it does

not add much overhead.

We acknowledge that our formulation is based on simplified

assumptions. Extending it to consider other factors, such as the

compute constraints of each site [22] is an interesting venue of

future work.

6 RDD SIMILARITY
So far we have discussed how to exploit similarity for data and task

placement before a query runs. In this section, we show that the

same idea can also be applied at runtime for Spark-based Bohr to

further speed up query execution.

Recall that the main abstraction Spark provides is the resilient

distributed dataset (RDD). RDD is a collection of elements parti-

tioned across the nodes of the cluster that can be operated on in

parallel. RDDs on the same node are randomly assigned to execu-

tors to process by default. Instead, we can cluster similar RDDs

and assign them to the same executor as shown in Figure 5, so that

communication among executors can be sped up and the QCT can

be improved. Similarity among RDDs has not been well studied to

the best of our knowledge.

Machine

RDD Partitions Executors Results

Figure 5: Bohr assigns similar RDDs to executors at runtime,
so inter-executor communication can be reduced to speed
up query execution.

We now explain how to perform similarity checking among

RDD partitions in detail. Essentially we need to find the similarity

between all pairs of the RDD partitions. This is a typical all-pair

similarity problem, sometimes known as similarity join [30]. The

naive way to check pair-wise RDD similarity is to compare the

similarity score of the RDD pair to all the other RDD partitions to

see if the score is larger than a threshold. To do this, first we need to

extract records from the RDD partition. We use Jaccard similarity

which is widely used for identifying similarity of two records as

the similarity metric. Jaccard similarity for two RDD partitions X

and Y is calculated by J (X ,Y) = X∩Y
X∪Y . It measures the fraction of

identical records in both RDD partitions which can be combined in

the shuffle phase.

However, the computational complexity of pairwise Jaccard sim-

ilarity is high, since we need to compare record by record for each

pair of RDD partitions. Yet not all RDD pairs are similar; some RDD

partitions are not similar at all and it is not necessary to examine

every record before ruling them out. Thus in Bohr we utilize the

DIMSUM algorithm [34] to efficiently calculate the pair-wise RDD

similarity on the same machine.

The basic idea of the DIMSUM algorithm is to probabilistically

skip checking the records when it is clear that the two sets are

dissimilar. It has a single parameter (γ) to trade off computation

time for accuracy. It is proposed with cosine similarity [34]. Thus we

modify it to change the similarity function to Jaccard similarity. The

map part of DIMSUM is used to look for similarities between two

RDD partitions. Assume that a RDD partition contains L records,

and for each recordm hash functions are used to examine similarity.

The mappers emit all pairs of records w1 and w2 as long as their

hash values are identical with any of them hash functions. The

reducers then count, for a given pair of records, how many times

their hash values are identical to output the final Jaccard between

two RDD partitions. The detailed explanation of the algorithm can

be found in [35].

We record the RDD similarity scores using a similarity matrix in

every machine. We then utilize k-means to cluster the partitions

according to the similarity matrix into n cluster, where n is the

number of executors in this machine, so that we can assign similar

Bohr: Similarity Aware Geo-Distributed
Data Analytics CoNEXT ’18, December 4–7, 2018, Heraklion, Greece

partitions to the same executor. In the evaluation we find the num-

ber of partitions in a machine is mild and the similarity matrix is

small §8.4. Thus k-means is adequate to cluster the partitions with

little overhead.

7 PROTOTYPE IMPLEMENTATION
We implement Bohr on Apache Spark v2.1.0 [4]. We utilize Apache

Kylin [3] OLAP cubes on top of Hive [2] to store datasets across

the DCs. We implement data generation with OLAP cubes and the

similarity checking mechanism explained in §4. We modify the

Spark default scheduler to implement our task and data placement

algorithm. We do not disable the default replication mechanism in

HDFS, and all our data movements hence only create additional

copies of the data, leaving data durability unaffected. As storage

is abundant, we believe this is an acceptable design. User queries

are submitted through a uniform interface provided by the Spark

manager. Since Bohr is built upon Spark, it can leverage Spark SQL

to parse SQL queries.

We use simple techniques to do bandwidth and data reduction

estimation similar to past work [27, 32, 33]. We periodically check

the available bandwidth of each site, assuming it is relatively stable

in the granularity of minutes. For data reduction ratio, it can be

estimated with recurring queries that perform the same analytics.

We use the input and actual intermediate data size of the previous

query at each site to calculate the data reduction ratio to be used

for the next recurring query at this site. We utilize the k-means

method in Spark MLLib to cluster the RDD partitions for executor

assignment in each machine at runtime. We aim to make Bohr

source code open source soon.

8 EVALUATION
We present our evaluation of Bohr on AWS EC2 now.

8.1 Experimental setup
We deploy our Bohr prototype across ten EC2 regions: Seoul, Singa-

pore, Sydney, Tokyo, Ireland, Frankfurt, London, Oregon, Virginia,

and Ohio. Our experiments use m4.4xlarge instances each with 16

vCPU cores and 64GB memory.

We use three commonly used analytic workloads to drive our

experiments.

(1) AMPLab big data benchmark [1], or big data workload in

short, is derived from workloads studied in [26] with identi-

cal schema of the data. We use three types of queries: simple

scans, aggregations, and user define functions (UDFs). The

UDF here calculates a simplified version of PageRank and is

implemented following [1].

(2) TPC-DS [6] is an industry standard benchmark. Its underly-

ing business model is a retail product supplier such as Ama-

zon. The benchmark mainly consists of OLAP SQL queries

that examine large volumes of data to extract business intel-

ligence.

(3) Facebook workload comes from historical Hadoop traces on a

cluster at Facebook, which now has grown to 3000 machines.

The trace spans 1.5 months from October 2010 to November

2010, and contains roughly 1 million jobs.

Each workload has 400GB total input data and we assign 40GB to

each site as the initial data placement. The workloads are assigned

in two ways: (1) uniformly at random; (2) in a locality aware fashion

by clustering the input data based on attributes like date, region,

etc. to the same sites to reflect the inherent data locality from the

data procurement process.

We directly use the available WAN bandwidth at our VMs in

the experiments. The WAN bandwidth at Singapore, Tokyo, and

Oregon is about 2.5x larger than Virginia, Ohio, and Frankfurt, and

5x larger than the rest of the regions. The main performance metrics

we use is query completion time (QCT) and data reduction ratio.

Note here data reduction ratio is defined as how much intermediate

shuffle data is saved compared to processing the query in-place.

We compare the following schemes:

(1) Iridium [27]: State-of-the-art system for geo-distributed ana-

lytics. Iridium is also based on Spark.

(2) Iridium-C: Iridium with OLAP cubes as data storage to serve

queries. This is to show that the improvement of Bohr is not

from using OLAP cubes. This also serves as the baseline of

our evaluation.

(3) Bohr-Sim: Bohr without runtime RDD similarity or joint

data and task placement. The bottleneck site selects the

high-value datasets to transfer sequentially according to the

heuristics in [27]. Essentially this system only uses similarity

during the data movement process. This is to demonstrate

the benefit of exploiting similarity among data.

(4) Bohr-Joint: Bohr with data similarity and joint data and task

placement. This is to show the benefit of joint data and task

placement.

(5) Bohr-RDD: Bohr with data similarity and runtime RDD simi-

larity. This is to demonstrate the benefit of exploiting run-

time RDD similarity.

(6) Bohr : Our complete system.

We set the number of records in a probe to be 30 in the ex-

periments unless otherwise stated. We use 300 datasets each with

multiple queries in each experiment run. The number of queries per

dataset varies uniformly at random between 2 and 10. We repeat

each experiment with 5 runs to obtain the results. We evaluate how

the data initial placement would affect the system performance

in the overall comparison, for the rest of the evaluation, we use

random assignment as the baseline.

8.2 Overall Performance
We first set out to understand the overall performance gain of Bohr

compared to the-state-of-the-art, usingmultiple queries for multiple

datasets. We use both the random assign workloads and workloads

with initial locality to do the evaluations.

Figure 6 shows the average QCT comparison. When we use

OLAP cubes for Iridium, we can see a small performance gain due

to the use of schema. Iridium-C takes 5.83s to finish the scan query

in big data workload query while Iridium takes 6.15s, which is about

5% improvement. For UDF and aggregation queries, Iridium-C is

around 9% and 10% faster than Iridium, respectively. For TPC-DS

workload, Iridium-C takes 3.02s for a query, which is 20% faster

than Iridium. For Facebook workload, Iridium-C also provides 14%

faster QCT.

CoNEXT ’18, December 4–7, 2018, Heraklion, Greece Hangyu Li, Hong Xu, and Sarana Nutanong

Big data (sca
n)

Big data (UDF)

Big data (aggr)

TPC-DS

Facebook
0

2

4

6

8

10

12

14

16

Q
ue

ry
co

m
pl

et
io

n
ti

m
e

(s
ec

s)

Iridium
Iridium-C
Bohr

Figure 6: Query completion time comparison (random ini-
tial placement).

Big data (sca
n)

Big data (UDF)

Big data (aggr)

TPC-DS

Facebook
0

2

4

6

8

10

12

14

16

Q
ue

ry
co

m
pl

et
io

n
ti

m
e

(s
ec

s)

Iridium
Iridium-C
Bohr

Figure 7: Query completion time comparison (locality-
aware initial placement).

Bohr consistently performs better than Iridium-C in all types of

queries. When processing big data workload, Bohr is 26%, 25%, and

52% faster than Iridium-C for scan, UDF and aggregation queries,

respectively. For TPC-DS workload Bohr is 33% faster, and for Face-

book workload 42% faster.

We also analyze Bohr’s effectiveness in reducing intermediate

shuffle data. Figure 8 shows the average data reduction ratio of

Bohr, Iridium and Iridium-C over original Spark. We only show the

data reduction ratios with the big data workload since results with

other workloads are similar. On average Bohr achieves ∼30% data

reduction, and is significantly better than Iridium-C and Iridium.

Sin
ga

po
re
Tok

yo

Ore
go

n

Virg
in

ia
Ohio

Fra
nkFurt

Seo
ul

Syd
ney

Lon
do

n

Ire
lan

d
−10

0

10

20

30

40

D
at

a
re

du
ct

io
n

ra
ti

o
(%

)

Iridium
Iridium-C
Bohr

Figure 8: Intermediate data reduction comparison (random
initial placement).

Sin
ga

po
re
Tok

yo

Ore
go

n

Virg
in

ia
Ohio

Fra
nkFurt

Seo
ul

Syd
ney

Lon
do

n

Ire
lan

d
−10

0

10

20

30

40

D
at

a
re

du
ct

io
n

ra
ti

o
(%

)

Iridium
Iridium-C
Bohr

Figure 9: Intermediate data reduction comparison (locality-
aware initial placement).

In the best case, for London, Bohr achieves 31.97% data reduction

which is 5.3x better than Iridium-C with 5.97% data reduction and

8.1x better than Iridium with 3.94% data reduction. In the worst

case of Oregon, Bohr achieves 29.98% data which is still 2.6x better

than Iridium-C with 11.57%. Note that in certain locations (Ohio for

Iridium, Seoul and Sydney for both Iridium and Iridium-C), Iridium

and Iridium-C actually generatemore intermediate data than vanilla

Spark. This is because their data movement is similarity agnostic,

and data transferred into these sites cannot be combined in the

combine phase. Due to similarity-aware data transfer, Bohr instead

achieves 23.87%, 36.32%, and 31.12% data reduction respectively

at these sites. Our results thus demonstrate that Bohr effectively

Bohr: Similarity Aware Geo-Distributed
Data Analytics CoNEXT ’18, December 4–7, 2018, Heraklion, Greece

improves QCT over Iridium-C by reducing the intermediate shuffle

data.

We now change the initial data placement to from random to

locality-aware. As shown in Figure 7, QCTs for both Iridium and

Iridium-C are around 5% better compared to random initial place-

ment. Similarly Bohr also gets 5% improvement compared to using

random initial placement. We believe this gain comes from the

reduced similarity searching and checking time with locality-aware

initial placement. For data reduction, as shown in Figure 9, the

data reduction ratio of Bohr is almost unchanged, and that of Irid-

ium and Iridium-C is improved compared to Figure 8. They do not

change the conclusion here that Bohr improves QCT and reduces

intermediate data significantly.

8.3 Microbenchmarks

Big data (sca
n)

Big data (UDF)

Big data (aggr)

TPC-DS

Facebook
0

2

4

6

8

10

12

14

Q
ue

ry
co

m
pl

et
io

n
ti

m
e

(s
ec

s)

Iridium-C
Bohr-Sim
Bohr-Joint
Bohr-RDD

Figure 10: Benefit of different design components of Bohr in
query completion time with the big data workloads.

We now would like to micro-benchmark the performance of the

three key components of Bohr. Figure 10 depicts the average QCT

performance of Bohr-Sim, Bohr-Joint, and Bohr-RDD compared

to Iridium-C, while Figure 11 shows the average data reduction of

these schemes with the big data workloads. Data reduction results

with other workloads are similar.

8.3.1 Benefit of Data Similarity . First we evaluate the benefit of
using data similarity, by comparing the performance between Bohr-

Sim and Iridium-C. As we can see from Figure 10, for the big data

benchmark Bohr-Sim is ∼12% faster than Iridium-C for scan and

UDF queries, and 33% faster for aggregation queries. For TPC-DS

and Facebook workloads Bohr is 11% and 29% faster, respectively.

As a result, across different queries and workloads, using similarity

in data movement alone is able to reduce the average QCT by ∼20%

compared to Iridium-C.

Figure 11 shows the data reduction provided by Bohr-Sim and

Iridium-C. In Seoul, Bohr-Sim delivers the highest performance

improvement: 31% data reduction compared to Iridium-C’s −3.37%.

In the worst case of the Virginia site, Bohr-Sim achieves 17% data

reduction, while Iridium-C achieves ∼10% data reduction. Similar

to the observation we made to Figure 8 in §8.2, in sites Seoul and

Sydney Iridium-C achieves negative data reduction, while Bohr-Sim

achieves much better data reduction by exploiting data similarity.

Therefore overall we observe that most of Bohr’s improvement

comes from using data similarity, especially in data reduction ratio.

8.3.2 Benefit of Joint Data and Task Placement. We then evalu-

ate the performance benefit of joint task and data placement using

Bohr-Joint, the second key component of Bohr. Bohr-Joint is able to

consider multiple datasets optimally with the optimization formu-

lation in §5, while Iridium-C (Bohr-Sim and Bohr-RDD too) uses

simple heuristics to identify high-value datasets and move them

sequentially [27].

As shown in Figure 10, in the best case, Bohr-Joint provides

an additional 15%–20% speedup for the average QCT compared

to Bohr-Sim. Similar observation can be made to data reduction

as shown in Figure 11. Bohr-Joint’s data reduction ratio is about

15%–20% higher than that of Bohr-Sim. The results confirm that

similarity aware joint task and data placement helps to improve

performance especially with multiple datasets.

8.3.3 Benefit of RDD Similarity. We now look at the benefit of

using RDD similarity in Bohr, by comparing to Bohr-Sim.

As shown in Figure 10, Bohr-RDD provides an additional ∼10%

QCT benefit over Bohr-Sim, which is less significant than Bohr-

Joint. In terms of data reduction, Bohr-RDD essentially has the same

data reduction ratio as Bohr-Sim in Figure 11, since it works on

each worker machine and does not significantly impact the amount

of shuffle data. Thus, we can see that RDD similarity is able to

improve QCT performance by mostly speeding up the execution at

each worker.

8.4 Impact of Probing
The performance of Bohr depends on the accuracy of the similarity

information, which is obtained through probes as explained in §4.2.

We now benchmark the effectiveness of probing by varying the

number of records in a probe k .
Figure 12 shows that data reduction of Bohr improves when we

increase k . This is because we get more accurate similarity infor-

mation when we increase the number of representative records for

each query type. When we increase k beyond 30 (say 100), however,

we only get marginal improvement while similarity checking takes

much longer as will be shown in §8.5.

Figure 13 shows the QCT performance of Bohr with different

values ofk . Again with a largerk , QCT is consistently smaller due to

more data reduction. When k is beyond 30, QCT improvement also

becomes marginal. Thus we choose k = 30 as the default setting

for Bohr.

We have also investigated the relationship between the datasets

and the number of records needed by a dataset in a probe. Table 2

shows various properties of four sample datasets that the query

access. We determine the number of records contained in the probe

for each dataset mainly based mainly on the dataset size.

CoNEXT ’18, December 4–7, 2018, Heraklion, Greece Hangyu Li, Hong Xu, and Sarana Nutanong

Sin
ga

po
re

Tok
yo

Ore
go

n

Virg
in

ia
Ohio

Fra
nkFurt

Seo
ul

Syd
ney

Lon
do

n

Ire
lan

d

0

10

20

30

40

D
at

a
re

du
ct

io
n

ra
ti

o
(%

)

Iridium-C
Bohr-Sim

Bohr-Joint
Bohr-RDD

Figure 11: Benefit of different design components of Bohr in data reduction ratio with the big data workloads.

10 15 20 25 30 100
Number of records in probe (k)

0

5

10

15

20

25

30

35

40

D
at

a
re

du
ct

io
n

ra
ti

o
(%

)

Bigdata(UDF)
TPC-DS
Facebook

Figure 12: Effect of k on data reduction ratio.

Table 2: Dataset attributes and its impact on probing. Note
the total number of records in a probe across datasets is 30.

Dataset id 1 3 7 10

dimensions 15 42 13 8

Dataset size 0.87G 4.32G 3.21G 0.57G

records in a probe 3 15 10 2

Similarity checking time 0.32s 1.12s 0.94s 0.15s

10 15 20 25 30 100
Number of records in probe (k)

0

5

10

15

20

Q
ue

ry
co

m
pl

et
io

n
ti

m
e

(s
ec

s)

Bigdata(UDF)
TPC-DS
Facebook

Figure 13: Effect of k on QCT.

8.5 Overhead Analysis
In this section, we analyze the overhead brought by Bohr.

The latency overhead mainly comes from OLAP cube generation

and similarity checking. OLAP cube generation is done offline dur-

ing data generation. As stated in the §7, generating the OLAP cube

only incur little latency overhead. We measure the average time to

generate a new OLAP cube from the complete 40GB dataset from

scratch, which stands at 15.05s and 8.41s, respectively, for images

and text logs. Further, new data are added into the OLAP cube

continuously as they become available (in batches for example),

Bohr: Similarity Aware Geo-Distributed
Data Analytics CoNEXT ’18, December 4–7, 2018, Heraklion, Greece

Table 3: Data similarity checking time in pre-processing.

records
per probe

10 15 20 25 30 100

Similarity
checking

0.59s 0.73s 1.29s 1.97s 2.95s 12.57s

Table 4: Overhead of RDD similarity checking in Bohr.

Executors in a node 2 4 6 8

RDD similarity checking 0.42s 1.07s 1.59s 3.06s

QCT 16.52s 13.49s 10.27s 11.35s

Table 5: LP function solving time.

Workload Big

data(scan)

Big

data(UDF)

Big

data(aggr)

TPC-

DS

Facebook

LP solv-
ing time

1.41s 2.15s 0.39s 0.21s 2.52s

which further reduce the latency overhead. Given a 30-second inter-

val between queries, which are rather frequent for geo-distributed

analytics, the overhead is ∼0.77s and 0.43s, respectively for images

and text logs, assuming 2GB new data become available during the

interval.

The latency overhead of similarity checking mainly stems from

two parts: (1) using the probes to detect data similarity; (2) RDD

similarity checking. For probing, because it happens in the pre-

processing stage before the query arrives, it does not affect the

query completion time. Table 3 shows the similarity checking time

when we vary k , the amount of records in the probe. Even with 100

records per probe, similarity checking takes less than 13 seconds on

average, and can be easily done in the pre-processing stage without

adding any overhead. Table 4 then summarizes the latency overhead

of RDD similarity checking with varying number of executors in a

node. We evaluate the overhead using the TPC-DS workload, and k
is set to the default value 30. Thus the result demonstrates that the

latency overhead of RDD similarity checking is mild and acceptable.

Table 5 summarizes the LP solving time for the joint data and task

placement with various workloads. It takes at most 2.52s to solve

the LP when for the Facebook workload. Note that the LP can be

used for multiple iterations of data and task placement, thus it is

very efficient. Both RDD similarity checking and LP solving time

are included when we measure QCT.

We now turn to the storage overhead in Bohr due to OLAP

cubes. The results are shown in Table 6. Recall in §8.1 we explained

that each node has 40GB data per workload. The average storage

overhead per workload in Iridium is 42.32GB. Iridium-C consumes

additional 17.39GB due to the OLAP cubes. Bohr enabled both OLAP

cube and similarity checking so it consumes more storage, with

59.02GB on average. The overhead of OLAP cubes is 17.76GB and

Table 6: Per-node storage overhead comparison. The unit is
GB. Note each node has 40GB input data per workload. Stor-
age needed by queries is the storage space that is actually re-
quired to process queries. For Iridium-C, queries only need
the OLAP cubes; for Bohr queries need the OLAP cubes and
similarity metadata.

Storage

per node

Storage

needed by

queries

OLAP

cubes

Similarity

meta-

data

Iridium 42.32 43.92 - -

Iridium-C 57.97 18.52 17.39 -

Bohr 59.02 19.93 17.76 0.82

the similarity metadata is approximately 0.82GB. This represents

about 43% storage overhead compared to the raw input data. We

believe this is acceptable in production systems given that the cost

of storage is continuously decreasing. Note that the raw input data

can be moved to cold storage after pre-processing, since the queries

only need OLAP cubes and similarity data. The storage needed by

queries in Bohr is actually smaller than Iridium which relies on

the raw data. Due to the overhead of performing OLAP operations,

storage needed by queries is higher than storage for OLAP cubes

and similarity metadata if any.

8.6 Highly Dynamic Datasets
In practice data processed by the recurrent queries can vary signifi-

cantly mostly because of the generation of new data. In this section

we evaluate Bohr’s performance under highly dynamic datasets.

To simulate highly dynamic datasets, we divide our 40GB input

data on every node to two parts. The first part of 10GB is used as the

initial data at the node. The rest 30GB are continuously provided to

the node in batches of 2GB. Each batch of new data are available at

the node every 20 seconds, which is also the query arrival interval.

We conduct the experiment as follows: (1)We utilize the first part

of data to complete the initial task and data placement. (2) When a

new batch of data arrives, they are pre-processed and stored in the

OLAP cube and transfered to other sites if necessary according to

the initial task and data placement decision before the next query

arrives. (3) The next query processes using all currently available

data at the node. (4) For every five queries, i.e. 10GB new data,

Bohr updates the task and data placement decision by invoking the

similarity checking mechanism and solving the LP again with the

up-to-date information.

As shown in Table 7, query completion time with dynamic

datasets is very similar to the normal setting for all workloads.

The main reason is that pre-processing of the new data incurs little

latency overhead as we mentioned in §8.5.

9 RELATEDWORK
Geo-distributed analytics: Many systems have been developed

for geo-distributed data analytics in recently years. Generally there

are two main objectives: (1) minimizing wide area bandwidth usage;

(2) minimizing average QCT.

CoNEXT ’18, December 4–7, 2018, Heraklion, Greece Hangyu Li, Hong Xu, and Sarana Nutanong

Table 7: Evaluating Highly Dynamic Dataset

Workload Type TPC-DS Facebook Big Data

Normal 1.79s 6.91s 7.89s

Dynamic 1.81s 6.89s 7.95s

To minimize bandwidth, Ariel et al. propose JetStream [28] that

aggregates identical records in OLAP cubes for streaming systems.

However JetStream aims for streaming workloads. It does not sup-

port SQL queries like Bohr does, and does not involve data or task

placement. Vulimiri et al. build Geode [33] for general SQL queries.

Geode optimizes query execution to minimize wide area bandwidth

and provides fault-tolerance. Geode only considers data placement

which limits the performance gain compared to Bohr.

As Pu et al. argue in [27], minimizing bandwidth is not always

beneficial; some times it can even lead to longer QCT and worse

user experience. So instead they aim at minimizing QCT directly.

They propose Iridium which focuses on recurring queries. Iridium

first determine which data sites are the bottleneck and then try to

move data out of bottleneck sites to other data site, Iridium also

adjusts the reduce task placement across the sites correspondingly.

Bohr further exploits data similarity to optimize which data should

be moved, and is shown to outperform Iridium even with OLAP

cubes significantly. SWAG [21] optimizes QCT by coordinating the

compute task scheduling across sites. The idea is to delay parts of

certain jobs without degrading their response times, thus providing

opportunities for other jobs to finish faster. SWAG only takes task

placement into consideration.

A recent work Clarinet [31] proposes a WAN-aware query opti-

mizer to accelerate QCT. CLARINET operates at a higher layer than

all prior systems. Thus it is complementary to those systems [27, 33]

and Bohr, and can be integrated into Bohr for further improvement.

Tetrium [22] considers both network and computation resources,

and addresses the inter-dependency of task placement and job

scheduling in the geo-distributed setting where resources are het-

erogeneous and constrained.

Gaia [20] focuses on reducing theWAN communication overhead

in machine learning systems. Gaia uses a new synchronization

model called Approximate Synchronous Parallel (ASP), whose key

idea is to dynamically eliminate insignificant communication (i.e.

small gradients) between data centers while still guaranteeing the

correctness of ML algorithms. However, Gaia is for ML workloads

and does not apply to the general data analytics systems.

Finally, the idea and basic design of using similarity for geo-

distributed analytics is sketched in an earlier workshop paper [11].

This paper introduces the comprehensive design, implementation,

and evaluation of a new system Bohr, and is substantially different.

Accelerating analytics systems: Another related line of work

is on accelerating data analytics systems in the common setting

of a local cluster. Many approaches have been studied, ranging

from improving data locality [7, 24, 36] to mitigating stragglers

[8–10]. Mantri [10] is a system that monitors tasks and culls out-

liers using cause and resource aware techniques, apply strategies

including restarting outliers, network-aware placement of tasks

and protecting outputs of valuable tasks to improve the job com-

pletion time. Dolly [8] utilize cloning of small jobs and avoiding

waiting and speculation altogether to solving the problem exist in

former mitigation technicals, which is the element of waiting and

speculation; GRASS [9] carefully uses speculation to mitigate the

impact of stragglers in approximation jobs. These techniques can

still be applied at each site to locally accelerate the processing. They

however do not addresses challenges specific to geo-distributed

data analytics.

Some other work [19, 25] proposes to accelerate query processing

by formating the data storage. Rhea [19] is a system that automati-

cally generates and runs storage-side data filters for unstructured

and semi-structured data. It uses static analysis of application code

to generate filters that remove the unused data to reduce the WAN

bandwidth usage. Rhea does not consider data similarity as Bohr

does. MANIMAL [25] is an analyzer for MapReduce jobs. It also ap-

plies static analysis techniques to generate an indexed and column-

projected version of the data. Index-generation programs must be

run to completion on the entire data set to show any benefit, and

must be re-run whenever additional data is appended. The entire

data set must be read by Hadoop compute nodes and then the index

written back to storage. This is not suitable for geo-distributed ana-

lytics scenario because MANIMAL does not consider recurrent jobs

that are common in reality. Instead, Bohr is able to deal with the

scenario when new data are appended, as we have shown in §8.6.

10 CONCLUSION
We developed Bohr, a new geo-distributed data analytics system

thatminimizes the query completion time (QCT) over geo-distributed

datasets. Our key idea is to exploit the data similarity in transferring

data out of the bottleneck sites. By moving data that are highly

similar, the destination site enjoys a larger data reduction ratio and

produces less intermediate data after the combiner, even though

its input data size actually increases. We implement Bohr on Spark

and deploy it across ten sites of AWS EC2. Our extensive evalua-

tion using realistic query workloads shows that Bohr improves the

QCT by up to 50% and reduces the intermediate data by up to 6x

compared to state-of-the-art solutions that also use OLAP cubes.

11 ACKNOWLEDGMENT
We thank the anonymous reviewers and our shepherd Ganesh

Ananthanarayanan for their valuable comments. This work was

supported in part by the Research Grant Council, University Grants

Committee of Hong Kong (award numbers 11216317, 11202315, and

C7036-15G).

Bohr: Similarity Aware Geo-Distributed
Data Analytics CoNEXT ’18, December 4–7, 2018, Heraklion, Greece

REFERENCES
[1] AmpLab Big Data Benchmark. https://amplab.cs.berkeley.edu/benchmark/.

[2] Apache Hive. https://hive.apache.org/.

[3] Apache Kylin. http://kylin.apache.org/.

[4] Apache Spark. http://spark.apache.org/.

[5] Measuring Internet Congestion: A preliminary report. https://ipp.mit.edu/sites/

default/files/documents/Congestion-handout-final.pdf.

[6] TPC-DS. http://www.tpc.org/tpcds/.

[7] Ananthanarayanan, G., Agarwal, S., Kandula, S., Greenberg, A., Stoica, I.,

Harlan, D., and Harris, E. Scarlett: Coping with skewed content popularity in

mapreduce clusters. In Proc. ACM EuroSys (2011).
[8] Ananthanarayanan, G., Ghodsi, A., Shenker, S., and Stoica, I. Effective

straggler mitigation: Attack of the clones. In Proc. USENIX NSDI (2013).
[9] Ananthanarayanan, G., Hung, M. C.-C., Ren, X., Stoica, I., Wierman, A., and

Yu, M. GRASS: Trimming stragglers in approximation analytics. In Proc. USENIX
NSDI (2014).

[10] Ananthanarayanan, G., Kandula, S., Greenberg, A., Stoica, I., Lu, Y., Saha,

B., and Harris, E. Reining in the Outliers in Map-reduce Clusters Using Mantri.

In Proc. ACM OSDI (2010).
[11] Authors, A. Bohr: Similarity Aware Geo-Distributed Data Analytics . In

Proc. USENIX HotCloud (2017).

[12] Chávez, E., Navarro, G., Baeza-Yates, R., and Marroqín, J. L. Searching in

metric spaces. ACM Comput. Surv. (2001).
[13] Corbett, J. C., and et. al. Spanner: Google’s Globally-Distributed Database. In

Proc. USENIX OSDI (2012).
[14] Cuzzocrea, A., Bellatreche, L., and Song, I.-Y. Data warehousing and olap

over big data: Current challenges and future research directions. In Proc. AMC
DOLAP (2013).

[15] Ferreira Cordeiro, R. L., Traina, Junior, C., Machado Traina, A. J., López, J.,

Kang, U., and Faloutsos, C. Clustering very large multi-dimensional datasets

with mapreduce. In Proc. ACM SIGKDD (2011).

[16] Frome, A., Singer, Y., and Malik, J. Image retrieval and classification using

local distance functions. In Proc. NIPS. 2007.
[17] Gates, A. F., Natkovich, O., Chopra, S., Kamath, P., Narayanamurthy, S. M.,

Olston, C., Reed, B., Srinivasan, S., and Srivastava, U. Building a high-level

dataflow system on top of map-reduce: The pig experience. Proc. VLDB Endow.
(2009).

[18] Gionis, A., Indyk, P., and Motwani, R. Similarity Search in High Dimensions

via Hashing. In Proc. ACM VLDB (1999).

[19] Gkantsidis, C., Vytiniotis, D., Hodson, O., Narayanan, D., Dinu, F., and

Rowstron, A. Rhea: automatic filtering for unstructured cloud storage. In

Proc. USENIX NSDI (2013).

[20] Hsieh, K., Harlap, A., Vijaykumar, N., Konomis, D., Ganger, G. R., Gibbons,

P. B., and Mutlu, O. Gaia: Geo-distributed machine learning approaching LAN

speeds. In Proc. USENIX NSDI (2017), pp. 629–647.
[21] Hung, C., Golubchik, L., and Yu, M. Scheduling jobs across geo-distributed

datacenters. In Proc. ACM Symposium SoCC (2015).

[22] Hung, C.-C., Ananthanarayanan, G., Golubchik, L., Yu, M., and Zhang, M.

Wide-area analytics with multiple resources. In Proc. ACM EuroSys (2018).
[23] Hurtado, C. A., Mendelzon, A. O., and Vaisman, A. A. Maintaining data cubes

under dimension updates. In Proc. IEEE ICDE (1999).

[24] Isard, M., Prabhakaran, V., Currey, J., Wieder, U., Talwar, K., and Goldberg,

A. Quincy: Fair scheduling for distributed computing clusters. In Proc. ACM
SOSP (2009).

[25] Jahani, E., Cafarella, M. J., and Ré, C. Automatic optimization for mapreduce

programs. Proc. VLDB Endow. (2011).
[26] Pavlo, A., Paulson, E., Rasin, A., Abadi, D. J., DeWitt, D. J., Madden, S., and

Stonebraker, M. A Comparison of Approaches to Large-scale Data Analysis.

In Proc. ACM SIGMOD (2009).

[27] Pu, Q., Ananthanarayanan, G., Bodik, P., Kandula, S., Akella, A., Bahl,

P., and Stoica, I. Low Latency Geo-distributed Data Analytics. In Proc. ACM
SIGCOMM (2015).

[28] Rabkin, A., Arye, M., Sen, S., Pai, V. S., and Freedman, M. J. Aggregation and

degradation in jetstream: Streaming analytics in the wide area. In Proc. USENIX
NSDI (2014).

[29] Salton, G., Wong, A., and Yang, C. S. A vector space model for automatic

indexing. Commun. ACM (1975).

[30] Vernica, R., Carey, M. J., and Li, C. Efficient parallel set-similarity joins using

mapreduce. In Proc. ACM SIGMOD (2010).

[31] Viswanathan, R., Ananthanarayanan, G., and Akella, A. CLARINET: WAN-

Aware Optimization for Analytics Queries. In Proc. ACM OSDI (2016).
[32] Vulimiri, A., Curino, C., Godfrey, P. B., Jungblut, T., Karanasos, K., Padhye,

J., and Varghese, G. WANalytics: Geo-Distributed Analytics for a Data Intensive

World. In Proc. ACM SIGMOD (2015).

[33] Vulimiri, A., Curino, C., Godfrey, P. B., Jungblut, T., Padhye, J., and Varghese,

G. Global analytics in the face of bandwidth and regulatory constraints. In

Proc. USENIX NSDI (2015).
[34] Zadeh, R. B., and Carlsson, G. Dimension independent matrix square using

mapreduce. CoRR abs/1304.1467 (2013).

[35] Zadeh, R. B., and Goel, A. Dimension independent similarity computation.

Journal of Machine Learning Research (2013).

[36] Zaharia, M., Borthakur, D., Sen Sarma, J., Elmeleegy, K., Shenker, S., and

Stoica, I. Delay scheduling: A simple technique for achieving locality and

fairness in cluster scheduling. In Proc. ACM EuroSys (2010).

https://amplab.cs.berkeley.edu/benchmark/
https://hive.apache.org/
http://kylin.apache.org/
http://spark.apache.org/
https://ipp.mit.edu/sites/default/files/documents/Congestion-handout-final.pdf
https://ipp.mit.edu/sites/default/files/documents/Congestion-handout-final.pdf
http://www.tpc.org/tpcds/

	Abstract
	1 Introduction
	2 Background
	2.1 Geo-Distributed Analytics
	2.2 OLAP Cubes

	3 Overview
	4 Data Similarity Checking
	4.1 Data Pre-Processing
	4.2 Similarity Checking using Probes
	4.3 Multiple Datasets

	5 Data and Task Placement
	6 RDD Similarity
	7 Prototype Implementation
	8 Evaluation
	8.1 Experimental setup
	8.2 Overall Performance
	8.3 Microbenchmarks
	8.4 Impact of Probing
	8.5 Overhead Analysis
	8.6 Highly Dynamic Datasets

	9 Related Work
	10 Conclusion
	11 Acknowledgment
	References

