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APPENDIX A
MORE DISCUSSION ON THE ATOMIC VM SIZING
ASSUMPTION
Readers may be concerned that different jobs will have
varying resource requirements that cannot be accom-
modated by the simple atomic size assumption. For
example, hadoop and data analytics jobs have stringent
requirement on CPU and bisection bandwidth, while
database applications require more I/O and memory. We
notice that in reality, public clouds have some special
VM configurations that do not follow the atomic sizing
assumption for these jobs. For example Amazon EC2
provides high-memory, high-CPU, high I/O, and cluster
compute instances specialized for certain applications. It
is highly likely that they are managed separately with a
different infrastructure. Measurement results [1] corrob-
orate our arguments while public information is yet to be
made available on the specifics of the Amazon infrastruc-
ture. We thus take the liberty to adopt this assumption,
and believe that this represents a close resemblance of
reality while keeping the problem analytically tractable1.

APPENDIX B
ADDITIONAL EXAMPLES FOR SEC. 3 AND 4
B.1 An example where the classical DA algorithm
may fail for job-machine stable matching
Fig. 1 shows an example similar to Fig. 2. Say we first
let jobs a, b, c propose until they cannot. The result is
A � (c), B � (b), and a is rejected by A. At this point,
only d can propose to A, and A holds the offer. The final
result is A� (c, d), B� (b). This is clearly type-2 blocked
by (b, A), as A prefers b to d and b prefers A to B.
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Fig. 1. An example where a possible execution of the DA

algorithm produces a type-2 blocking pair (b, A).

On the other hand, if we let d propose to A first before
a and b, and keep the rest of the execution sequence
unchanged, the result becomes A� (c), B� (b), which is
weakly stable. This example demonstrates two problems
when applying the classical DA algorithm here. First,
the execution sequence is no longer immaterial to the

1. Without the atomic sizing or any other assumption to reduce
the dimensionality of resources, the problem is essentially a multiple
knapsack problem which is known to be NP-hard [2]. Multi-resource
allocation is an open problem for which there has been some progress
made recently in understanding the problem [3].

outcome. Second, it may yield an unstable matching.
This creates considerable difficulties since we cannot
determine which proposing sequence yields a weakly
stable matching for an arbitrary problem.

B.2 An example where running Revised DA multi-
ple times may result in an unstable matching
To give an example, let us take a look at the problem
in Fig. 2. We now run Revised DA over this example.
The result will then be A� (d), B � (e), C � (a). Clearly
there are two type-1 blocking pairs, (a,A) and (b, C). Say
we fix this by letting a propose to A and b propose to
C. Then we have a new type-2 blocking pair (c, C) due
to the removal of job a from C, where c prefers C to
being unassigned, and C prefers c to b and by rejecting
b it has enough capacity to admit c. This is a result of C
wrongly accepting b when it actually has more capacity
after a leaves.
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Fig. 2. An example where simply running the revised

DA algorithm multiple times will produce a new type-2

blocking pair (c, C).

APPENDIX C
ADDITIONAL THEORETICAL RESULTS

C.1 Proof of Lemma 1
Proof: This is a direct result of the algorithm design,

since in t+ 1 every proposing job proposes to machines
that have previously rejected it. If any of these machines
accepted it, µt+1(j) �j µt(j). If none of these machines
accepted it, it will for sure be able to propose to its
previous machine µt(j) since cpret+1(µt(j)) must be no
smaller than s(j). µt(j) will for sure accept j at t + 1,
because it will only receive offers from jobs that it
previously rejected, possibly also from other jobs that
it previously accepted if they propose to other machines
and are rejected in t+1. j remains favorable to m, even
when all of m’s accepted jobs in t proposed to m in t+1
again.

C.2 Proof of Theorem 7
To prove Theorem 7 we need the following lemmas.



2

Lemma C.1: If a particular job j participates in stage
t+ 1, it must have participated in stage t.

Proof: It is a direct result of our algorithm design.
When a job stops participating in t+1, it does not form
any blocking pair with any of the machines no matter
how the rest of jobs participated in t are matched.

Lemma C.2: If a set of jobs do not participate in a
particular stage t in Multi-stage DA, then they are
assigned to their best possible machine in all weakly
stable matchings after t.

Proof: Let us call a machine “possible” for a given
job if there is a weakly stable matching that assigns it
there. We can prove this lemma by induction. It is clear
that when we pick up all the jobs that can participate,
it is equivalent to pick up those that definitely cannot
participate. We can easily do so by first finding jobs
that cannot participate unless some jobs that did not
participate in the previous stage participate, marking
them, and finding the rest that cannot participate unless
some jobs that were marked in this stage or previous
stages participate, until there is no such job.

Assume that up to a certain point of Multi-stage
DA, the lemma holds, i.e. no marked job was perma-
nently rejected by a possible machine (since it cannot
propose any more). Now suppose we mark job j, which
is (permanently) rejected by a possible machine m in
a hypothetical matching µ0. Since j is marked, m must
have accepted a set of jobs Jm that are preferable than j
and marked before. Then, in µ0, at least one of the jobs
from Jm must be sent to a less desirable machine, since
all machines preferable than m is impossible for it by
assumption. This clearly forms a type-2 blocking pair in
µ0, and contradicts with the assumption. Thus the proof.

This shows that our algorithm only permanently rejects
jobs from machines that are impossible to accept them in
all weakly stable matchings, when the jobs cannot partic-
ipate any further. The resulting assignment is therefore
optimal.

Lemma C.3: If µt = µt�1 in Multi-stage DA, then
the set of participating jobs at t are assigned their best
possible machine in all weakly stable matchings.

Proof: Assume that at a given point of the algorithm
execution at t, every job matched to its previous machine
µt�1(j) is given its best possible machine. Suppose now,
j is rejected by all machines better than µt�1(m), while
there is a hypothetical weakly stable matching µ0 that
sends j to a better machine m. Thus j must have
proposed to and been rejected by m. m rejected j because
it accepted j1, j2, · · · , each of which is preferable than j.
If ji did not participate in t, by Lemma C.2 m is its best
possible machine. If ji participated in t, by assumption
m is impossible for it. Thus in µ0, for m to have j, at
least one of ji has to be sent to a less desirable machine,
which causes a type-2 blocking pair (ji,m) in µ0, which
contradicts the assumption.

Now we can prove Theorem 7.

Proof of Theorem 7: There are two possible cases
when Multi-stage DA terminates.

If the algorithm terminates when there is no type-
1 blocking pair, i.e. no job can, or wishes to if it can,
participate by proposing to a better machine. Then by
Lemma C.2, all these jobs are assigned to their best
possible machine. Therefore the resulting matching is
job-optimal.

If the algorithm terminates at stage t where µt = µt�1,
then by Lemma C.2 all jobs that did not participate in
t are assigned the best machine. By Lemma C.3 all jobs
that participated in t are also sent to their best machine.
Hence the matching is also the job-optimal weakly stable
matching.

C.3 Proof of Theorem 8
Proof: This can be easily proved by contradiction.

Assume that the matching produced when the algorithm
terminates with no job proposing is not strongly stable.
Thus, we must be able to find a type-1 blocking pair,
say (j,m), as implied by Theorem 5. m will participate
in the next stage, and j will be willing to propose to
m, and our algorithm will continue to run, rather than
terminating. This contradicts with our assumption.

We conjecture that when the algorithm terminates
with type-1 blocking pairs, the problem does not admit
a strongly stable solution. The proof is, however, not
immediate and left for future work.

APPENDIX D
AN ONLINE ALGORITHM Online DA
D.1 Algorithm design
In this section, we address the technical challenge of de-
vising an online algorithm. We extend the static problem
setting to a dynamic environment, where the set of jobs
J arrive online instead of offline2.

We observe that our Revised DA algorithm can be
readily used in the online setting. The high-level idea is
that, we fix the previous matching and improve upon
it by applying Revised DA only on the set of new
jobs. The reason to fix the previous matching is to avoid
the potential overhead of and downtime caused by VM
migration that may occur if we allow the previous jobs
to participate with the new jobs. Since most resource
management policies for clients, as we shown in Sec. 5.2,
depend on system state variables that change during the
placement process, the preferences of new VMs need
to be configured according to the most updated state
variables.

Let us now present the details of the online version
of Revised DA called Online DA as shown in Table 1.
First of all, the execution never stops. After a matching is
found, it waits for new requests. When a new set of jobs
J 0 arrive, their preferences are configured according to
the current system state variables. The server preferences

2. Presumably, the set of machines is fixed for a long period of time.
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are configured with regards to the new jobs only. Then
the Revised DA algorithm runs with the new jobs J 0

and all the servers M. Note that in step 7 c(m) is the
current server capacity, since it is always updated during
the running of Revised DA.

TABLE 1

Online DA

1: Input: c(m), 8m 2 M
2: Initialize all m 2 M to free
3: while true do

4: Wait until new jobs J 0 arrive
5: Configure preferences of new jobs j0 2 J 0 p(j) according

to the current system state.
6: Configure preferences of all servers p(m) with regards to

new jobs J 0.
7: Run Revised DA with c(m), p(m), 8m 2 M,

s(j), p(j), 8j 2 J 0.
8: Output the current matching
9: end while

D.2 Discussions
Readers may wonder if our Multi-stage DA algo-
rithm also can be revised to be an online algorithm.
We choose not to use Multi-stage DA because it is
iterative and takes much longer to converge when the
problem scale is large, which may not be acceptable in
practice. This is experimentally demonstrated in Sec. 6.3.
Thus Multi-stage DA is only to be used as an offline
algorithm for small to medium scale static problems,
while the simple Revised DA and Online DA can be
used in offline and online fashion, for even large-scale
problems. We thus consider Revised DA and Online
DA more suited for practical use of large-scale dynamic
cloud systems, while Multi-stage DA more of theoret-
ical value in exploring the intricacy of the job-machine
matching problem with size heterogeneity.

APPENDIX E
ADDITIONAL POLICY EXAMPLES
The versatility of the preference concept can be further
shown in the following examples.

Colocation/anti-colocation. In practice, some clients
do or do not want their VMs to be placed with VMs
of some other tenants. Anchor supports this policy using
the API call colocate(tenants, i, g_c), where
tenants is a list of tenants, i is a boolean variable to
indicate whether the caller wishes to colocate or anti-
colocate itself with clients in tenants, and g_c is an
optional argument indicating the common policy group
the colocating tenants belong to.

In case a client A wishes to colocate with a set of clients
B, it makes a call to colocate(B, true, g). Since
colocation is a mutual agreement, client A and clients
in B must share a common policy group g which is
assumed to be agreed upon beforehand. The provider
then bundles client A’s VM with VMs of clients in B

as virtual VMs, where each virtual VM consists of an
individual VM of A and an individual VM of each client
in B. Such a virtual VM is then treated as a single VM
to join the policy group g and participate in Anchor’s
stable matching algorithms.

In case a client A wishes to anti-colocate with a set of
clients B, it can indicate so with colocate(B, false).
The provider partitions the entire set of servers into two
non-overlapping sets X and Y . It creates for A a new
policy group g_A containing servers in X only, and for
each client in B a new policy group g_b containing
servers in Y only. Client A and clients in B can then con-
figure their own policy groups for their preferences. It is
guaranteed that client A and clients in B propose to non-
overlapping sets of servers and will not be colocated.
Note that anti-colocation is not a mutual agreement, and
thus clients involved can have distinct preferences and
policy groups.

Tiered service. It is a common practice to implement
tiered services in an operational cloud, by associating
each VM with a priority class. This can be done in Anchor
with a call to conf(g_o, priority).

Incomplete preferences. It is possible that some VMs
can only be placed on a subset of servers, due to hard-
ware constraints for instance. Such placement limitations
can be accommodated in Anchor, as the list of preference
does not need to contain the entire set of servers. The
policy engine in Anchor supports an additional API call
limit(g_c, servers) so that VM preferences in a
client policy group g_c only include servers specified
in servers.

Combination of policies. Besides individual policies,
Anchor also supports combinations of policies, which
is also common in practice. The API call conf(g,
factor1, factor2, ...) is designed for this pur-
pose, where different policies are input following a de-
creasing priority order. A multi-pass sorting procedure is
then performed, first based on the least important factor,
then the second least, and so on, to produce preferences
that adhere to this combination of policies.

E.1 Discussion
Most preference examples shown above for clients are
based on state variables that change during the place-
ment process. However, we emphasize that the prefer-
ences do not change during the placement process, for
otherwise the concept of stability cannot be well defined
with respect to the constantly changing preferences. Our
algorithms thus produce a stable matching with respect
to the preferences and system state given before the
placement process. This results in sub-optimal client
performance compared to other algorithms that keep
track of state variables during the process. This is an
inherent limitation of the stable matching framework
when applied to cloud resource management, because
many practical policies rely critically on system state
variables. We believe that it is an important and difficult
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problem, and would like to study it further as our future
work.

APPENDIX F
ADDITIONAL EVALUATION RESULTS
F.1 Implementation details
The resource monitor is implemented as a Python appli-
cation that maintains resource statistics of servers and
VMs using SQLite, a lightweight database engine. The
sqlite3 Python bundle is utilized to update records
in the database. The resource monitor periodically lis-
tens for usage reports — once per second — from a
daemon in each server, which we have implemented
for the sole purpose of collecting measurements of CPU
and memory usage, via the VirtualBox management
API (VBoxManage metrics). Our daemon utilizes the
iptraf tool to detect the available bandwidth of each
server, since VirtualBox does not provide suitable APIs
for this purpose.

The policy manager also utilizes SQLite to manage
policy groups for both the operator and cloud clients,
and updates its databases upon receiving an Anchor
API call. For efficiency, it maintains all the preferences
in memory. When a placement request arrives, it ob-
tains necessary information from the resources monitor’s
database, and sends sorted preferences to the matching
engine.

The matching engine implements the Revised DA
and Multi-stage DA in the offline case, as well as
the Online DA in the online case in Python. We pre-
process server preferences (with a complexity of O(n))
to obtain an inverse of the list indexed by VM ID. Each
subsequent rank comparison can thus be performed in
constant time. For maximum efficiency, we use numpy in
Python to implement the data structure of preferences.

F.2 Small-scale experimental evaluation of Anchor’s
effectiveness
This experiment uses both consolidation and load bal-
ancing policies for VM placement to demonstrate the
effectiveness of Anchor in realizing resource management
policies. We assume that clients follow the operator’s
default policy in the experiment here, so there is no
conflicting interest involved.

1 2 3 4 5 6 7 8 9 10
0

1

2

3

4

5

6

7

Server

O
c
c
u
p
a
n
c
y

existing VMs

new VMs
1

2

3

4

5

6

7

8

9

10

Fig. 3. Consolidation.
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Fig. 4. Load Balancing.

The experiment is to allocate 10 VMs to 10 servers, the
first four of which are configured with an occupancy
of 2, 1, 1, 2, respectively. Fig. 3 shows the result of

using the consolidation policy, where VM preference is
ranked in descending order of server occupancy, and
server preference is ranked in descending order of VM
size. We observe that all the VMs are packed into the
first five servers, whose occupancy is thus maximized.
On the other hand, the load balancing policy distributes
VMs across the idle servers, resulting in a more balanced
server load as shown in Fig. 4. Multi-stage DA takes 3
iterations to converge to the strongly stable matching of
Fig. 3 for the former case, and 2 iterations for the latter.

F.3 Evaluation results on Online DA

We conduct large-scale trace-driven simulations to eval-
uate Anchor in a dynamic environment where VM place-
ment requests arrive dynamically. We again use the
RICC workload trace as the input to our Online DA
algorithm. The trace contains each task’s arrival time,
finish time, and amount of resources requested. In our
simulation, we process each task scheduling request in
the trace according to its arrival time as VM placement
request(s) of various sizes, and use Online DA to de-
termine a matching for them. When the task finishes,
we remove its VMs from the corresponding servers, so
capacity is freed to accommodate future requests.

In our simulations, the servers are configured to use
the consolidation policy. The VMs are again randomly
chosen to join the default, the CPU-bound, and the
memory-bound policy group that uses the consolidation
policy, the CPU bound and the memory-bound resource
hunting policy, respectively. The free CPU and memory
of a server is simply calculated as the total CPU and
memory minus the amount allocated to its active VMs.
We emphasize that VM preferences in this case are con-
figured upon arrival using the most current system state
variables as discussed above. Large tasks that require
more than one server is translated into multiple smaller
requests.

We simulate the exact birth-death history of the first
2000 tasks in the RICC trace, amounting to 16600 VM
placement requests that cover a time period of 475529
seconds, or roughly 5.5 days. We compare Online DA
with the online version of the first fit algorithm that first
sorts the VMs according to their size (recall servers use
a consolidation policy), and then tries to place a VM
to the best machine according to its preference that has
sufficient capacity to take it upon its arrival. The number
of servers is fixed at 1024.
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The results are shown in Fig. 5 and 6. We can see
that in terms of VM happiness, Online DA only slightly
outperforms Online first fit by about 7%. How-
ever in terms of server happiness, Online DA enjoys a
significant improvement where servers obtain their top
1% of the VMs while Online first fit is only able
to match servers with their top 60% VMs.

The reason of the performance discrepancy is again
due to the elegant propose-reject design of stable match-
ing algorithms. As discussed in Sec. 6.3, the first fit
algorithm will not match a VM to a server whose ca-
pacity is insufficient, while Online DA will if this VM
is preferable than some of the server’s VMs during its
execution. This improves the happiness of both VMs
and servers, since VMs can get better machines even
when they are occupied, and servers can also get their
favorable VMs.

We also evaluate the complexity of Online DA. Fig. 7
shows the running time of Online DA, including pro-
cessing preferences, for the entire course of simulation.
Observe that it takes Online DA less than 3 seconds
in any case to find a matching for new VMs, making it
responsive to dynamic situations. Fig. 8 further shows
that the algorithm usually terminates in less than 50
iterations.
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Result: The Online DA algorithm is responsive and effi-
cient to handle dynamic VM placement requests. Its perfor-
mance is significantly better than existing methods based on
the first fit algorithm.

F.4 Deployment in Real Cloud Environment

Here we discuss some potential challenges related to
the real-world deployment of Anchor in a cloud envi-
ronment.

The virtualized cloud infrastructure does not need any
change to deploy Anchor. All the major virtualization
solutions, including VMware, Xen, KVM, etc., collect
resource utilization statistics through the hypervisor and
provide API to access the information. Anchor can di-
rectly utilize the hypervisor APIs for its resource mon-
itor. The cloud’s client API needs to be augmented to
include Anchor’s policy interface as shown in Table 3
of the main file for clients and the operator to express
their policy goals. Given that the cloud operator has total
control over its own client API and interface, this is not
difficult to implement in reality.

In terms of scalability, Anchor’s Revised DA and Online
DA algorithms are demonstrated to be efficient in han-
dling large-scale VM placement problems, while Multi-
stage DA may only be suitable for small-scale problems
in Sec. 6. For large-scale problems, the possible limitation
is from the network interconnect, which may become the
bottleneck for transmitting the bulky OS image files for
initializing VMs. This has started to gain attention in
some recent work [4].

APPENDIX G
RELATED WORK ON JOB SCHEDULING
There have been tremendous efforts on job scheduling
in a computer cluster or grid. [5], [6] represent several
early works that focus on minimizing the expected com-
pletion time of all jobs by strategically choosing their
execution sequence. [7], [8] discuss the online algorithm
design problem for grid computing. The focus is on
the completion times of jobs, which in our case are
not known a prior to the scheduler of a cloud since
users may use VMs for as long as they wish. For more
complete coverage of the literature readers are directed
to [9], [10]. [11] present some recent efforts of developing
scheduling algorithms taking into account the practical
constraints of a grid, including the trade-off between
cost and time in a grid resource market, the QoS, etc.,
while [12] analyzes the performance of datacenters using
queueing theory.

The distinction between this line of work and ours is
clear: in cloud computing with VMs, the major difficulty
of job scheduling comes from the inability to unify the
different factors that operators and clients may consider
as a single utility function, and from the packing con-
straint represented by the size heterogeneity of jobs. Our
use of stable matching theory resolves the problem by
adopting the stability concept, and new algorithms are
developed to specifically tackle the size heterogeneity of
jobs.
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