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Abstract—We present Anchor, a general resource management architecture that uses the stable matching framework to decouple

policies from mechanisms when mapping virtual machines to physical servers. In Anchor, clients and operators are able to express a

variety of distinct resource management policies as they deem fit, and these policies are captured as preferences in the stable

matching framework. The highlight of Anchor is a new many-to-one stable matching theory that efficiently matches VMs with

heterogeneous resource needs to servers, using both offline and online algorithms. Our theoretical analyses show the convergence

and optimality of the algorithm. Our experiments with a prototype implementation on a 20-node server cluster, as well as large-scale

simulations based on real-world workload traces, demonstrate that the architecture is able to realize a diverse set of policy objectives

with good performance and practicality.

Index Terms—Cloud computing, resource management, stable matching, VM placement
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1 INTRODUCTION

DUE to the multitenant nature, resource management
becomes a major challenge for the cloud. According to

a 2010 survey [1], it is the second most concerned problem
that CTOs express after security. Cloud operators have a
variety of distinct resource management objectives to
achieve. For example, a public cloud such as Amazon
may wish to use a workload consolidation policy to
minimize its operating costs, while a private enterprise
cloud may wish to adopt a load balancing policy to ensure
quality of service. Further, VMs of a cloud also impose
diverse resource requirements that need to be accommo-
dated, as they run completely different applications owned
by individual clients.

On the other hand, the infrastructure is usually managed
as a whole by the operator, who relies on a single resource
management substrate. Thus, the substrate must be general
and expressive to accommodate a wide range of possible
policies for different use cases, and be easily customizable
and extensible. It also needs to be fair to orchestrate the
needs and interests of both the operator and clients. This is
especially important for private and federated clouds [2]
where the use of money may not be appropriate to share
resources fairly. Last but not the least, the resource
management algorithm needs to be efficient so that large-
scale problems can be handled.

Existing solutions fall short of the requirements we
outlined. First, they tightly couple policies with mechan-
isms. Resource management tools developed by the industry

such as VMware vSphere [3] and Eucalyptus [4], and by the
open source community such as Nimbus [5] and CloudStack
[6], do not provide support for configurable policies for VM
placement. Existing papers on cloud resource management
develop solutions for specific scenarios and purposes, such
as consolidation based on CPU usage [7], [8], [9], energy
consumption [10], [11], [12], bandwidth multiplexing [13],
[14], [15], and storage dependence [16]. Moreover, these
solutions are developed for the operator without consider-
ing the interest of clients.

We make three contributions in developing a versatile
and efficient resource management substrate in the cloud.
First, we present Anchor, a new architecture that decouples
policies from mechanisms for cloud resource management.
This is analogous to the design of BGP [17], where ISPs are
given the freedom to express their policies, and the routing
mechanism is able to efficiently accommodate them. Anchor
consists of three components: a resource monitor, a policy
manager, and a matching engine, as shown in Fig. 1. Both
the operator and its clients are able to configure their
resource management policies, based on performance, cost,
etc., as they deem fit via the policy manager. When VM
placement requests arrive, the policy manager polls
information from the resource monitor, and feeds it with
the policies to the matching engine. The matching mechan-
ism resolves conflicts of interest among stakeholders, and
outputs a matching between VMs and servers.

The challenge of Anchor is then to design an expressive,
fair, and efficient matching mechanism as we discussed. Our
second major contribution is a novel matching mechanism
based on the stable matching framework [18] from economics,
which elegantly achieves all the design objectives. Specifi-
cally, the concept of preferences is used to enable stakeholders
to express various policies with simple rank-ordered lists,
fulfilling the requirement of generality and expressiveness.
Rather than optimality, stability is used as the central
solution concept to address the conflicts of interest among
stakeholders, fulfilling the fairness requirement. Finally, its
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algorithmic implementations based on the classical deferred
acceptance algorithm (DA) have been demonstrated to be
practical in many real-world applications [18], fulfilling the
efficiency requirement.

It may be tempting to formulate the matching problem as
an optimization over certain utility functions, each reflecting
a policy goal. However, optimization suffers from two
important deficiencies in this case. First, as system-wide
objectives are optimized, the solutions may not be appealing
to clients, whose interest do not necessarily align well with
the operator’s. In this regard, a cloud resembles a resource
market in which clients and the operator are autonomous
selfish agents. Individual rationality needs to be respected for
the matching to be acceptable to all participants. Second,
optimization solvers are computationally expensive due to
their combinatorial nature, and do not scale well.

The novelty of our stable matching mechanism lies in a
rigorous treatment of size heterogeneity in Section 4.
Specifically, classical stable matching theory cannot be
directly applied here. Each VM has a different “size,”
corresponding to its demand for CPU, memory, and storage
resources. Yet the economics literature assumes that each
agent is uniform in size. Size heterogeneity makes the
problem much more difficult, because even the very
definition of stability becomes unclear in this case. We
formulate a general job-machine stable matching problem with
size heterogeneous jobs. We clarify the ambiguity of the
conventional stability definition in our model, propose a
new stability concept, develop algorithms to efficiently find
stable matchings with respect to the new definition, and
prove convergence and optimality results.

Our third contribution is a realistic performance evalua-
tion of Anchor. We design a simple policy interface, and
showcase several common policy examples in Section 5. We
present a prototype implementation of Anchor on a 20-node
server cluster, and conduct detailed performance evaluation
using both experiments and large-scale simulations based
on real-world workload traces in Section 6.

2 BACKGROUND AND MODEL

2.1 A Primer on Stable Matching

We start by introducing the classical theory of stable
matching in the basic one-to-one marriage model [19].
There are two disjoint sets of agents,M¼ fm1;m2; . . . ;mng
andW ¼ fw1; w2; . . . ; wpg, men and women. Each agent has
a transitive preference over individuals on the other side,

and the possibility of being unmatched [18]. Preferences can
be represented as rank order lists of the form
pðm1Þ ¼ w4; w2; . . . ; wi, meaning that man m1’s first choice
of partner is w4, second choice is w2 and so on, until at some
point he prefers to be unmatched (i.e., matched to the
empty set). We use �i to denote the ordering relationship
of agent i (on either side of the market). If i prefers to
remain unmatched instead of being matched to agent j, i.e.,
; �i j, j is said to be unacceptable to i, and preferences can be
represented just by the list of acceptable partners.

Definition 1. An outcome is a matching � :M�W � ; !
M�W � ; such that w ¼ �ðmÞ if and only if �ðwÞ ¼ m,
and �ðmÞ 2 W [ ;, �ðwÞ 2 M[ ;, 8m;w.

It is clear that we need further criteria to distill a “good”
set of matchings from all the possible outcomes. The first
obvious criterion is individual rationality.

Definition 2. A matching is individual rational to all agents, if
and only if there does not exist an agent i who prefers being
unmatched to being matched with �ðiÞ, i.e., ; �i �ðiÞ.

This implies that for a matched agent, its assigned
partner should rank higher than the empty set in its
preference. Between a pair of matched agents, they are not
unacceptable to each other.

The second natural criterion is that a blocking set should
not occur in a good matching:

Definition 3. A matching � is blocked by a pair of agents
ðm;wÞ if they each prefer each other to the partner they receive
at �. That is, w �m �ðmÞ and m �w �ðwÞ. Such a pair is
called a blocking pair in general.

When a blocking pair exists, the agents involved have a
natural incentive to break up and form a new marriage.
Therefore, such an “unstable” matching is undesirable.

Definition 4. A matching � is stable if and only if it is
individual rational, and not blocked by any pair of agents.

Theorem 1. A stable matching exists for every marriage market.

This can be readily proved by the classic deferred
acceptance algorithm, or the Gale-Shapley algorithm [19]. It
works by having agents on one side of the market, say men,
propose to the other side, in order of their preferences. As
long as there exists a man who is free and has not yet
proposed to every woman in his preference, he proposes to
the most preferred woman who has not yet rejected him.
The woman, if free, “holds” the proposal instead of directly
accepting it. In case she already has a proposal at hand, she
rejects the less preferred. This continues until no proposal
can be made, at which point the algorithm stops and
matches each woman to the man (if any) whose proposal
she is holding. The woman-proposing version works in the
same way by swapping the roles of man and woman. It can
be readily seen that the order in which men propose is
immaterial to the outcome.

2.2 Models and Assumptions

In a cloud, each VM is allocated a slice of resources from its
hosting server. In this paper, we assume that the size of a
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slice is a multiple of an atomic VM. For instance, if the
atomic VM has one CPU core equivalent to a 2007 Intel
Xeon 1 GHz core, one memory unit equivalent to 512 MB
PC-10600 DDR3 memory, and one storage unit equivalent
to 10 GB 5400 RPM HDD, a VM of size 2 means it effectively
has a 2 GHz 2007 Xeon CPU core, 1 GB PC-10600 DDR3
memory, and 20 GB 5400 RPM hard disk. Note that the
actual amount of resources is relative to the heterogeneous
server hardware. Two VMs have the same size as long as
performance is equivalent for all resources.

This may seem an oversimplification and raise concerns
about its validity in reality. We comment that, in practice,
such atomic sizing is common among large-scale public
clouds to reduce the overhead of managing hundreds of
thousands of VMs. It is also valid in production computer
clusters [20], and widely adopted in related work [16], [21] to
reduce the dimensionality of the problem. Appendix A,
which can be found on the Computer Society Digital Library
at http://doi.ieeecomputersociety.org/10.1109/TPDS.
2012.308, provides more discussion on the validity of this
assumption, especially with different job requirements.

We design Anchor for a setting where the workloads and
resources demands of VMs are relatively stable. Resource
management in the cloud can be naturally cast as a stable
matching problem, where the overall pattern of common
and conflicting interests between stakeholders can be
resolved by confining our attention to outcomes that are
stable. Broadly, it can be modeled as a many-to-one problem
[19] where one server can enroll multiple VMs but one VM
can only be assigned to one server. Preferences are used as
an abstraction of policies no matter how they are defined.

In traditional many-to-one problems such as college
admissions [19], each college has a quota of the number of
students it can take. This cannot be directly applied to our
scenario, as each VM has a different “size” corresponding to
its demand for resources. We cannot simply define the
quota of a server as the number of VMs it can take.

We formulate VM placement as a job-machine stable
matching problem with size heterogeneous jobs. Each job
has a size, and each machine has a capacity. A machine can
host multiple jobs as long as the total job size does not exceed
its capacity. Each job has a preference over all the acceptable
machines that have sufficient capacities. Similarly, each
machine has a preference over all the acceptable jobs whose
size is smaller than its capacity. This is a more general many-
to-one matching model in that the college admissions
problem is a special case with unisize jobs (students).

3 THEORETICAL CHALLENGES OF JOB-MACHINE

STABLE MATCHING

We present theoretical challenges introduced by size
heterogeneous jobs in this section.

Following convention, we can naturally define a blocking
pair in job-machine stable matching based on the following
intuition. In a matching �, whenever a job j prefers a
machine m to its assigned machine �ðjÞ (can be ;meaning it
is unassigned), and m has vacant capacity to admit j, or
when m does not have enough capacity, but by rejecting
some or all of the accepted jobs that rank lower than j it is

able to admit j, then j and m have a strong incentive to
deviate from � and form a new matching. Therefore,

Definition 5. A job-machine pair ðj;mÞ is a blocking pair if
any of the two conditions holds:

ðaÞ : cðmÞ � sðjÞ; j �m ;; and m �j �ðjÞ; ð1Þ

ðbÞ: cðmÞ < sðjÞ; cðmÞ þ
X

j0
sðj0Þ � sðjÞ;

where j0 �m j; j0 2 �ðmÞ; and m �j �ðjÞ;
ð2Þ

where cðmÞ denotes the capacity of machine m, and sðjÞ
denotes the size of job j.

Depending on whether a blocking pair satisfies condition
(1) or (2), we say it is a type-1 or type-2 blocking pair. For
example, in a setting shown in Fig. 2, the matching A�
ðaÞ; B� ; contains two type-1 blocking pairs ðb; BÞ and
ðc; BÞ, and one type-2 blocking pair ðc; AÞ.
Definition 6. A job-machine matching is strongly stable if it

does not contain any blocking pair.

3.1 Nonexistence of Strongly Stable Matchings

It is clear that both types of blocking pairs are undesirable,
and we ought to find a strongly stable matching. However,
such a matching may not exist in some cases. Fig. 2 shows
one such example with three jobs and two machines. It can
be verified that every possible matching contains either
type-1 or type-2 blocking pairs.

Proposition 1. Strongly stable matching does not always exist.

Note that the definitions of type-1 and type-2 blocking
pair coincide in classical problems with unisize jobs.
The reason why they do not remain so in our model is
the size complementariness among jobs. In our problem, the
concept of capacity denotes the amount of resources a
machine can provide, which may be used to support
different numbers of jobs. A machine’s preferable job,
which is more likely to be admitted in order to avoid type-2
blocking pairs, may consume less resources, and creates a
higher likelihood for type-1 blocking pairs to happen on the
same machine.

The nonexistence result demonstrates the theoretical
difficulty of the problem. We find that it is hard to even
determine the necessary or sufficient conditions for the
existence of strongly stable matchings in a given problem
instance, albeit its definition seems natural. Therefore, for
mathematical tractability, in the subsequent parts of the
paper, we work with the following relaxed definition:
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Fig. 2. A simple example where there is no strongly stable matching.
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Definition 7. A matching is weakly stable if it does not contain
any type-2 blocking pair.

For example in Fig. 2, A� ðcÞ; B� ðbÞ is a weakly but not
strongly stable matching, because it has a type-1 blocking
pair ðb; AÞ. Thus, weakly stable matchings are a superset
that subsumes strongly stable matchings. A matching is
thus called unstable if it is not weakly stable.

3.2 Failure of the DA Algorithm

With the new stability concept, the first theoretical
challenge is how to find a weakly stable matching, and
does it always exist? If we can devise an algorithm that
produces a weakly stable solution for any given instance,
then its existence is clear. One may think that the deferred
acceptance algorithm can be applied for this purpose. Jobs
propose to machines following the order in their prefer-
ences. We randomly pick any free job that has not proposed
to every machine on its preference to propose to its favorite
machine that has not yet rejected it. That machine accepts
the most favorable offers made so far up to the capacity,
and rejects the rest. Unfortunately, we show that this may
fail to be effective. Appendix B.1, available in the online
supplemental material, shows such an example.

Two problems arise when applying the classical DA
algorithm here. First, the execution sequence is no longer
immaterial to the outcome. Second, it may even produce an
unstable matching. This creates considerable difficulties
since we cannot determine which proposing sequence
yields a weakly stable matching for an arbitrary problem.

Examined more closely, the DA algorithm fails precisely
due to the size heterogeneity of jobs. Recall that a machine
will reject offers only when its capacity is used up. In the
traditional setting with jobs of the same size, this ensures
that whenever an offer is rejected, it must be the case that
the machine’s capacity is used up, and thus any offer made
from a less preferred job will never be accepted, i.e., the
outcome is stable. However, rejection due to capacity is
problematic in our case, since a machine’s remaining
capacity may be increased, and its previously rejected job
may become favorable again.

3.3 Optimal Weakly Stable Matching

There may be many weakly stable matchings for a problem
instance. The next natural question to ask is then, which
one should we choose to operate the system with? Based on
the philosophy that a cloud exists for companies to ease the
pain of IT investment and management, rather than the
other way around, it is desirable if we can find a job-optimal
weakly stable matching, in the sense that every job is
assigned its best machine possible in all stable matchings.

The original DA algorithm is again not applicable in this
regard, because it may produce type-1 blocking pairs even
when the problem admits strongly stable matchings. Thus,
our second challenge is to devise an algorithm that yields
the job-optimal weakly stable matching. This quest is also
theoretically important in its own right.

However, as we will show in Section 4.2, the complexity
of solving this challenge is high, which may prevent its use
in large-scale problems. Thus in many cases, a weakly stable
matching is suitable for practical purposes.

4 A NEW THEORY OF JOB-MACHINE STABLE

MATCHING

In this section, we present our new theory of job-machine
stable matching that addresses the above challenges.

4.1 A Revised DA Algorithm

We first propose a revised DA algorithm, shown in Table 1,
that is guaranteed to find a weakly stable matching for
a given problem. The key idea is to ensure that, whenever a
job is rejected, any less preferable jobs will not be accepted
by a machine, even if it has enough capacity to do so.

The algorithm starts with a set of jobs J and a set of
machines M. Each job and machine are initialized to be
free. Then, the algorithm enters a propose-reject procedure.
Whenever there are free jobs that have machines to propose
to, we randomly pick one, say j, to propose to its current
favorite machine m in pðjÞ, which contains all the machines
that have not yet rejected it. If m has sufficient capacity, it
holds the offer. Otherwise, it sequentially rejects offers from
less preferable jobs j0 until it can take the offer, in the order
of its preference. If it still cannot do so even after rejecting
all the j0s, j is then rejected. Whenever a machine rejects a
job, it updates the best_rejected variable, and at the end all
jobs ranked lower than best_rejected are removed from its
preference. The machine is also removed from preferences
of all these jobs, as it will never accept their offers.

A pseudocode implementation is shown in Table 1. We
can see that the order in which jobs propose is immaterial,
similar to the original DA algorithm. Moreover, we can
prove that the algorithm guarantees that type-2 blocking
pairs do not exist in the result.

Theorem 2. The order in which jobs propose is of no consequence
to the outcome in Revised DA.

Theorem 3. Revised DA, in any execution order, produces a
unique weakly stable matching.

Proof. The proof of uniqueness is essentially the same as
that for the classical DA algorithm in the seminal paper
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[19]. We prove the weak stability of the outcome by
contradiction. Suppose that Revised DA produces a
matching � with a type-2 blocking pair ðj;mÞ, i.e., there is
at least one job j0 worse than j to m in �ðmÞ. Since
m �j �ðjÞ, j must have proposed to m and been rejected.
When j was rejected, j0 was either rejected before j, or
was made unable to propose to m because m is removed
from the preferences of all the jobs ranked lower than j.
Thus j0 ¼ ;, which contradicts with the assumption. tu

Theorem 3 also proves the existence of weakly stable
matchings, as Revised DA terminates within OðjJ j2Þ in the
worst case.

Theorem 4. A weakly stable matchings exists for every job-
machine matching problem.

The significance of Revised DA is multifold. It solves
our first technical challenge in Section 3.2, and is appealing
for practical use. The complexity is low compared to
optimization algorithms. Further, it serves as a basic
building block, upon which we develop an iterative
algorithm to find the job-optimal weakly stable matching
as we shall demonstrate soon. Lastly, it bears the desirable
property of being insensitive to the order of proposing,
which largely reduces the complexity of algorithm design.

Revised DA may still produce type-1 blocking pairs,
and the result may not be job-optimal as defined in
Section 3.3. In order to find the job-optimal matching, an
intuitive idea is to run Revised DA multiple times, each
time with type-1 blocking jobs proposing to machines that
form blocking pairs with them. The intuition is that, type-1
blocking jobs can be possibly improved at no expense of
others. However, simply doing so may make the matching
unstable, because when a machine has both type-1 blocking
jobs leaving from and proposing to it, it may have more
capacity available to take jobs better than those it accepts
according to its capacity before the jobs leaving. Readers
may refer to Appendix B.2, available in the online
supplemental material, for an example.

4.2 A Multistage DA Algorithm

We now design a multistage DA algorithm to iteratively find
a better weakly stable matching with respect to jobs. The
algorithm proceeds in stages. Whenever there is a type-1
blocking pair ðj;mÞ in the result of previous stage �t�1, the
algorithm enters the next stage where the blocking machine
m will accept new offers. The blocking job j is removed
from its previous machine �t�1ðjÞ, so that it can make new
offers to machines that have rejected it before. �t�1ðjÞ’s
capacity is also updated accordingly. Moreover, to account
for the effect of job removal, all jobs that can potentially
form type-1 blocking pairs with �t�1ðjÞ if j leaves (there
may be other machines that j form type-1 blocking pairs
with) are also removed from their machines and allowed to
propose in the next stage (corresponding to the while loop
in step 7). This ensures that the algorithm does not produce
new type-2 blocking pairs during the course, as we shall
prove soon. At each stage, we run Revised DA with the
selected set of proposing jobs J 0, and the entire set of
machines with updated capacity cpret ðmÞ. The entire
procedure is shown in Table 2.

We now prove important properties of Multistage DA,
namely its correctness, convergence, and job optimality.

4.2.1 Correctness

First we establish the correctness of Multistage DA.

Theorem 5. There is no type-2 blocking pair in the matchings
produced at any stage in Multistage DA.

Proof. This can be proved by induction. As the base case,
we already proved that there is no type-2 blocking pair
after the first stage in Theorem 3.

Given there is no type-2 blocking pair after stage t, we
need to show that after stage tþ 1, there is still no type-2
blocking pair. Suppose after tþ 1, there is a type-2
blocking pair ðj;mÞ, i.e., ctþ1ðmÞ < sðjÞ, ctþ1ðmÞ þP

j0 sðj0Þ � sðjÞ, where j0 �m j; j0 2 �tðmÞ;m �j �tþ1ðjÞ.
If cpretþ1ðmÞ � sðjÞ, then j must have proposed to m and
been rejected according to the algorithm. Thus, it is
impossible for m to accept any job j0 less preferable than j
in tþ 1.

If cpretþ1ðmÞ < sðjÞ, then j did not propose to m in tþ 1.
Since there is no type-2 blocking pairs after t, j0 must be
accepted in tþ 1. Now since cpretþ1ðmÞ < sðjÞ, the sum of
the remaining capacity and total size of newly accepted
jobs after tþ 1 must be less than cpretþ1ðmÞ, i.e., ctþ1ðmÞ þP

j00 sðj00Þ � c
pre
tþ1ðmÞ < sðjÞ, where j00 denotes the newly

accepted jobs in tþ 1. This contradicts with the assump-
tion that ctþ1ðmÞ þ

P
j0 sðj0Þ � sðjÞ since fj0g � fj00g.

If cpretþ1ðmÞ ¼ 0, then m only has jobs leaving from it.
Since there is no type-2 blocking pair after t, clearly there
cannot be any type-2 blocking pair in tþ 1.

Therefore, type-2 blocking pairs do not exist at any
stage of the algorithm. The uniqueness of the matching
result at each stage is readily implied from Theorem 3. tu

4.2.2 Convergence

Next, we prove the convergence of Multistage DA. The
key observation is that it produces a weakly stable matching
at least as good as that in the previous stage from the job’s
perspective.
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Lemma 1. At any consecutive stages t and tþ 1 of Multi-
stage DA, �tþ1ðjÞ 	j �tðjÞ; 8j 2 J .

Proof. Refer to Appendix C.1, available in the online
supplemental material. tu

Therefore, the algorithm always tries to improve the
weakly stable matching it found in the previous stage,
whenever there is such a possibility suggested by the
existence of type-1 blocking pairs. However, Lemma 1 also
implies that a job’s machine at tþ 1 may remain the same as
in the previous stage. In fact, it is possible that the entire
matching is the same as the one in previous stage,
i.e., �tþ1 ¼ �t. This can be easily verified using the example
of Fig. 2. After the first stage, the weakly stable matching is
A� ðcÞ; B� ðbÞ. First b wishes to propose to A in the second
stage. Then, we assign b to ; and B has capacity of 1 again. c
then wishes to propose to B too. After we remove c from A
and update A’s capacity, a now wishes to propose to A.
Thus at the next stage, the same set of jobs a; b; c will
propose to the same set of machines with same capacity,
and the result will be the same matching as in the first stage.
In this case, Multistage DA will terminate with the final
matching that it cannot improve upon as its output (step 17-
18 of Table 2). We thus have:

Theorem 6. Multistage DA terminates in finite time.

Note that in each stage, Multistage DA may result in
new type-1 blocking pairs, and the number of type-1
blocking pairs is not monotonically decreasing. Thus, its
worst case runtime complexity is difficult to analytically
derive. In Section 6.3, we evaluate its average case
complexity through large-scale simulations.

4.2.3 Job Optimality

We now prove the most important result regarding
Multistage DA:

Theorem 7. Multistage DA always produces the job optimal
weakly stable matching when it terminates, in the sense that
every job is at least as good in the weakly stable matching
produced by the algorithm as it would be in any other weakly
stable matching.

Proof. We provide a proof sketch here. A detailed proof can
be found in Appendix C.2, available in the online
supplemental material. The algorithm terminates at stage
t when either there is no type-1 blocking pair, or there is
type-1 blocking pair(s) but �t ¼ �t�1. For the former case,
we show that our algorithm only permanently rejects jobs
from machines that are impossible to accept them in all
weakly stable matchings, when the jobs cannot participate
any further. The outcome is therefore optimal. For the
latter case, we can also show that it is impossible for jobs
that participated in t to obtain a better machine. tu

Finally, we present another fact regarding the outcome of
our algorithm.

Theorem 8. Multistage DA produces a unique job-optimal
strongly stable matching when it terminates with no job
proposing.

The proof can be found in Appendix C.3, available in the
online supplemental material.

4.3 An Online Algorithm

We have thus far assumed a static setting with a fixed set of
jobs and machines. In practice, requests for job (VM)
placement arrive dynamically, and we need to make
decisions on the fly. It may not be feasible to rerun the
matching algorithm from scratch every time when there is a
new job. We further develop an online algorithm based on
Revised DA that handles the dynamic case efficiently.
Interested readers can find the detailed algorithm design
and evaluation results in Appendices D and F.3, available in
the online supplemental material, respectively.

5 SHOWCASES OF RESOURCE MANAGEMENT

POLICIES WITH THE POLICY ENGINE

We have presented the underlying mechanism of Anchor
that produces a weakly stable matching between VMs of
various sizes, as jobs, and physical servers, as machines. We
now introduce Anchor’s policy engine which constructs
preference lists according to various resource management
policies. The cloud operator and clients interact with the
policy engine through an API as shown in Table 3.

In order to reduce management overhead, we use policy
groups that can be created with the create() call. Each
policy group contains a set of servers or VMs that are
entitled to a common policy. In fact, some of the recent
industry products have adopted similar ideas to help
companies manage their servers in the cloud [22]. The
policy is configured by the conf() call that informs
the policy engine what factors to be considered for ranking
the potential partners in a descending order of importance.
The exact definition of ranking factors varies depending on
the specific policy as we demonstrate in the following. With
policy groups, only one common preference list is needed
for all members of the group. Membership is maintained by
add() and delete() calls. colocate() and limit()

are used to set colocation/anticolocation and placement
constraints as we discuss in Appendix E, available in the
online supplemental material.

It is also possible for the operator to configure policies on
behalf of its clients if they do not explicitly specify any. This
is done by enrolling them to the default policy group.

5.1 Cloud Operators

We begin our discussion from the operator’s perspective.
Server consolidation/packing. Operators usually wish to

consolidate the workload by packing VMs onto a small
number of highly occupied servers, so that idle servers can
be powered down to save operational costs. To realize this
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TABLE 3
Anchor’s Policy Interface



policy, servers can be configured to prefer a VM with a
larger size. This can be done using conf(g_o, 1/

vm_size), where g_o is the operator’s policy group. For
VMs in the default policy group, their preference is
ranked in the descending order of server load. One may use
the total size of active VMs as the metric of load
(conf(g_c, 1/server_load)), where g_c is the client’s
policy group. Alternatively, the number of active VMs can
also serve as a heuristic metric (conf(g_c, 1/num_vm)).

Notice that consolidation is closely related to packing,
and the above configuration resembles the first fit decreasing

heuristic widely used to solve packing problems by
iteratively assigning the largest item to the first bin that fits.

Load balancing. Another popular resource management
policy is load balancing, which distributes VMs across all
servers to mitigate performance degradation due to
application dynamics over time. This can be seen as the
opposite of consolidation. In this case, we can configure the
server preference with conf(g_o, vm_size), implying
that servers prefer smaller VMs in size. VMs in the
default policy group are configured with conf(g_c,

server_load), such that they prefer less utilized servers.
This can be seen as a worst fit increasing heuristic.

5.2 Cloud Clients

From the perspective of cloud clients, other than choosing
to join the default policy group and follow the operator’s
configuration, they can also express their unique policies.

Resource hunting. Depending on the resource demand
of applications, VMs can be CPU, memory, or bandwidth-
bound, or even resource intensive in terms of multiple
resources. Though resources are sliced into fixed slivers,
most modern hypervisors support dynamic resizing of VMs.
For example, the hypervisor may allow a temporarily burst
of CPU usage for a VM provided that doing so does not
affect colocated VMs. For memory, with a technique known
as memory ballooning, the hypervisor is able to dynamically
reduce the memory footprints of idle VMs, so that memory
allocation of heavily loaded VMs can be increased.

Thus, clients may configure their policies according to
the resource usage pattern of their VMs, which is unknown
to the operator. CPU-bound VMs can be added to a CPU-

bound policy group, which is configured with a call to
conf(g_c, 1/server_freecpu). Their preferences are
then ranked in the descending order of server’s time
average available CPU cycles. Similarly, memory-bound
and bandwidth-bound policy groups may be configured
with the call conf(g_c, 1/server_freemem) and
conf(g_c, 1/server_freebw), respectively.

Anchor supports additional policies besides what we list
here, including colocation/anticolocation, tiered services,
etc. Due to space limit, readers are directed to Appendix E,
available in the online supplemental material, for more
details.

6 IMPLEMENTATION AND EVALUATION

We investigate the performance of Anchor with both testbed
implementation and large-scale simulations based on real-
world workload traces.

6.1 Setup

Prototype implementation. Our prototype consists of about
1,500 LOC written in Python. It is based on Oracle
VirtualBox 3.2.10 [23]. The VirtualBox management API is
utilized to obtain resource usage statistics. More details can
be found in Appendix F.1, available in the online supple-
mental material.

Our evaluation of Anchor is based on a prototype data
center consisting of 20 Dual Dual-Core Intel Xeon 3.0 GHz
machines connected over gigabit ethernet. Each machine
has 2 GB memory. Thus, we define the atomic VM to have
1.5 GHz CPU and 256 MB memory. Each server has a
capacity of seven in terms of atomic VM (since the
hypervisor also consumes server resources). All machines
run Ubuntu 8.04.4 LTS with Linux 2.6.24-28 server. A
cluster of Dual Intel Xeon 2.4 Ghz servers are used to
generate workload for some of the experiments. One node
in the cluster is designated to run the Anchor control plane,
while others host VMs. Our VMs, if not otherwise noted,
run Ubuntu 8.10 server with Apache 2.2.9, PHP 5.2.6, and
MySQL 5.0.67.

Trace-driven simulation. To evaluate Anchor at scale, we
conduct large-scale simulation based on real-world work-
load traces from RIKEN Integrated Cluster of Clusters
(RICC) [20] in Japan. RICC is composed of four clusters, and
was put into operation in August 2009. The data provided
in the trace are from the “massively parallel cluster,” which
has 1,024 Fujitsu RX200S5 Cluster nodes, each with 12 GB
memory and two 4-core CPUs, for a total of 12 TB memory
and 8192 cores. The trace file contains workload during the
period of Saturday May 01 00:04:55 JST 2010, to Thursday
September 30 23:58:08 JST 2010.

6.2 Efficiency of Resource Allocation

We evaluate the efficiency of Anchor resource allocation, by
allowing clients to use the resource hunting policy in
Section 5.2. We enable memory ballooning in VirtualBox to
allow the temporary burst of memory use. CPU-bound VMs
are configured to run a 20 newsgroups Bayesian classifica-
tion job with 20,000 newsgroups documents, based on the
Apache Mahout machine learning library [24]. Memory-
bound VMs run a web application called Olio that allows
users to add and edit social events and share with others
[25]. Its MySQL database is loaded with a large amount of
data so that performance is memory critical. We use Faban, a
benchmarking tool for tiered web applications, to inject
workload and measure Olio’s performance [26].

Our experiment comprises of two servers (S1, S2) and
two VMs (VM1 and VM2). S1 runs a memory-bound VM of
size 5, and S2 runs a CPU-bound VM of the same size before
allocation. VM1 is CPU bound with size 1 while VM2 is
memory bound with size 2. Assuming servers adopt a
consolidation policy, we run Anchor first with the resource
hunting policy, followed by another run with the default
consolidation policy for the two VMs. In the first run,
Anchor matches VM1 to S1 and VM2 to S2, since VM1
prefers S1 with more available CPU and VM2 prefers S2
with more memory. Other VM placement schemes that
consider the resource usage pattern of VMs will yield the
same matching. In the second run, Anchor matches VM2 to
S1 and VM1 to S2 for consolidation.
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We now compare CPU utilization of VM1 in these two
matchings as shown in Figs. 3 and 4, respectively. From
Fig. 3, we can see that as VM1 starts the learning task at
around 20 seconds, it quickly hogs its allocated CPU share
of 12.5 percent, and bursts to approximately 40 percent on
S1 (80-40 percent). Some may wonder why it does not
saturate S1’s CPU. We conjecture that the reason may be
related to VirtualBox’s implementation that limits the CPU
allocated to a single VM. In the case it is matched to S2, it
can only consume up to about 30 percent CPU, while the
rest is taken by S2’s preexisting VM as seen in Fig. 4. We
also observe that the learning task takes about 600 seconds
to complete on S2, compared to only 460 seconds on S1,
which implies a performance penalty of 30 percent.

We next look at the memory-bound VM2. Fig. 5 shows
time series of memory allocation comparison between the
two matchings. Recall that VM2 has size 2, and should be
allocated 512 MB memory. By the resource hunting policy,
it is matched to S2, and obtains its fair share as soon as it is
started at around 10 seconds. When we start the Faban
workload generator at 50 seconds, its memory allocation
steadily increases as an effect of memory ballooning to cope
with the increasing workload. At steady state it utilizes
about 900 MB. On the other hand, when it is matched to S1
by the consolidation policy, it only has 400 MB memory
after startup. The deficit of 112 MB is allocated to the other
memory hungry VM that S1 is running. VM2 gradually
reclaims its fair share as the workload of Olio database rises,
but cannot get any extra resource beyond that point.

Client resource hunting policy also serves to the benefit
of the operator and its servers. Fig. 6 shows S1’s resource
utilization. When resource hunting policy is used, i.e., when
S1 is assigned VM1, its total CPU and memory utilization
are aligned at around 60 percent, because VM1’s CPU-
bound nature is complementary to the memory-bound
nature of S1’s existing VM. However, when S1 is assigned
the memory-bound VM2 by the consolidation policy, its
memory utilization surges to nearly 100 percent while CPU
utilization lags at only 50 percent. A similar observation can
be made for S2.

Result. Anchor enables efficient resource utilization of the
infrastructure and improves performance of its VMs, by

allowing individual clients to express policies specific to its
resource needs.

6.3 Anchor’s Performance at Scale

Now, we evaluate the performance and scalability of
Anchor using both experiments and trace-driven simula-
tions. We first conduct a small-scale experiment involving
placing 10 VMs to 10 servers using both the consolidation
and load balancing policies. The results, as can be found in
Appendix F.2, available in the online supplemental
material, show that Anchor is effective in realizing specified
policies in a small-scale setup.

We then conduct a medium-scale experiment involving
all of our 20 machines. We orchestrate a complex scenario
with four batches of VMs, each with 20 VMs whose sizes is
drawn uniformly randomly in ½1; 4
. Servers are initially
empty with a capacity of seven. VMs are uniformly
randomly chosen to use either consolidation, CPU-bound,
or memory-bound resource hunting, and servers adopt a
consolidation policy for placement.

Since the stakeholders have different objectives, we use
the rank percentile of the assigned partner as the perfor-
mance metric that reflects one’s “happiness” about the
matching. A 90 percent happiness then means that the
partner ranks better than 90 percent of the total population.
For servers, their happiness is the average of the matched
VMs. From the experiment, we find that VMs obtain their
top 10 percent partner on average while servers only get
their top 50 percent VMs. The reason is that the number of
VMs is too small compared to servers’ total capacity, and
most of VMs’ proposals can be directly accepted.

The scale of previous experiments is limited due to the
hardware constraint of our testbed. To verify Anchor’s
effectiveness in a practical cloud scenario with large
numbers of VMs and servers, we perform large-scale
trace-driven simulations using the RICC workload traces
as the input to our Revised DA and Multistage DA

algorithms. According to [20], the allocation of CPU and
memory of this cluster is done with a fixed ratio of 1.2 GB
per core, which coincides well with our atomic VM
assumption. We, thus, define an atomic VM to be of one
core with 1.2 GB memory. Each RICC server, with eight

XU AND LI: ANCHOR: A VERSATILE AND EFFICIENT FRAMEWORK FOR RESOURCE MANAGEMENT IN THE CLOUD 1073

Fig. 3. VM1 CPU usage on S1 when using the resource hunting policy.

Fig. 4. VM1 CPU usage on S2 when using the consolidation policy.

Fig. 5. VM2 memory usage on S1 and S2.

Fig. 6. S1 CPU and memory usage.



cores and 12 GB memory as introduced in Section 6.1, has a
capacity of eight. The number of servers is fixed at 1,024.

We assume that tasks in the trace run in VMs, and they
arrive offline before the algorithms run. We consider the
dynamic scenario with our online algorithm in Appendix F.3,
available in the online supplemental material. For large tasks
that require more than one server, we break them down into
multiple smaller tasks, each of size 8, that can run on a single
server. We then process each task scheduling request in
the trace as VM placement request(s) of various sizes. We use
the first 200 tasks in the trace, which amounts to more than
1,000 VM requests.

However, the trace does not have detailed information
regarding the resource usage history of servers and tasks,
making it difficult for us to generate various preferences
needed for stable matching. To emulate a typical opera-
tional cloud with a few policy groups, we synthesize eight
policy groups for servers and 10 for VMs, the preference of
each group being a random permutation of members of the
other side. The results are averaged over 100 runs.

As a benchmark, we implement a First fit algorithm
widely used to solve large-scale VM placement problems in
the literature [8], [9], [12]. Since the servers have different
preferences but First fit algorithm assumes a uniform
ranking of VMs, the algorithm sorts the VMs according to
the preference of the most popular policy group first, and
places a VM to the best server according to the VMs
preference that has enough capacity.

Figs. 7 and 8 show the results with error bars for both
Revised DA and Multistage DA with different scales. As
expected, we observe that, as the problem scales up, VMs
are allocated to lower ranked servers and their happiness
decreases, and servers are allocated with higher ranked
VMs, due to the increased competition among VMs. Also
note that Multistage DA is only able to improve the
matching from the VM perspective by 15 percent on
average as shown in Fig. 7, at the cost of decreased server
happiness as shown in Fig. 8. The performance difference
between Revised DA and Multistage DA for VMs are
thus small.

Compared to the benchmark First fit, our algorithms
provide significant performance improvement for servers.
Both Revised DA and Multistage DA consistently

improve the server happiness by 60 percent for all problem
sizes. This demonstrates the advantage of our algorithms in
coordinating the conflicting interests between the operator
and the clients using stable matching. Specifically, First
fit only uses a single uniform ranking of VMs for all
servers, while our stable matching algorithms allow servers
to express their own preferences. Further, First fit will
not match a VM to a server whose capacity is insufficient,
i.e., there will be no rejection from servers, while Online

DA allows rejections if a VM is preferable than some of the
server’s VMs during its execution. Clearly, this improves
the happiness of both VMs and servers.

Figs. 9 and 10 show the time complexity of the
algorithms. It is clear that the running time of Multistage
DA is much worse than the simple Revised DA, and grows
more rapidly. The same observation is made for the number
of iterations, where Multistage DA takes more than 95,000
iterations to finish while Revised DA takes only 11,824
iterations with 1,000 VMs. Another observation we empha-
size here is that the average case complexity of Revised DA
is much lower than its worst case complexity OðjJ j2Þ in
Section 4.1, while Multistage DA exhibits OðjJ j2Þ com-
plexity on average. Thus, Revised DA scales well in
practice, while Multistage DA may only be used for
small or medium scale problems.

Revised DA takes 10 seconds to solve problems with
1,000 VMs and 1,024 servers, which is acceptable for practical
use. As expected, both algorithms are slower than the simple
First fit algorithm, whose running time is negligible
(0.01-0.06 s). First fit is not iterative so we do not include
it in Fig. 10 for the number of iterations comparison.

Result. Revised DA is effective and practical for large-scale
problems with thousands of VMs, and offers very close-to-
optimal performance for VMs.

7 RELATED WORK

This work is related to research in the following fields.
Stable matching. A large body of research in econom-

ics has examined variants of stable matching [19] (see
[18], [27] and references therein). Algorithmic aspects of
stable matching have also been studied in computer
science [28], [29]. However, the use of stable matching in
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Fig. 7. VM happiness in a static setting.

Fig. 8. Server happiness in a static setting.

Fig. 9. Running time in the static setting.

Fig. 10. Number of iterations in the static setting.



networking is fairly limited. Korupolu et al. [16] use the
DA algorithm to solve the coupled placement of VMs in
data centers. Our recent work [30], [31] advocate stable
matching as a general framework to solve networking
problems. To our knowledge, all these works assume a
traditional unisize job model, while we study a more
general size-heterogeneous model.

VM placement. VM placement on a shared infrastruc-
ture has been extensively studied. Current industry solu-
tions from virtualization vendors such as VMware vSphere
[3] and Eucalyptus [4], and open-source efforts such as
Nimbus [5] and CloudStack [6], only provide a limited set
of predefined placement policies. Existing papers develop
specifically crafted algorithms and systems for specific
scenarios, such as consolidation based on CPU usage [7],
[8], [9], energy consumption [10], [11], [12], bandwidth
multiplexing [13], [14], [15], and storage dependence [16].
They are, thus, complementary to Anchor, as the insights
and strategies can be incorporated as policies to serve
different purposes without the need to design new
algorithms from the ground up.

OpenNebula [32], a resource management system for
virtualized infrastructures, is the only related work to our
knowledge that also decouples management policies with
mechanisms. It uses a simple first fit algorithm based a
configurable ranking scheme to place VMs, while we use
the stable matching framework that addresses the conflict of
interest between the operator and clients.

There is a small literature on online VM placement.
Gong et al. [33], [34], [35] develop systems to predict the
dynamic resource demand of VMs and guide the place-
ment process. Jiang et al. [15] considers minimizing the
long-term routing cost between VMs. These works consider
various aspects to refine the placement process and are
orthogonal to our work that addresses the fundamental
problem of VM size heterogeneity.

Our work is also related to the literature on job
scheduling. More details can be found in Appendix G,
available in the online supplemental material.

8 CONCLUDING REMARKS

We presented Anchor as a unifying fabric for resource
management in the cloud, where policies are decoupled from
the management mechanisms by the stable matching frame-
work. We developed a new theory of job-machine stable
matching with size heterogeneous jobs as the underlying
mechanism to resolve conflict of interests between the
operator and clients. We then showcased the versatility of
the preference abstraction for a wide spectrum of resource
management policies for VM placement with a simple API.
Finally, the efficiency and scalability of Anchor are demon-
strated using a prototype implementation and large-scale
trace-driven simulations.

Many other problems can be cast into our model. For
instance, job scheduling in distributed computing platforms
such as MapReduce, where jobs have different sizes and
share a common infrastructure. Our theoretical results are,
thus, potentially applicable to scenarios beyond those
described in this paper. As future work, we plan to extend
Anchor for the case where resource demands vary, and VMs
may require to be replaced, where specific considerations
for VM live migration [21] are needed.
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