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Abstract—There has been a recent trend that video-on-demand
(VoD) providers such as Netflix are leveraging resources from
cloud services for multimedia streaming. In this paper, we con-
sider the scenario that a VoD provider can make reservations for
bandwidth guarantees from cloud service providers to guarantee
the streaming performance in each video channel. We propose a
predictive resource auto-scaling system that dynamically books
the minimum bandwidth resources from multiple data centers for
the VoD provider to match its short-term demand projections.
We exploit the anti-correlation between the demands of video
channels for statistical multiplexing and for hedging the risk of
under-provision. The optimal load direction from channels to
data centers is derived with provable performance. We further
provide suboptimal solutions that balance bandwidth and storage
costs. The system is backed up by a demand predictor that
forecasts the demand expectation, volatility and correlations
based on learning. Extensive simulations are conducted driven
by the workload traces from a commercial VoD system.

I. INTRODUCTION
Cloud computing is redefining the way many Internet ser-

vices are operated and provided, including Video-on-Demand
(VoD). Instead of buying racks of servers and building private
data centers, it is now feasible for VoD companies to use com-
puting and bandwidth resources of cloud service providers.
As an example, Netflix moved its streaming servers, encoding
software, data stores and other customer-oriented APIs to
Amazon Web Services (AWS) in 2010 [1].
One of the most important economic appeals of cloud

computing is its elasticity and auto-scaling in resource pro-
visioning. Traditionally, after careful capacity planning, an
enterprise makes long-term investments on its infrastructure
to accommodate its peak workload. Over-provisioning is in-
evitable while utilization remains low during most non-peak
times. In contrast, in the cloud, the number of computing
instances launched can be changed adaptively at a fine granu-
larity with a lead time of minutes. This converts the up-front
infrastructure investment to operating expenses charged by
cloud providers. As the cloud’s auto-scaling ability enhances
resource utilization by matching supply with demand, overall
expenses of the enterprise may be reduced.
Unlike web servers or scientific computing, VoD is a

network-bound service with stringent bandwidth requirements.
As VoD users must download at a rate no smaller than the
video playback rate to smoothly watch video streams online,
bandwidth, as opposed to storage and computation, constitutes
the performance bottleneck. Yet, a major obstacle that prevents

numerous VoD providers from embracing cloud computing
is that, unlike CPU and memory resources, a guarantee of
bandwidth is not provided in current cloud services. Instead,
each data center has limited outgoing bandwidth shared by
multiple tenants with no bandwidth assurance.
We believe that bandwidth reservation will become a near-

term value-added feature offered by cloud services to appeal to
customers with bandwidth-intensive applications, such as VoD.
In fact, there have already been proposals from the perspective
of data center engineering to offer bandwidth guarantees for
egress traffic from a virtual machine (VM), as well as among
VM themselves [2], [3].
Under such a context, we analyze the benefits and ad-

dress open challenges of cloud bandwidth auto-scaling for
VoD applications in this paper. In a nutshell, the benefits of
bandwidth auto-scaling are intuitive. As shown in Fig. 1(a),
traditionally, a VoD provider acquires a monthly plan from
ISPs, in which a fixed bandwidth capacity, e.g., 1 Gbps, is
guaranteed to accommodate the anticipated peak demand. As
a result, resource utilization is low during non-peak times
of demand troughs. Alternatively, a usage-based pay-as-you-
go model is adopted by a cloud as shown in Fig. 1(b),
where a VoD provider pays for the total amount of bytes
transferred. However, the bandwidth capacity available to the
VoD provider is subject to variation due to contention from
other applications, incurring unpredictable performance issues.
Fig. 1(c) illustrates bandwidth auto-scaling and reservation to
match resource with the demand, leading to both high re-
source utilization and quality guarantees. Apparently, the more
frequently the rescaling happens, the more closely resource
supply will match the demand.
However, a number of important challenges need to be ad-

dressed to achieve bandwidth auto-scaling for a VoD provider.
First, since resource rescaling requires a delay of at least
several minutes to update configuration and launch instances,
it is best to predict the demand with a lead time greater than
the update interval, and scale the capacity to meet anticipated
demand. Such a proactive, rather than passive, strategy for
resource provisioning needs to take into account demand fluc-
tuations in order to avoid bandwidth insufficiency. Second, as
statistical multiplexing can smooth traffic, a VoD provider can
reserve less bandwidth to guard against fluctuations by jointly
reserving bandwidth for all its video channels. However, to
serve geographically distributed end users, a VoD provider
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Fig. 1. Bandwidth auto-scaling with quality assurance, as compared to provisioning for the peak demand and pay-as-you-go.
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Fig. 2. The system decides the bandwidth reservation from each data center
and a matrix W = [wsi] every ∆t minutes, where wsi is the proportion of
video channel i’s requests directed to data center s. DC: data center.

usually has its collection of channels served by multiple
data centers, which are possibly owned by different cloud
providers. The question is — how should the VoD provider
optimally split and direct its workload across data centers to
save the overall bandwidth reservation cost?
In this paper, we propose a bandwidth auto-scaling facility

that dynamically reserves resources from multiple data centers
for VoD providers, with several distinct features. First, it is
predictive. The facility tracks the history of bandwidth demand
in each video channel using cloud monitoring services, and pe-
riodically estimates the expectation, volatility and correlations
of demands in all video channels for the near future using time-
series techniques. We propose a novel channel interleaving
scheme that can even predict demand for new videos that lack
historical demand data. Second, it provides quality assurance
by judiciously deciding the minimum bandwidth reservation
needed to satisfy the demand with high probability. Third, it
optimally mixes demands based on anti-correlation to save the
aggregate bandwidth capacity reserved from all data centers,
while confining risks of under-provision.
We formulate the bandwidth minimization problem given

the predicted demand statistics as input, derive the theoreti-
cally optimal load direction across data centers, and propose
heuristic solutions that balance bandwidth and storage costs.
The proposed facility is evaluated through extensive trace-
driven simulations based on a large data set of 1693 video
channels collected from UUSee, a production VoD system,
over a 21-day period.

II. SYSTEM ARCHITECTURE

Consider a VoD provider with N video channels, relying
on S data centers for service, which are possibly owned by

different cloud service providers. We propose an unobtrusive
auto-scaling system that draws beliefs about future demands
of all channels and reserves minimal resources from multiple
data centers to satisfy the demand. Our system architecture
is shown in Fig. 2, which consists of three key components:
bandwidth usage monitor, demand predictor and load op-
timizer. Bandwidth rescaling happens proactively every ∆t
minutes, with the following three steps:
First, before time t, the system collects bandwidth demand

history of all channels up to time t, which can easily be
obtained from cloud monitoring services. As an example,
Amazon CloudWatch provides a free resource monitoring
service to AWS customers at a 5-minute frequency [4].
Second, the bandwidth demand history of all channels is

fed into the demand predictor to predict bandwidth require-
ment of each video channel in the next ∆t minutes, i.e., in
the period [t, t + ∆t). Our predictor not only forecasts the
expected demand, but also outputs a volatility estimate, which
represents the degree that demand will be fluctuating around
its expectation, as well as the demand correlations between
different channels in this period. Our volatility and correlation
estimation is based on multivariate GARCH models [5], which
gained success in stock modeling in the past decade.
Finally, the load optimizer takes predicted statistics as the

input, and calculates the bandwidth capacity to be reserved
from each data center. It also outputs a load direction matrix
W = [wsi], where wsi represents the portion of video channel
i’s workload directed to data center s. Apparently, we should
have

∑

s wsi = 1 if the aggregate data center capacity is
sufficient. The matrix W also indicates the content placement
decision: video i is replicated to data center s only if wsi > 0.
In practice, the load direction W can be readily implemented
by routing the requests for video channel i to data center s
with probability wsi.
The system finishes the above three steps before time t, so

that a new bandwidth reservation can be performed at time
t for the period [t, t + ∆t), after which the above process is
repeated for the next period [t + ∆t, t + 2∆t).
Bandwidth Reservation vs. Load Balancing. One may be

tempted to think that periodic bandwidth reservation is unnec-
essary, since requests can be flexibly directed to whichever
data center that has available capacity by a load balancer.
However, the latter will exactly fall in the range of pay-as-
you-go model with no quality guarantee to VoD users, whereas
bandwidth reservation ensures that the provisioned resource
exceeds the projected demand with high probability.
Furthermore, a major difficulty of load balancing is that
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Fig. 3. Using demand correlation between channels, we can save the total bandwidth reservation, even within each 10-minute period, while still providing
quality assurance to each channel. DC: data center.

data centers might be owned by different cloud providers. As
a result, it is complicated if not infeasible to implement a
gateway that can continuously watch resources of each cloud
provider (instead of every 5 minutes as offered by free cloud
watch services) and redirect requests instantaneously across
cloud providers. Even if requests can be redirected instan-
taneously to lightly loaded data centers when the playback
quality degrades, significant engineering efforts are required
to monitor the video playback quality at end users.
Quality-Assured Bandwidth Multiplexing. The bandwidth

demand of each video channel can fluctuate drastically even at
small time scales. To avoid performance risks, the bandwidth
reservation made for each channel in each ∆t period should
accommodate such fluctuations, inevitably leading to low
utilization at troughs, as illustrated in Fig. 3(a) and (b). Trough
filling within a short period such as 10 minutes is hard with
too many random shocks in demand.
However, our load optimizer strives to enhance utilization

even when ∆t is as small as 10 minutes by multiplexing
demands based on their correlations. The usefulness of anti-
correlation is illustrated in Fig. 3(c): if we jointly book capac-
ity for two negatively correlated channels, the total reserved
capacity is Asum < A1+A2. Besides aggregation, we can also
take a part of demand from each channel, mix them and reserve
bandwidth for the mixed demands from multiple data centers.
As an example, in Fig. 3(d) and (e), the aggregate demand
of two channels is split into two data centers, each serving a
mixture of demands, which still leads to a total bandwidth
reservation of Asum. In each ∆t period, we leverage the
estimated demand correlations to optimally direct workloads
across data centers so that the total bandwidth reservation
necessary to guarantee quality is minimized.

III. LOAD DIRECTION AND BANDWIDTH RESERVATION

In this section, we focus on the load optimizer. Suppose
before time t, we have obtained the estimates about demands
in the coming period [t, t+∆t). Our objective is to decide load
direction W so as to minimize the total bandwidth reservation
while controlling the under-provision risk in each data center.
The question of how to make demand predictions will be the
subject of Sec.IV.
We first introduce a few useful notations. Since we are

considering an individual time period, without loss of gen-
erality, we drop subscript t in our notations. Recall that
the VoD provider runs N video channels. The bandwidth
demand of channel i is a random variable Di with mean µi

and variance σ2
i . For convenience, let D = [D1, . . . ,DN ]T,

µµµ = [µ1, . . . , µN ]T and σσσ = [σ1, . . . ,σN ]T.
Note that the random demands D1, . . . ,DN may be highly

correlated due to the correlation between video genres, viewer
preferences and video release times. Denote ρij the correlation
coefficient of Di and Dj , with ρii ≡ 1. Let Σ = [σij ] be the
N × N symmetric demand covariance matrix, with σii = σ2

i

and σij = ρijσiσj for i #= j.
The VoD provider will book resources from S data centers.

Denote Cs the upper bound on the bandwidth capacity that can
be reserved from data center s, for s = 1, . . . , S. Cs may be
limited by the available instantaneous outgoing bandwidth at
data center s, or may be intentionally set by the VoD provider
to geographically spread its workload and avoid booking
resources from a single data center. Let Csum =

∑

s Cs be the
aggregate utilizable bandwidth capacity of all S data centers.
Throughout the paper, we assume that Csum is sufficiently
large to satisfy all the demands in the system.1
We define a load direction decision as a weight matrix

W = [wsi], s = 1, . . . , S, i = 1, . . . , N , where wsi represents
the portion of video i’s demand directed to and served by
data center s, with 0 ≤ wsi ≤ 1 and

∑

s wsi = 1. We
observe that ws = [ws1, . . . , wsN ]T represents the workload
portfolio of data center s. Given ws, the aggregate bandwidth
load imposed on data center s is a random variable

Ls =
∑

i wsiDi = wT
s D. (1)

We use As to denote the amount of bandwidth reserved from
data center s for this period. Clearly, we must have As ≤ Cs.
Let A =: [A1, . . . , AS ]T. To control the under-provision risk,
we require the load imposed on data center s to be no more
than the reserved bandwidth As with high probability, i.e.,

Pr(Ls > As) ≤ ε, ∀s, (2)

where ε > 0 is a small constant, called the under-provision
probability.

A. The Optimal Load Direction

Given demand expectations µµµ and covariances Σ, and the
available capacities C1, . . . , CS , the load optimizer can decide
the optimal bandwidth reservation A∗ and load direction W∗

1A rigorous condition for supply exceeding demand is given in Theorem 1.

462



by solving the following optimization problem:

min
W,A

∑

s As (3)

s.t. As ≤ Cs, ∀s, (4)
Pr(Ls > As) ≤ ε, ∀s, (5)

∑

s wsi = 1, ∀i. (6)

Through reasonable aggregation, we believe that Ls fol-
lows a Gaussian distribution. We will empirically justify this
assumption in Sec. V using real-world traces. When Ls is
Gaussian-distributed, constraint (2) is equivalent to

As ≥ E[Ls] + θ
√

var[Ls], with θ := F−1(1 − ε), (7)

where F (·) is the CDF of normal distribution N (0, 1). For
example, when ε = 2%, we have θ = 2.05. Since

E[Ls] = µ1ws1 + . . . + µNwsN = µµµTws,
var[Ls] =

∑

i,j ρijσiσjwsiwsj = wT
s Σws,

it follows that (2) is equivalent to

As ≥ µµµTws + θ
√

wT
s Σws. (8)

Therefore, the bandwidth minimization problem (3) is now
converted to

min
W

∑

s As (9)

As = µµµTws + θ
√

wT
s Σws, (10)

s.t. µµµTws + θ
√

wT
s Σws ≤ Cs, ∀s, (11)

∑

s ws = 1, (12)
0 ( ws ( 1, ∀s, (13)

where 1 = [1, . . . , 1]T and 0 = [0, . . . , 0]T are N -dimensional
column vectors. We can derive nearly closed-form solutions
to problem (9) in the following theorem:

Theorem 1: When Csum ≥ µµµT1 + θ
√

1TΣ1, an optimal
load direction matrix [w∗

si] is given by

w∗

si = αs, ∀i, s = 1, . . . , S, (14)

where α1, . . . ,αS can be any solution to
∑

s

αs = 1, 0 ≤ αs ≤ min

{

1,
Cs

µµµT1 + θ
√

1TΣ1

}

, ∀s.

(15)
When Csum < µµµT1 + θ

√
1TΣ1, there is no feasible solution

that satisfies constraints (11) to (13).

Proof Sketch: First, f(ws) =
√

wT
s Σws is a cone and

thus a convex function. Hence, f [(w1 + w2)/2] ≤ [f(w1) +
f(w2)]/2, or equivalently,

√

(w1 + w2)TΣ(w1 + w2) ≤
√

wT
1
Σw1 +

√

wT
2
Σw2.

By induction, we can prove
∑

s

√

wT
s Σws ≥

√

(
∑

s wT
s )Σ(

∑

s ws) (16)

If
∑

s ws = 1 is feasible, by (11) and (16) we have
∑

s Cs ≥ µµµT1 + θ
√

(
∑

s wT
s )Σ(

∑

s ws) = µµµT1 + θ
√

1TΣ1.

If
∑

s Cs ≥ µµµT1 + θ
√

1TΣ1, it is easy to verify (15) is
feasible. When w∗

si = αs given by (14), we find (11), (12)
and (13) are all satisfied. Hence, (14) is a feasible solution and
∑

s ws = 1 is feasible. By (16), the objective (9) satisfies
∑

s(µµµ
Tws + θ

√

wT
s Σws)

≥ µµµT
∑

s ws + θ
√

(
∑

s wT
s )Σ(

∑

s ws)

= µµµT1 + θ
√

1TΣ1.

We find that [w∗

si] given by (14) achieves the above inequality
with equality, and thus is also an optimal solution to (9). *+
Theorem 1 implies that in the optimal solution, each video

channel should split and direct its workload to S data centers
following the same weights α1, . . . ,αS , which can be found
by solving the linear constraints (15). Moreover, the optimal
workload portfolio of each data center s has a similar structure
of ws = αs1, where αs depends on its available capacity Cs

through the constraints (15).
Under the optimal load direction, the aggregate bandwidth

reservation reaches its minimum value:
∑

s A∗

s =
∑

s(µµµ
Tw∗

s + θ
√

w∗T
s Σw∗

s) = µµµT1 + θ
√

1TΣ1,

which does not depend on S, the number of data centers. This
means that having demand served by multiple data centers
instead of one big data center does not increase bandwidth
reservation cost as long as wsi = αs, ∀i given by (14). There-
fore, the load optimizer can first aggregate all the demands and
then split the aggregated demand into different data centers
subject to their capacities.

B. Suboptimal Heuristics with Limited Replication
Although solution (14) is optimal and efficient, it encounters

two major obstacles in practice. First, as long as αs > 0,
w∗

si = αs > 0 for all i, which means that data center s has to
store all N videos. In other words, a video has to be replicated
at all the data centers that has αs > 0. This incurs significant
additional storage fees at the VoD provider charged by data
centers. Second, each video channel i splits its workload into
S data centers according to the weights α1, . . . ,αS . When S
is large and Di is small, such fine-grained splitting will not be
technically feasible. Therefore, in practice, we need to limit
the replication degree of each video, or equivalently, limiting
the number of videos stored in each data center.
To achieve the above goal, we propose suboptimal solutions

to problem (9) that addresses replication concerns. First,
we need the following heuristic to bridge the optimal load
direction to replication-limited load direction:
Heuristic 1: Per-DC Optimal. The algorithm iteratively

outputs w∗∗

1 , . . . ,w∗∗

S for one data center after another. Ini-
tially, set b = 1. Repeat the following for s = 1, . . . , S:
1) Solve the following problem to obtain w∗∗

s :

maxws
µµµTws (17)

s.t. µµµTws + θ
√

wT
s Σws ≤ As ≤ Cs, (18)

0 ≤ ws ≤ b. (19)

2) Replace b in (19) by b − w∗∗

s .
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The program terminates if b = 0.
Heuristic 1 packs the random demands into each data

center, one after another, by maximizing the expected demand
µµµTws each data center s can accommodate subject to the
probabilistic performance guarantee in (18). As a result, the
total amount of resources needed to guard against demand
variability is reduced. Clearly, under Heuristic 1, the aggregate
bandwidth reservation from all data centers is

∑

s A∗∗

s =
∑S

s=1
(µµµTw∗∗

s + θ
√

w∗∗T
s Σw∗∗

s ), (20)

Note that Heuristic 1 is also computationally efficient since
(17) is a standard second-order cone program.
Now we can introduce the replication-limited load direction,

which only requires the VoD provider to upload k videos to
each data center. We modify Heuristic 1 to cope with this
constraint as follows:
Heuristic 2: Per-DC Limited Channels. The algorithm it-

eratively outputs w′

1, . . . ,w
′

S for one data center after another.
Initially, set b = 1. Repeat the following for s = 1, . . . , S:
1) Solve problem (17) to obtain w∗∗

s .
2) Choose the top k channels with the largest weights and
solve problem (17) again only for these k channels to
obtain w′

s.
3) Replace b in (19) by b − w′

s.
The program terminates if b = 0.
Under Heuristic 2, the aggregate bandwidth reserved is

∑

s A′

s =
∑S

s=1
(µµµTw′

s + θ
√

w′T

s Σw′
s). (21)

In Sec. V, we will show through trace-driven simulations that
Heuristic 2, though suboptimal, effectively limits the content
replication degree, thus balancing the savings on storage cost
and bandwidth reservation cost for VoD providers.

IV. DEMAND FORECASTING MODELS

The derivation of load direction decisions critically depends
on parameters uuu and Σ, which are estimates of the expected
demands and demand covariances for the short-term future
[t, t + ∆t). In this section, we present efficient time series
forecasting methods to make such predictions based on past
observations.
We assume that the bandwidth demand of channel i at any

point in the period [t, t + ∆t) can be represented by the
same random variable Dit. This is a reasonable assumption
when ∆t is small. Similarly, let µµµt = [µ1t, . . . , µNt] and
Σt = [σijt] represent the demand expectation vector and
demand covariance matrix for all N channels in [t, t + ∆t).
We assume that before time t, the system has already collected
all the demand history from cloud monitoring services with
a sampling interval of ∆t. The question is how to use the
available sampled bandwidth demand history {Diτ : τ =
0, . . . , t − 1, i = 1, . . . , N} to estimate µµµt and Σt?
In this paper, we combine our previously proposed seasonal

ARIMA model [6] for conditional mean (expectation con-
ditioned on the history) prediction with the GARCH model

[7] for conditional variance prediction to obtain a multivari-
ate GARCH model that can forecast the demand covariance
matrix. The model extracts the periodic evolution pattern
from each channel’s demand time series, and characterizes
the remaining innovation series as autocorrelated GARCH
processes. We briefly describe these statistical models here.
Interested readers are referred to [6], [7] for details.
The difficulty in modeling the bandwidth demand of a chan-

nel i is that it exhibits diurnal periodicity, a downward trend
as the video becomes less popular over time, and changing
levels of fluctuation as population goes up and down. Such
non-stationarity in traffic renders unbiased linear predictors
useless. We tackle this problem by applying one-day-lagged
differences (the lag is 144 if ∆t = 10 minutes) onto {Diτ}
to remove daily periodicity to obtain the transformed series
{D′

iτ := Diτ − Diτ−144}, which can be modeled as a low-
order autoregressive moving-average (ARMA) process:

{

D′

iτ − φiD′

iτ−1 = Niτ + γiNiτ−1,
D′

iτ = Diτ − Diτ−144,
(22)

where {Niτ} ∼ WN(0,σ2) denotes the uncorrelated white
noise with zero mean. Model (22) falls in the category of
seasonal ARIMA models [6], [8].
Model parameters φi and γi in (22) can be trained based on

historical data using a maximum likelihood estimator [8]. To
predict the expected demand µit of channel i, we first predict
µ′

it := E[D′

it|D′

it−1,D
′

it−2, . . .] for the transformed series
{D′

iτ} to obtain the estimate µ̂′

it, using an unbiased minimum
mean square error (MMSE) predictor. We then retransform
µ̂′

it into an estimate µ̂it of the conditional mean µit, with the
inverse of one-day-lagged differencing.
Given the conditional means {µ̂iτ} of channel i over all

time τ , we denote the innovations in {Diτ} by {Ziτ}, where

Ziτ := Diτ − µ̂iτ . (23)

Since the innovation term Ziτ represents the fluctuation of Diτ

relative to its projected expectation µ̂iτ , and such fluctuation
may be changing over time, we model the innovations {Ziτ}
using a GARCH process:

{

Ziτ =
√

hiτeτ , {eτ} ∼ IID N (0, 1),
hiτ = αi0 + αi1Z2

iτ−1 + βihiτ−1,
(24)

where {Ziτ} is modeled as a zero-mean Gaussian process
yet with a time-varying conditional variance hiτ . Instead
of assuming a constant variance for {Ziτ}, (24) introduces
autocorrelation into volatility evolution and forecasts the con-
ditional variance hit of Zit as a regression of past hiτ and Z2

iτ .
The model parameters in (24) can be learned using maximum
likelihood estimation (pp. 417, [8]) based on training data.
Finally, to predict covariance matrix Σt, we introduce a

constant conditional correlation (CCC) model [9], which is
a popular multivariate GARCH specification that restricts the
correlation coefficients ρij to be constant. ρij can be estimated
as the correlation coefficient between series {Ziτ} and {Zjτ}
in recent time periods, and ρij = 1 if i = j. The covariance
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σijt between video i and j at time t is thus predicted as

σ̂ijt = hijt = ρij

√

hithjt, (25)

with hit and hjt predicted using (24) for channels i and j
individually.
The full statistical model is a seasonal ARIMA conditional

mean model (22) with a CCC multivariate GARCH innovation
model given by (24) and (25). The above seemingly complex
model is extremely efficient to train, as the five parameters φi,
γi, αi0, αi1 and βi are learned for each video i separately fol-
lowing the procedures mentioned above, and ρij is calculated
straightforwardly from recent history.

V. EXPERIMENTS BASED ON REAL-WORLD TRACES
We conduct a series of simulations to evaluate the perfor-

mance of our bandwidth auto-scaling system. The simulations
are driven by the replay of the workload traces of UUSee
video-on-demand system over a 21-day period during 2008
Summer Olympics [10]. As a commercial VoD company,
UUSee streams on-demand videos to millions of Internet
users across over 40 countries through a downloadable client
software. The dataset contains performance snapshots taken
at a 10-minute frequency of 1693 video channels, including
sports events, movies, TV episodes and other genres. The
statistics we use in this paper are the time-averaged total
bandwidth demand in each video channel in each 10-minute
period. There are 144 time periods in a day. We ask the
question—what the performance would have been if UUSee
had all its workload in this period served by cloud services
through our bandwidth auto-scaling system?
We conduct performance evaluation for 4 typical time spans

which are near the beginning, middle and end of the 21-
day duration. We implement statistical learning and demand
prediction techniques presented in Sec. IV to forecast the
expected demands µµµt and demand covariance matrix Σt every
10 minutes. The model parameters are retrained daily, with
training data being the bandwidth demand series {Diτ} in the
recent 1.25 days of each channel i. Once trained, the models
will be used for the next 24 hours. Although video users
may join or quit a channel unexpectedly, our prediction is
still effective, since it deals with the aggregate demand in the
channel which features diurnal evolution patterns. We assume
that there is a pool of data centers from which UUSee can
reserve bandwidth. To spread the load across data centers,
we set Cs = 300 Mbps for each s. The QoS parameter
θ := F−1(1 − ε) is set to θ = 2.05 to confine the under-
provision probability to ε = 2%.

A. A Novel Channel Interleaving Scheme
There are two practical challenges with regard to demand

prediction. First, many of the 1693 video channels are released
during the 21 days: a new video does not have sufficient
demand history for statistical model learning. Second, there are
many small channels with only a few users online for which
prediction is hard. We propose a novel channel interleaving
scheme to circumvent these obstacles. It has been shown
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Fig. 4. The conditional mean demand prediction for virtual new channel 11,
with a test period of 1.5 days from time 1585 to 1800.

from the traces [6] that videos released on different dates but
around the same time of day exhibit similar initial demand
evolution patterns, though with possibly different popularities.
The main reason is that most users watch VoD channels around
several peak times of a day. Therefore, it is possible to predict
demands for new videos based on earlier videos.
We define virtual new channel k as a combination of all

video channels with an age less than 1.25 days and released
in hour k ∈ {1, . . . , 24} on any date. Upon release, a new
video joins virtual new channel k based on its release hour
k. Similarly, we aggregate small video channels and set up
24 virtual small channels. When a video reaches the age of
1.25 days, it quits its virtual new channel. If its demand never
exceeded a threshold (e.g., 40 Mbps) in the first 1.25 days, it
will join one of the virtual small channels in a round robin
fashion. Otherwise, it becomes a mature channel.
Each mature or virtual channel is deemed as an entity to

which predictions and optimizations are applied. For exam-
ple, we make 10-minutes-ahead conditional mean prediction
for virtual new channel 11 and plot results in Fig. 4. The
bandwidth demand exhibits repetition of a similar pattern
because the videos in this virtual channel are all released in
hour 11 (possibly on different dates). Although conditional
mean prediction is subject to errors, the GARCH model can
forecast the changing error variance, which contributes to the
risk constraint (11) in resource minimization (9).

B. Algorithms for Comparison

We compare our optimal load direction (14), Heuristic 1
and Heuristic 2 with the following benchmark algorithms:
Reactive without Prediction. Initially replicate each video

to K random data centers. This limits the initial content
replication degree to K. Each client requesting channel i is
randomly directed to a data center that has video i and idle
bandwidth capacity. A request is dropped if there is no such
data center. In this case, the algorithm reacts by replicating
video i to an additional data center chosen randomly that has
idle capacity. Replicating content is not instant: we assume
that the replication involves a delay of one period of time.
Random with Prediction. Initially, let s = 1 and b = 1.

Second, randomly generate ws in (0,b) and rescale it so that
the QoS constraint (11) is achieved with equality for s. Update
b to b−ws and update s to s+1. Go to the second step unless
b = 0 or s = S + 1, in which case the program terminates.
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Fig. 5. QQ plot of innovations for t =1562—1640 vs. normal distribution.

The reactive scheme represents provisioning for peak de-
mand in Fig. 1 in some way, with limited replication. It does
not leverage prediction or bandwidth reservation. We assume
in Reactive, the total cloud capacity allocated is always the
minimum capacity needed to meet the peak demand in the
system. The random scheme leverages prediction and makes
bandwidth reservation, but randomly directs workloads instead
of using anti-correlation to minimize bandwidth reservation.

C. Assumption Validation
First, we verify that Dit approximately follows Gaussian

distribution in each 10-minute period. For each channel i,
given conditional mean prediction µ̂it at time t, the innovation
is Zit := Dit − µ̂it. Fig. 5(a) shows the QQ plot of Zit for
a typical channel i = 121 from time period 1562 to 1640,
which indicates {Zit} sampled at 10-minute intervals is a
Gaussian process. Thus, it is reasonable to assume Dit follows
a Gaussian distribution within the 10 minutes following t,
with mean µ̂it. Fig. 5(b) shows the QQ plot of

∑

i Zit,
which indicates that the aggregated demand

∑

i Dit tends to
Gaussian even if Djt is not for some channel j. Since the load
Ls of each data center is aggregated from many videos, it is
reasonable to assume Ls is Gaussian.
Furthermore, it has been verified in [7] that the innovations

{Zit} forms a stationary uncorrelated series whereas {Z2
it} is

auto-correlated, justifying the validity of GARCH modeling
of innovations {Zit} in Sec. IV.

D. Predictive Auto-Scaling vs. Reactive Provisioning
We implement all of the five schemes discussed above, and

present their performance comparison in Table I for each of
the four time spans. Note that the channels in the table include
mature channels, virtual new and virtual small channels. The
number of videos in each virtual channel can vary over time.
As new videos are introduced, more channels are present in
later test periods. We evaluate the performance with regard to
QoS, bandwidth resource occupied, and replication cost.
Table I shows that Reactive generally has a more salient

QoS problem than all four predictive schemes in terms of
both the number of unsatisfied channels and request drop
rate, demonstrating the benefit of utilizing demand prediction.
Fig. 6 presents a more detailed comparison for a typical peak
period from time 702 to 780. Without surprise, Reactive has
many unfulfilled requests at the beginning. Since the videos

are randomly replicated to K = 2 data centers (shown in
Fig. 6(c) at t = 702) and requests are randomly directed,
it is likely that a channel does not acquire enough capacity
to meet its demand. As Reactive detects the QoS problem,
videos are replicated to more data centers to acquire more
capacity, with a gradually increasing replication degree over
time, as in Fig. 6(c). We can see that after 140 minutes, when
the replication degree reaches above 4, the QoS of Reactive
becomes relatively stable in Fig. 6(a). However, around time
763, Reactive suffers from salient QoS problems again, due
to a sudden ramp-up of demand. In contrast, the predictive
schemes foresee and prepare for demand changes, resulting in
much better QoS, even in the event of drastic demand increase.
The predictive schemes also achieve higher resource utiliza-

tion. Utilization of a predictive scheme is the ratio between
the actual used bandwidth and the total booked bandwidth
in all data centers. For Reactive the utilization is the actual
bandwidth demand divided by the peak demand. Although
Fig. 6(b) shows that Reactive achieves a high utilization for the
peak demand around time 763, its average utilization is merely
77.19% in the test period from 702 to 780. Predictive auto-
scaling enhances utilization to 85.67% with Per-DC Limited
Channels, to 89.99% with Per-DC Optimal, and to 92.9% with
the theoretical optimal solution. In addition, the prediction
and optimization in predictive methods are computationally
efficient, e.g., prediction and Per-DC Optimal finish in 2
minutes, well before the deadline of 10 minutes.

E. Theoretical Optimal vs. Replication-limited Heuristics
Now we focus on each of the four predictive schemes.

Among them, as shown in Table I, Optimal books the mini-
mum necessary bandwidth and achieves the highest bandwidth
utilization, yet with the highest replication overhead: a video
is replicated to every data center. The VoD provider thus needs
to pay a high storage fee to the cloud.
Per-DC Optimal can reduce the replication degree while

maintaining other performance metrics. By further impos-
ing a channel number constraint on each data center, Per-
DC Limited Channels strikes a balance between replication
overhead and bandwidth utilization. It aggressively reduces
the replication degree to a very small value of 2.4-2.6
copies/video, which is the smallest among all four schemes,
with an extremely low drop rate and an over-provisioning
ratio only slightly higher than Optimal and Per-DC Optimal.
Random achieves the lowest utilization, since it is blind to the
correlation information in workload selection and direction.
We further show a detailed comparison between the three

predictive heuristics from time 1562 to 1640 in Fig. 7. The
efficiency of predictive bandwidth booking can be evaluated
by the cushion bandwidth needed, which is the gap between
the booked bandwidth and actual required bandwidth. Fig. 7(a)
plots the cushion bandwidth. While being on the same QoS
level, random load direction results into a cushion bandwidth
up to 3 Gbps compared to a mean demand of 5.62 Gbps,
representing significant over-provisioning. Using Per-DC Op-
timal, the cushion bandwidth can be saved by 50% on average,
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TABLE I
THE PERFORMANCE OF 5 SCHEMES AVERAGED OVER EACH TEST PERIOD, IN TERMS OF QOS, RESOURCE UTILIZATION, AND REPLICATION.

Periods Time periods 702—780 (91 mature and virtual channels) Time periods 1422—1480 (161 mature and virtual channels)
Peak demand 6.56 Gbps, mean demand 5.19 Gbps Peak demand 6.81 Gbps, mean demand 4.91 Gbps

Short Drop Util Rep Booked Over-prov Short Drop Util Rep Booked Over-prov
Optimal 0.2 Chs 0.66% 92.9% 91.0 6.57 Gbps 108.5% 0.1 Chs 0.25% 91.1% 161.0 6.38 Gbps 110.3%

Per-DC Opt 1.0 Chs 0.37% 90.0% 8.5 6.79 Gbps 112.2% 1.2 Chs 0.13% 88.6% 6.9 6.56 Gbps 113.4%
Per-DC Lim 0.3 Chs 0.06% 85.7% 2.6 7.13 Gbps 117.8% 0.2 Chs 0.03% 84.6% 2.4 6.86 Gbps 118.8%
Random 5.9 Chs 0.02% 83.3% 3.8 7.33 Gbps 121.2% 7.6 Chs 0.00% 82.2% 3.0 7.08 Gbps 122.4%
Reactive 7.9 Chs 0.47% 77.2% 4.3 7.91 Gbps 132.4% 7.2 Chs 0.34% 70.4% 3.6 8.20 Gbps 146.0%

Periods Time periods 1562—1640 (176 mature and virtual channels) Time periods 2402—2500 (199 mature and virtual channels)
Peak demand 7.55 Gbps, mean demand 5.62 Gbps Peak demand 9.19 Gbps, mean demand 7.62 Gbps

Short Drop Util Rep Booked Over-prov Short Drop Util Rep Booked Over-prov
Optimal 0.1 Chs 0.31% 91.1% 176.0 7.27 Gbps 110.4% 0.0 Chs 0.11% 85.4% 199.0 10.54 Gbps 118.1%

Per-DC Opt 0.7 Chs 0.16% 88.3% 7.3 7.51 Gbps 114.0% 1.0 Chs 0.09% 82.7% 6.3 10.87 Gbps 121.8%
Per-DC Lim 1.4 Chs 0.00% 83.9% 2.4 7.89 Gbps 119.9% 20.7 Chs 0.17% 82.3% 2.5 10.95 Gbps 122.6%
Random 6.2 Chs 0.00% 80.4% 3.3 8.28 Gbps 125.4% 33.4 Chs 0.02% 77.9% 4.5 11.54 Gbps 129.3%
Reactive 5.9 Chs 0.27% 72.7% 3.5 9.08 Gbps 140.4% 15.8 Chs 0.43% 74.6% 3.6 12.01 Gbps 140.3%

Short: # channels with dropped requests; Drop: the request drop rate; Util: utilization of allocated resources; Rep: replication degree; Booked: the booked
bandwidth; Over-prov: over-provisioning ratio.
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(c) Replication Degree
Fig. 6. Predictive vs. reactive bandwidth provisioning for a typical peak period 702–780. There are 35 data centers available, each with capacity 300 Mbps,
and 91 channels, including 52 popular channels, 24 small channels, 15 non-zero new channels. K = 2, k = 10.

as shown in Fig. 7(b). Even Per-DC Limited Channels, with
a replication degree of 2.4 copies/video, can save cushion
bandwidth by around 30% as compared to Random, which
has a higher replication degree of 3.3 copies/video.
QoS problems occur if bandwidth is under-provisioned,

leading to a cushion bandwidth below 0 and an over-
provisioning ratio less than 100%. From Fig. 7(a) and
Fig. 7(c), we observe that QoS problems occur occasionally
for Per-DC Optimal but seldom for Per-DC Limited Channels
from time 1562 to 1640, because the latter scheme conser-
vatively books more cushion bandwidth. In addition, we note
that request drop rates in Table I are significantly lower than
the frequency of under-provisioning in the figures, because
when under-provisioning happens, most user requests are still
served. Only the demand exceeding the booked capacity is
dropped. From the above analysis, we conclude that Per-DC
Limited Channels achieves the best tradeoff in the domain of
utilization, QoS and replication overhead.

VI. RELATED WORK

Researches on exploiting virtualization techniques for de-
livering cloud-based IPTV services have been conducted by
major VoD providers like AT&T [11]. The importance of VoD

bandwidth demand projection on capacity planning has also
been recognized. It is shown that demand estimates can help
with optimal content placement in AT&T’s IPTV network [12].
More advanced video demand forecasting techniques have
been proposed, such as the non-stationary time series models
introduced in [6], [7], and video access pattern extraction via
principal component analysis in [13].

Predictive and dynamic resource provisioning has been pro-
posed mostly for virtual machines (VM) and web applications
with respect to CPU utilization [14]–[17] and power consump-
tion [18], [19]. VM consolidation with dynamic bandwidth
demand has also been considered in [20]. Our work exploits
the unique characteristics of VoD bandwidth demands and
distinguishes from the above work in three aspects. First,
our bandwidth workload consolidation is as simple as solving
convex optimization for a load direction matrix. We leverage
the fact that unlike VM, demand of a VoD channel can
be fractionally split into video requests. Second, our system
forecasts not only the expected demand but also the demand
volatility, and thus can control the risk factors more accurately.
In contrast, most previous works [15], [17] assume a constant
demand variance. Third, we exploit the statistical correlation
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(c) Over-Provisioning Ratio
Fig. 7. Workload portfolio selection vs. random load direction for a typical peak usage period from time 1562 to 1640. K = 2, k = 10.

between bandwidth demands of different video channels to
save resource reservation while previous works such as [20]
consider independent workloads.
The idea of statistical multiplexing and resource over-

booking has been empirically evaluated for a shared hosting
platform in [21]. Our novelty is that we formulate the quality-
assured resource minimization problem using Value at Risk
(VaR), a useful risk measure in financial asset management
[22], with the aid of accurate demand correlation forecasts.
We believe our theoretically grounded approach bears stronger
robustness against intractable demand volatility in practice.

VII. CONCLUDING REMARKS
In this paper, we propose an unobtrusive, predictive

and elastic cloud bandwidth auto-scaling system for VoD
providers. Operated at a 10-minute frequency, the system
automatically predicts the expected future demand as well as
demand volatility in each video channel through ARIMA and
GARCH time-series forecasting techniques based on history.
Leveraging demand prediction, the system jointly makes load
direction to and bandwidth reservations from multiple data
centers to satisfy the projected demands with high probability.
The system can save the resource booking cost for VoD
providers with regard to both bandwidth and storage.
We exploit the predictable anti-correlation between demands

to enhance resource utilization, and derive the optimal load
direction that minimizes the bandwidth resource reservation
while confining under-provision risks. Two suboptimal heuris-
tics have also been proposed to limit the storage cost. From
extensive simulations driven by the demand traces of a large-
scale real-world VoD system, we observe that suboptimal
heuristics have practical appeals due to their ability to balance
the costs of bandwidth and storage.
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