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Abstract—In cloud computing, a provider leases its computing resources in the form of virtual machines to users, and a price is

charged for the period they are used. Though static pricing is the dominant pricing strategy in today’s market, intuitively price ought to

be dynamically updated to improve revenue. The fundamental challenge is to design an optimal dynamic pricing policy, with the

presence of stochastic demand and perishable resources, so that the expected long-term revenue is maximized. In this paper, we

make three contributions in addressing this question. First, we conduct an empirical study of the spot price history of Amazon, and find

that surprisingly, the spot price is unlikely to be set according to market demand. This has important implications on understanding the

current market, and motivates us to develop and analyze market-driven dynamic pricing mechanisms. Second, we adopt a revenue

management framework from economics, and formulate the revenue maximization problem with dynamic pricing as a stochastic

dynamic program. We characterize its optimality conditions, and prove important structural results. Finally, we extend to consider a

nonhomogeneous demand model.

Index Terms—Dynamic pricing, revenue maximization, spot market, cloud computing, public cloud, dynamic programming
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1 INTRODUCTION

THE emergence of cloud computing can already be felt
with the burgeoning of cloud service offerings. Beyond

technological advances, cloud computing also shows pro-
mises to the economic landscape of computing. Pricing is a
crucial component of the cloud economy because it directly
affects a provider’s revenue and a customer’s budget.

Though static pricing is the dominant strategy today,
dynamic pricing emerges as an attractive alternative to
better cope with unpredictable customer demand. The
motivation is intuitive and simple: pricing should be
leveraged strategically to influence demand to better utilize
unused capacity, and generate more revenue. Indeed,
Amazon EC2 [2] has introduced a “spot pricing” feature,
where the spot price for a virtual instance is dynamically
updated to match supply and demand as claimed in [4].

Given the flexibility to change the price on the spot, the
fundamental question is, what is the optimal dynamic pricing
policy for a provider, in terms of maximizing the expected
revenue amid random demand? A provider naturally
wishes to set a higher price to get a higher profit margin;
yet in doing so, it also bears the risk of discouraging demand
in the future. An important observation is that computing
resources, such as CPU cycles and bandwidth, are inherently
perishable: if at some point in time they are not utilized they
are of no value. It is nontrivial to balance this intrinsic
tradeoff with perishable capacity and stochastic demand.

To address this fundamental challenge, we adopt a
revenue management framework from economics that deals
with the problem of selling perishable resources, such as
airline seats and hotel reservations, to maximize the
expected revenue from a population of price sensitive
customers [43]. Dynamic pricing has become an active field
of the revenue management literature, with successful real-
world applications in industries such as travel, fashion, and
so on [9], [16], [38].

Cloud computing poses new challenges to solving
revenue maximization problems. First, little is known about
how the spot price is adjusted, and what factors are
considered in the pricing algorithm, by a real-world
provider such as Amazon. Also, little is known about
demand statistics, and how demand reacts to price changes.
In fact, though Amazon publishes its spot price history,
very few insights are gained on important aspects related to
modeling of the market.

Second, for a cloud provider, revenue not only depends
on the number of customers, but also on the duration of
usage. Unlike hotel and car rental reservations where usage
durations are known, the exact usage duration of an
instance in a cloud is not specified a priori. Thus, not only
the arrival but also the departure of demand is stochastic,
and has to be taken into account when collecting revenue.
This clearly adds to the modeling complexity.

Our original contributions in this paper are threefold.
First, we conduct an empirical study on Amazon’s spot
price history. We collect the spot price trace from both
official and unofficial sources, spanning the time period
from November 30, 2009, the inception of spot instances, to
October 27, 2011, across all the regions and instance types.
Surprisingly, we find that, in contrast to the common belief
[13], [45], Amazon’s spot price is unlikely to be set
according to market supply and demand. Rather, price
oscillates within a very narrow band most of the time, which
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is more likely to be an artifact of some pricing algorithm
with predetermined reserve price. Price statistics reveal
little about market demand and its relationship with price.
This suggests that it is questionable to model the market
based on the price statistics of Amazon.

Motivated by this observation, we consider the scenario
where the cloud provider with fixed capacity updates the
spot price according to market demand in this paper. Our
second contribution is that we formulate the revenue
maximization problem as a finite-horizon stochastic
dynamic program, with stochastic demand arrivals and
departures. We characterize optimality conditions for the
stochastic problem and prove important structural results.
Our results show that the optimal pricing policy exhibits
time and utilization monotonicity, and the optimal
revenue has a concave structure. They provide insights
on understanding the fundamental tradeoff between
pricing to the future to attract more revenue from future
demand, and pricing to the present to extract more
revenue from existing customers.

We also extend our model to the case with nonhomoge-
neous demand. We conduct an asymptotic analysis on this
more general but difficult problem. We prove a surprising
result that when the demand arrival and departure rates are
linear with system utilization, i.e., number of existing
instances, the optimal price is only a function of time and
is independent of the system utilization.

The remainder of the paper is structured as follows:
Section 2 introduces our model after an empirical study of
Amazon’s spot price history. In Section 3, we present our
formulation and analysis of the stochastic revenue max-
imization problem with a homogeneous demand model.
We extend the setting to a nonhomogeneous demand model
in Section 4. Numerical results are provided in Section 5. In
Section 6, we discuss issues pertaining to the practically of
dynamic pricing, and in Section 7 we summarize related
work. Finally, we conclude the paper in Section 8.

2 MODEL

2.1 Amazon EC2 Spot Price History

Before we introduce our model and assumptions, we wish
to first do a reality check and examine the spot price history
of Amazon EC2, currently the only provider that offers

services with dynamically changing prices to our knowl-
edge [4]. Our purpose is to obtain information on how and
when a real-world provider adjusts its prices, and extract
important modeling assumptions and/or constraints that
we need to consider for our analysis to be meaningful.

Amazon sells virtual machines as instances, where
different types of instances are allocated different amounts
of resources. Both Windows and Linux are available.
Amazon EC2 operates in seven geographical regions with
different pricing [2]. Within each region, there are several
availability zones with independent infrastructures.

Amazon starts to offer spot instances and publish spot
price data in December 2009. We collect spot price traces
using the ec2-describe-spot-price-history API call pro-
vided by the EC2 API tools [3]. Note that this method
provides us 90 days worth of traces because Amazon only
makes the most recent 90 days of spot price history
publicly accessible [4]. To obtain data beyond this
limitation, we download the price data accumulated by
interested parties because the inception of spot instances
[27], [41]. This unofficial trace runs from as early as
November 30, 2009.1 Notice that this unofficial trace is
also collected using the same EC2 API method, and shall
be treated with the same credibility.2 Our combined trace
has data until October 27, 2011.

While we have studied price data across all regions,
availability zones, instance types, and operating systems,
the results do not vary across these dimensions. To keep the
presentation concise, we only show results for the Linux
small standard (API name: m1.small), large standard
(m1.large), as well as the extra-large high-memory
(m2.xlarge) instance, in the US East (Virginia) (US-East-1)
and US West (N. California) (US-West-1) regions.

We first consider a relatively short time period. Fig. 1
shows a seven-day price history for US-East-1 linux
m1.small instances. Price fluctuates between $0.03 and
$0.086 frequently, demonstrating that Amazon does update
the price dynamically along the time line.

However, if we take a longer perspective, the story
becomes drastically different. Fig. 2 shows the complete
spot price history for the same linux m1.small instances in
US-East-1 region. We observe temporal spikes from time to
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1. Traces for certain regions such as Asia Pacific Southeast (ap-southeast)
are only available from when spot instances are made available there.

2. Spot prices also vary across availability zones. However, before the
2011-05-15 version of EC2 API tools, only the lowest spot price across the
region is returned from the ec2-describe-spot-price-history method. We,
thus, only plot the lowest regional spot price throughout the study.

Fig. 1. Spot price of US-east-1.linux.m1.small, from 00:00:00, September
15, 2011 to 23:59:59, September 21, 2011.

Fig. 2. Spot price of US-East-1 linux m1.small, from November 30, 2009
to October 27, 2011.



time, which we conjecture correspond to the periods when
capacity has to be reclaimed from spot instances to support
other business. Nevertheless, it is evident the price oscillates
within a very narrow band ($0.029-$0.031) most of the time,
prior to April 2011. After that price oscillates within a wider
band, again with clearly observable lower and upper
bounds. Also notice that the temporal price spikes exhibit
a shape of impulse bands, suggesting that price is instantly
adjusted up, oscillates between a certain range, and is
instantly adjusted down to the normal level.

Figs. 3 and 4 show the price history for the linux m1.large
and m2.xlarge instances in the US-East-1 region. We
observe the same trend where price is almost a straight
line most of the time. When price spikes, it still oscillates
within clearly observable upper and lower bound. Notice
that in all three figures, we can easily identify a lower
bound below which the price never goes down.

These observations imply that the Amazon spot instance
market may not be a spot market where price is set
according to supply and demand, as Amazon suggests [4]
and many believe in their studies [13], [45]. According to
Amazon, users have to submit bids indicating the maximum
price they are willing to pay per instance per hour, and
Amazon sets the price according to supply and user bids.
All requests with bids higher than or equal to the spot price
will run.3 If this were the case, it is highly unlikely that the
price will constantly stay bounded.4

Our hypothesis is that the spot price is likely to be
artificially controlled with a maximum and minimum price
beyond which it should never go. These maximum and
minimum prices may be adjusted by Amazon according to
an unknown algorithm. In fact, Ben-Yehuda et al. [8] reach
the same conclusion with more thorough examination and
modeling, where other possible explanations such as
collaborative bidding are ruled out.

Therefore, we believe it is questionable to study dynamic
pricing for a spot cloud market-based closely on the model
and mechanism of Amazon, or constraints derived from its
spot price data (e.g., closely bounded price). As an early
theoretical work on this topic, we intentionally choose not
to model the specifics of Amazon, but instead to seek to

develop and analyze market-driven dynamic pricing
mechanisms, which may provide insights on establishing
an efficient cloud spot market in the future. As such, it is
also expected that our results are different from properties
of Amazon’s spot price.

2.2 Assumptions

We now turn to introducing our model and assumptions
for the spot market. We focus on an infrastructure cloud
provider that sells virtual machines as instances. Its
underutilized capacity is sold through the spot market
with a price dynamically changing over time. Instead of
using bids to determine the price, in our model the spot
price is determined by the provider according to instanta-
neous demand and supply. This is simple to implement
and maintain, and avoids the possible collaborative
bidding to game the market. We emphasize that it is
necessary for the provider to have the price-setting power,
since when it needs to reclaim the capacity it can do so by
raising the price and forcing out customers with low
reservation prices.

We assume that the spot price p can take any value from
an interval ½0; pmax�. The existence of a maximum price can
be justified by the common tiered service strategy in
practice. For example, Amazon offers another two tiers of
products (reserved and on-demand instances) with higher
QoS priorities, and the price of spot instances obviously
cannot be higher than those of the higher-tier products.
Price is charged per instance per time unit. Without loss of
generality, we let pmax ¼ 1 throughout the paper. We
consider a finite horizon with continuous time.

In this paper, we focus on a monopoly setting and do not
consider the effect of market competition on pricing. We
also assume that customers are price takers and do not
consider price anticipating behavior. As the spot market for
cloud computing is still at its early stage, these assumptions
hold in general. Analyses of market competition and price
anticipating behavior are beyond the scope of this work,
and left for our future work.

The operator can influence demand by varying its price p.
Demand is determined by two independent stochastic
processes, namely the arrival process that corresponds to
the births of new instances, and the departure process that
models the deaths of existing instances (when customers
shut them down). Here, we assume that demand arrivals can
be expressed as a Poisson process with rate fðpÞ (number of
new instances requested per unit time). Intuitively, as price p

160 IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. 1, NO. 2, JULY-DECEMBER 2013

Fig. 3. Spot price of US-East-1 linux m1.large, from November 30, 2009
to October 27, 2011.

Fig. 4. Spot price of US-East-1 linux m2.xlarge, from February 23, 2010
to October 27, 2011.

3. The waiting time for the spot instances to start is not guaranteed
though.

4. Consider a real-world spot market, such as a commodity market for
oil, cotton, and so on, or a stock exchange, where price is indeed determined
by bids from buyers and sellers. The spot price evolves continuously and
does not have any identifiable bounds, the existence of which would
suggest arbitrage opportunities and an inefficient market [36].



increases, customers have less financial incentives to use the
service, therefore a lower arrival rate.

The demand departure process is also modeled as a
Poisson process with rate gðpÞ, where gð�Þ is the departure
rate function. When p decreases, customers naturally have
a lower probability to leave the system, resulting in a
lower departure rate gðpÞ. fð�Þ and gð�Þ can be estimated
from past demand data, and this learning process can
be refined periodically. This justifies our use of a finite
decision horizon.

We impose several mild and practical assumptions on
fð�Þ and gð�Þ, which are defined over the interval ½0; 1�. For
the arrival rate function fð�Þ, we assume the following
properties hold:

Assumption 1. fðpÞ � 0; f 0 < 0; f 00 < 0; 80 � p � 1, f 0ð0Þ ¼
0, f 0ð1Þ ¼ �1, and fð1Þ ¼ 0.

The concavity of fð�Þ is a natural assumption. It reflects
the common psychology that when the spot price is high,
lowering it will be more attractive to customers, compared
to when the spot price is already low. Other assumptions
are all intuitive and reasonable requirements commonly
used in the literature [9], [14], [15]. An example of such
functions is fðpÞ ¼ kð1� paÞb, where k > 0; a > 1 and 0 <
b < 1 as shown in Fig. 5a.

The departure rate function gð�Þ is clearly increasing in p.
We further assume the following properties.

Assumption 2. gðpÞ � 0; g0 > 0; g00 > 0; 80 � p � 1; g0ð0Þ ¼
1, g0ð1Þ ¼ 0, and gð0Þ ¼ 0.

The convexity of gð�Þ models the phenomenon that when
price is high, increasing it further will have a more
detrimental effect than when the price is low. An example
of such functions is gðpÞ ¼ kð1� ð1� paÞbÞ; k > 0; a > 1,
0 < b < 1, as shown in Fig. 5b.

Note that the property fð1Þ ¼ 0 allows us to model the
out-of-capacity condition as an implicit constraint that
forces the provider to set the price to 1 to shut down the
arrival process. Similarly, gð0Þ ¼ 0 allows the provider
to price at 0 when the system is empty to turn off the
departure process. They are often referred to as the “null
prices” in the literature [15]. In reality, we can certainly
have demand arrivals and departures without correspond-
ing sales when the cloud is out of capacity or empty.
However, in the context of our model, no generality is lost
with this modeling artifact.

The Poisson assumption here is certainly an abstraction.
Its use here can be justified for two reasons. First, since
there is little knowledge gained on the demand model for

spot instances from empirical studies, the Poisson assump-
tion provides a good starting point for modeling with
analytical tractability. Second, it is extensively used in the
literature on pricing to model real-world demand processes
for perishable goods, such as fashion apparel, flight seats,
hotels, and so on [14], [15], [43].

3 A STOCHASTIC REVENUE MAXIMIZATION

FORMULATION

3.1 Formulation

The pricing problem can be formulated as follows: At the
current time, the operator has x 2 ½0; C� spot instances
running in the system with capacity C. It faces a finite
decision horizon t > 0 to collect revenue, until it updates
the demand functions fð�Þ and gð�Þ. Note here t essentially
indicates how much time is left for sale, and decreases along
the time line.

Our provider uses a nonanticipating pricing policy pðsÞ
to maximize the expected revenue over the entire decision
horizon. Let XðsÞ denote system utilization, i.e., the number
of active instances in the system at any time s 2 ½0; t�. A
demand is realized at time s if dXðsÞ ¼ 1, and is vanished at
time s if dXðsÞ ¼ �1.

The pricing policy must be such that the number of
active instances does not exceed the capacity C at any time
s. We denote by U the set of all such possible pricing
policies that satisfy

Z s

0

dXðmÞ 2 ½�x;C � x�; ð1Þ

pðsÞ 2 ½0; 1�; 8 s 2 ½0; t�: ð2Þ

Here, m denotes time in ½0; s� when s is given. Constraint (1)
is the capacity constraint mentioned above. The existence of
null prices guarantees that it can always be satisfied.

Given a pricing policy u 2 U, we denote the expected
revenue collected over the time period ½0; t� by

Juðx; tÞ¼
:
Eu

Z t

0

pðsÞXðsÞds
� �

; 8t > 0: ð3Þ

At the very end of the horizon, when t ¼ 0, the expected
revenue is clearly zero for any utilization x

Juðx; 0Þ ¼: 0; 8x 2 ½0; C�: ð4Þ

The provider’s problem is to find a pricing policy u� that
maximizes the expected revenue generated over ½0; t�,
denoted by J�ðx; tÞ. Equivalently,

J�ðx; tÞ ¼: sup
u2U

Juðx; tÞ: ð5Þ

3.2 Optimality Conditions

Equation (5) is a stochastic dynamic programming pro-
blem. To solve it, we can consider its Hamilton-Jacobi
conditions, which are the continuous-time counterpart of
the Bellman equation. Informally, consider what happens
over a small interval of time �t. Since both the arrival and
departure processes are Poisson, by selecting a price p, the
provider sees one more instance over the next �t with
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Fig. 5. Examples of demand arrival and departure rate functions.



probability fðpÞ�tþ oð�tÞ, one fewer instance with prob-
ability gðpÞ�tþ oð�tÞ, and no change with the rest of the
probability mass. By the Principle of Optimality,

J�ðx; tÞ ¼ sup
p

�
px�tþ oð�tÞ

þ fðpÞ�t � J�ðxþ 1; t� �tÞ
þ gðpÞ�t � J�ðx� 1; t� �tÞ
þ ð1� ðfðpÞ þ gðpÞÞ�tÞJ�ðx; t� �tÞ

�
:

ð6Þ

In words, with t time left to the end of the horizon, the
optimal expected revenue J�ðx; tÞ must be equal to the
realized revenue during �t, which is simply px�t, plus
the expected value of the optimal expected revenue from
the remaining time interval t� �t, which are the remaining
terms of (6).

Rearranging the terms and taking the limit as �t! 0, we
get

@J�ðx; tÞ
@t

¼ sup
p

�
pxþ fðpÞðJ�ðxþ 1; tÞ � J�ðx; tÞÞ

� gðpÞðJ�ðx; tÞ � J�ðx� 1; tÞÞ
�
:

ð7Þ

Note that (7) holds only for 1 � x � C � 1. When x ¼ 0, the
provider will not see any departure over �t, and is forced to
price at 0; when x ¼ C the provider is forced to set the price
to 1 to shut down the arrival process as discussed above.
Thus, p�ð0; tÞ ¼ 0 and p�ðC; tÞ ¼ 1 in our model. We have
the following:

J�ð0; tÞ ¼ fð0Þ�t � J�ð1; t� �tÞ
þ ð1� fð0Þ�tÞJ�ð0; t� �tÞ þ oð�tÞ;

J�ðC; tÞ ¼ gð1Þ�t � J�ðC � 1; t� �tÞ
þ ð1� gð1Þ�tÞJ�ðC; t� �tÞ þ C�tþ oð�tÞ;

from which we obtain the following conditions:

@J�ð0; tÞ
@t

¼ fð0Þ
�
J�ð1; tÞ � J�ð0; tÞ

�
; ð8Þ

@J�ðC; tÞ
@t

¼ C � gð1Þ
�
J�ðC; tÞ � J�ðC � 1; tÞ

�
: ð9Þ

We have not yet justified interchanging supp and lim�t!0 .
This can be done formally using [10, Theorem 2.1]. This is
also reminiscent to the technique used in [15]. Thus, a
solution to (7) with boundary conditions (4) is indeed the
optimal revenue J�ðx; tÞ, from which we can readily obtain
the optimal prices p�ðx; tÞ that together form an optimal
pricing policy u�.

We now show the existence of a unique solution to (7).

Proposition 1. If the demand arrival and departure rate
functions f and g satisfy Assumptions 1 and 2, there exists
a unique solution to (7) with boundary conditions (4).

Proof. The optimal price p is always within the compact set
½0; 1�. Combining compactness with the fact that f and g

are continuous and bounded in p establishes the
conditions required by [10, Theorem 2.3] for the existence
of a unique solution to (7). tu

3.3 Structural Results

Although we have found the optimality conditions,

solving them to obtain a closed-form solution is quite

difficult for arbitrary demand arrival and departure

functions. Moreover, numerically computing the optimal

solution can also be prohibitive as the state space grows

exponentially with the capacity of the cloud provider,

which is typically fairly large. However, we are able to

characterize several important structural properties of the

optimal solution to the dynamic program (7). We believe

that insights obtained from our analysis are fundamental

in understanding the problem, and instrumental toward

designing computationally efficient heuristics, which is

important in practice.

Theorem 1 (Monotonicity of optimal revenue). J�ðx; tÞ is

strictly increasing in both x and t.

Proof. The fact that J�ðx; tÞ is strictly increasing in t is

intuitive and can be straightforwardly proved, and we

omit the details here. The fact that J�ðx; tÞ is also

increasing in x is not trivial because with a smaller

number of running instances x to start with, the provider

has an incentive to set a lower price to attract more

customers, and the net effect on revenue can be either

positive or negative.
By definition (3), we can write

J�ðx; tÞ

¼ Eu

Z t

0

puðsÞxds

� �
þ Eu

Z t

0

puðsÞ
Z s

0

dXuðmÞds
� �

;
ð10Þ

where u is the optimal policy and clearly satisfies

Z s

0

dXuðmÞ 2 ½�x;C � x�; 8s 2 ½0; t�:

dXuðmÞ is the optimal birth-death process that corre-

sponds to the optimal policy u. Alternatively, we can also

think of puðmÞ as determined by the statistics of the

optimal birth-death process dXuðmÞ at time m, through

E½dXuðmÞ=dm� ¼ fðpuðmÞÞ � gðpuðmÞÞ.
Now, we let dXvðmÞ be another birth-death process

that relates to XuðmÞ by

Z s

0

dXvðmÞ ¼
Z s

0

dXuðmÞ � 1; 8s 2 ½0; t�:

dXvðmÞ corresponds to another pricing policy, denoted by

v, which can be obtained from the following relationship:

fðpvðmÞÞ � gðpvðmÞÞ ¼ E½dXvðmÞ=dm�:

Obviously, dXvðmÞ � dXuðmÞ holds at all times

m 2 ð0; s�. Further, dXvðmÞ < dXuðmÞ must hold for at

least m ¼ 0. Thus,

E½dXvðmÞ� � E½dXuðmÞ� ) pvðmÞ � puðmÞ; 8m 2 ð0; s�;
E½dXvð0Þ� < E½dXvðmÞ� ) pvð0Þ > puð0Þ:

ð11Þ

We can write out the expected revenue starting with
xþ 1 instances under the policy v as follows:
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Jvðxþ 1; tÞ

¼ Ev

Z t

0

pvðsÞðxþ 1Þds
� �

þ Ev
Z t

0

pvðsÞ
Z s

0

dXvðmÞds
� �

¼ Ev

Z t

0

pvðsÞxds

� �
þ Ev

Z t

0

pvðsÞ 1þ
Z s

0

dXvðmÞ
� 	

ds

� �

¼ Ev

Z t

0

pvðsÞxds

� �
þ Ev

Z t

0

pvðsÞ
Z s

0

dXuðmÞds
� �

;

ð12Þ

where v is a feasible policy because

Z s

0

dXvðmÞ 2 ½�x� 1; C � x� 1�; 8s 2 ½0; t�:

Comparing to (10), it is readily seen that Jvðxþ 1; tÞ >
J�ðx; tÞ due to (11). Thus, J�ðxþ 1; tÞ > J�ðx; tÞ. tu
Theorem 1 asserts that the optimal expected revenue

increases with the utilization of the system and/or time.

Moreover, we can show that the optimal revenue exhibits

diminishing marginal returns with respect to utilization.

Theorem 2 (Concavity of optimal revenue). J�ðx; tÞ is

concave in x for any fixed t > 0.

Proof. It suffices to show that

2J�ðx; tÞ � J�ðxþ 1; tÞ þ J�ðx� 1; tÞ; 8t > 0 ð13Þ

holds for all x 2 ½1; C � 1�, which we prove by construct-

ing a feasible policy to solve J�ðx; tÞ with expected

revenue equal to ðJ�ðxþ 1; tÞ þ J�ðx� 1; tÞÞ=2.
Suppose u and v are optimal policies that achieve

J�ðxþ 1; tÞ and J�ðx� 1; tÞ, respectively. Denote the
corresponding optimal birth-death processes as dXuðmÞ
and dXvðmÞ, respectively. Now, consider a new birth-
death process as follows:

dXu0 ðmÞ ¼
dXuðmÞ þ dXvðmÞ

2
; 8m 2 ½0; tÞ:

This new process corresponds to a policy u0, where

pu0 ðmÞ � ðpuðmÞ þ pvðmÞÞ=2 due to the concavity of

the function E½dXðmÞ=dm� ¼ fðpðmÞÞ � gðpðmÞÞ by

Assumptions 1 and 2. By construction,
R s

0 dXu0 ðmÞ 2
½�x;C � x� holds for all s 2 ½0; t�. Thus, u0 is a feasible

solution for J�ðx; tÞ. Readily,

J�ðx; tÞ � Ju0 ðx; tÞ �
J�ðxþ 1; tÞ þ J�ðx� 1; tÞ

2
:

tu

This concavity property of the optimal revenue is not

only crucial for further development of this paper but also

of interest in itself. For example, it can be useful for

determining the optimal number of instances running in

the system if it is part of the decisions. When the cost of

providing computing hardware is linear or strictly convex,

the expected profit becomes a concave function of the

number of running instances. In this case, the optimal

utilization is the largest quantity for which the marginal

expected revenue exceeds the marginal cost.

We proceed to consider how the optimal price changes

over time and the utilization x. Our first result is that the

optimal price increases with the system utilization.

Theorem 3 (Utilization monotonicity of optimal price).

p�ðx; tÞ < p�ðxþ 1; tÞ for any fixed t, x 2 ½0; C � 1�.
Proof. For convenience, let us denote Mðx; tÞ ¼ J�ðx; tÞ �
J�ðx� 1; tÞ. From Theorem 2, we know that Mðx þ
1; tÞ �Mðx; tÞ. If we take the derivative of the right side

of (7) with respect to p and set it to zero, we get the

necessary and sufficient condition for p�ðx; tÞ which we

abbreviate as p�x:

xþ f 0ðp�xÞMðxþ 1; tÞ � g0ðp�xÞMðx; tÞ ¼ 0: ð14Þ

By Assumptions 1 and 2, we have

g0ðp�xÞMðx; tÞ � f 0ðp�xÞMðx; tÞ � x

¼)Mðx; tÞ � x

g0ðp�xÞ � f 0ðp�xÞ

¼)Mðxþ 1; tÞ � xþ 1

g0ðp�xþ1Þ � f 0ðp�xþ1Þ
:

Similarly, we have

g0ðp�xÞMðxþ 1; tÞ � f 0ðp�xÞMðxþ 1; tÞ � x

¼)Mðxþ 1; tÞ � x

g0ðp�xÞ � f 0ðp�xÞ
:

Thus, for the two inequalities to hold, we must have

xþ 1

g0ðp�xþ1Þ � f 0ðp�xþ1Þ
� x

g0ðp�xÞ � f 0ðp�xÞ
¼)g0ðp�xþ1Þ � f 0ðp�xþ1Þ > g0ðp�xÞ � f 0ðp�xÞ

¼)p�ðxþ 1; tÞ > p�ðx; tÞ:

tu

Theorem 3 has natural economic interpretations. When

the system is heavily loaded, it is in the interest of the

provider to set a higher price to obtain a higher revenue

from customers, as well as to discourage future demand to

prevent the system from overloading. On the other hand,

when the system is lightly utilized, the provider can afford

to adopt a lower price to attract more customers.
We further show that the optimal price also exhibits time

monotonicity. That is, p�ðx; tÞ is decreasing in t. To prove

this result, we first need a technical lemma.

Lemma 1. @Mðx;tÞ
@t > 0 for any given t, where Mðx; tÞ ¼

J�ðx; tÞ � J�ðx� 1; tÞ.
Proof. Note that at t ¼ 0, J�ðx; 0Þ ¼ 0 for all x 2 ½0; C�. Thus,

Mðx; 0Þ ¼ 0. Assume that @Mðx;tÞ@t � 0. Then, at some t0 > 0,

Mðx; t0Þ � 0, which contradicts with Theorem 1. Thus,

the lemma must hold. tu
Theorem 4 (Time monotonicity of optimal price). p�ðx; tÞ is

decreasing in t for all x 2 ½1; C � 1�.
Proof. It suffices to prove that

@p�ðx; tÞ
@t

< 0; 8x 2 ½1; C � 1�: ð15Þ
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Taking derivative with respect to t in (14) and rearran-

ging the terms, we have

@p�ðx; tÞ
@t

ðg00ðp�ðx; tÞÞMðx; tÞ � f 00ðp�ðx; tÞÞMðxþ 1; tÞÞ

¼ f 0ðp�ðx; tÞÞ @Mðxþ 1; tÞ
@t

� g0ðp�ðx; tÞÞ @Mðx; tÞ
@t

:

Applying Lemma 1 and Assumptions 1 and 2, the RHS is

seen to be negative. Since g00 > 0; f 00 < 0;Mðx; tÞ � 0,
@p�ðx;tÞ
@t must be negative in the LHS. tu

Therefore, as time runs out, the optimal price is

increasing, and at the end of the horizon when t ¼ 0,

p�ðx; 0Þ is readily found to be 1, the maximum possible

price, for all x since Mðx; 0Þ ¼ 0 in (7). The intuition is that

when the provider has a long period of time left (t is large),

she should price to the future and set a lower price to attract

more customers to maximize the expected revenue. As time

goes, her focus is shifting to the existing customers, and the

optimal strategy is to set a higher price to extract more

revenue. At the end, when t ¼ 0, it simply sets price to

maximize the current revenue and entirely ignores the

impact on future revenue.
The properties that we proved in Theorems 1, 2, 3, and 4

are not only intuitively satisfying, but also useful if we wish

to compute the optimal policy numerically because they

significantly reduce the search space of policies over which

one needs to optimize.

4 NONHOMOGENEOUS DEMAND

In the preceding analysis, we have assumed a time

homogeneous demand model, where the demand arrival

and departure rates are time invariant functions of price.

This assumption is restrictive. In this section, we study the

general case where both the demand arrival and departure

functions may change over time.
To keep the analysis tractable, we adopt a simple

nonhomogeneous demand model. We assume that demand

arrival at time s can be expressed as a Poisson process with a

rate XðsÞfðpðsÞÞ. XðsÞfðpðsÞÞ denotes the price-sensitive

demand arrival rate with fðpðsÞÞ being the endogenous

arrival probability function. We use XðsÞ as a linear multi-

plier to model the intuition that when pðsÞ decreases, each

existing customer has an increased probability fðpðsÞÞ to shift

more workload to the cloud, resulting in more demand.
The demand departure process is similarly modeled

as a Poisson process with a time-varying rate function

XðsÞgðpðsÞÞ, where gðpðsÞÞ is the endogenous departure

probability. When pðsÞ decreases, each customer has a

lower probability gðpðsÞÞ to leave the system, resulting in a

lower rate XðsÞgðpðsÞÞ. The same structural properties as

assumed in Section 3 are carried over here, namely:

Assumption 3. 0 � fðpÞ � 1; f 0 < 0; f 00 < 0; 80 � p � 1,

f 0ð0Þ ¼ 0; f 0ð1Þ ¼ �1; fð0Þ ¼ 1, and fð1Þ ¼ 0.

A s s u m p t i o n 4 . 0 � gðpÞ � 1; g0 > 0; g00 > 0; 80 � p � 1;

g0ð0Þ ¼ 1; g0ð1Þ ¼ 0; gð0Þ ¼ 0, and gð1Þ ¼ 1.

4.1 Formulation

The revenue maximization problem under such a non-
homogeneous demand model can then be formulated as
follows similar to (5):

J�ðx; tÞ¼: sup
u2U

Z t

0

pðsÞXðsÞds;

s:t: XðsÞ ¼ xþ
Z s

0

dXðmÞ;
ð16Þ

where U denotes the set of admissible policies that satisfyR s
0 dXðmÞ 2 ½�xþ 1; C � x� for all s 2 ½0; t�. Notice that in

this model, XðsÞmust be larger than or equal to 1. Thus, the
provider is forced to set p�ð1; tÞ ¼ 0, and we are only
interested in cases where x � 2. No generality is lost in
making this modeling artifact.

Similarly, we obtain the optimality conditions as follows:

@J�ðx; tÞ
@t

¼ sup
p

x
�
pþ fðpÞðJ�ðxþ 1; tÞ � J�ðx; tÞÞ

� gðpÞðJ�ðx; tÞ � J�ðx� 1; tÞÞ
�
:

ð17Þ

The necessary and sufficient condition for p�ðx; tÞ is then

1þ f 0ðp�xÞMðxþ 1; tÞ � g0ðp�xÞMðx; tÞ ¼ 0: ð18Þ

4.2 Asymptotic Analysis

The nonhomogeneous model creates additional difficulty in
obtaining structural properties regarding the optimal
pricing policy. To overcome the difficulty, while keeping
the results relevant, we conduct an asymptotic analysis
here. Specifically, we assume C !1, and drop the capacity
constraint that limits the set of admissible policies U. This
models a large-scale problem, where the capacity of a cloud
is always enough to accommodate all the virtual instances,
and thus, the capacity constraint is usually inactive. This is
also useful as an approximate solution to the original
problem (16), as the asymptotic optimal solution turns out
to have a very simple structure.

Our first result is that the monotonicity of optimal
revenue still holds in the nonhomogeneous demand model.

Theorem 5. J�ðx; tÞ is strictly increasing in both x and t in the
nonhomogeneous demand model.

Proof. The fact that J�ðx; tÞ is strictly increasing in t is
intuitive. We only prove for the result that J�ðx; tÞ is also
increasing in x.

Consider J�ðx; tÞ and J�ðx� 1; tÞ. Let u2 be the
optimal pricing policies that achieve J�ðx� 1; tÞ. Clearly,
u2 is feasible for J�ðx; tÞ. From (3), we have

Ju2
ðx; tÞ

J�ðx� 1; tÞ ¼
R t

0 pðsÞEu2
X1ðsÞ½ �dsR t

0 pðsÞEu2
X2ðsÞ½ �ds

:

Eu2
½X1ðsÞ�; Eu2

½X2ðsÞ� can be found to grow exponentially
over time, i.e.,

Eu2
½X1ðsÞ� ¼ x � eqðsÞ;

Eu2
½X2ðsÞ� ¼ ðx� 1ÞeqðsÞ;

where qðsÞ ¼
Z s

0

�
fðpðsÞÞ � gðpðsÞÞ

�
ds:

ð19Þ
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Thus,

J�ðx; tÞ
J�ðx� 1; tÞ �

Ju2
ðx; tÞ

J�ðx� 1; tÞ ¼
x

x� 1
> 1:

tu

Moreover, we can prove that the optimal pricing policy

is independent of the number of instances in the system.

Theorem 6. p�ðx; tÞ ¼ p�ðtÞ; 8x � 2.

Proof. From the proof of Theorem 5, we know that
J�ðx;tÞ
J�ðx�1;tÞ � x

x�1 . By the same token, assume that u1 is the

optimal pricing policy that achieves J�ðx; tÞ. Since the

constraint that
R s

0 dXðmÞ 2 ½�xþ 1; C � x� is dropped, u1

is also feasible for J�ðx� 1; tÞ. Then, we have

J�ðx; tÞ
J�ðx� 1; tÞ �

J�ðx; tÞ
Ju1
ðx� 1; tÞ ¼

x

x� 1
: ð20Þ

Thus, J�ðx;tÞ
J�ðx�1;tÞ ¼ x

x�1 , and u1 must be equal to u2 for the

equation to hold, thus the proof. tu
Theorem 6 is surprising. It tells us that when the

system capacity is not a concern, the optimal pricing

policy with nonhomogeneous demand is only a function

of the time remaining to the end of the horizon. This is so

because the expected demand is no longer upper bounded

by the system capacity. It is always optimal to maximize

the expected revenue solely obtained from future demand,

which is completely determined by the time remaining to

the end of the horizon and does not depend on the

utilization. The optimal expected revenue using the same

pricing policy is, thus, proportional to x as E½XðsÞ� is

proportional to x from (19). This property greatly reduces

the complexity of solving the stochastic dynamic program

by an order of C because time is the only state variable.
Further, we can show that for a given number of active

instances, the optimal price still exhibits time monotonicity.

Theorem 7. There exists an optimal price p�ðtÞ that is strictly

decreasing in t.

Proof. Since J�ðx;tÞ
J�ðxþ1;tÞ ¼ x

xþ1 , Mðx; tÞ ¼Mðxþ 1; tÞ ¼MðtÞ
where Mðx; tÞ ¼ J�ðx; tÞ � J�ðx� 1; tÞ. Substitute into

(18),

MðtÞ ¼ 1

g0ðp�ðtÞÞ � f 0ðp�ðtÞÞ :

We denote hðpÞ ¼ 1
g0ðpÞ�f 0ðpÞ . Taking derivative with

respect to t, we have

M 0ðtÞ ¼ h0ðpÞ � ðp�Þ0ðtÞ:

From the definition of MðtÞ and (17),

M 0ðtÞ ¼ @J
�ðx; tÞ
@t

� @J
�ðx� 1; tÞ
@t

¼MðtÞðfðp�ðtÞÞ � gðp�ðtÞÞÞ þ p�ðtÞ ¼ @J
�ðx; tÞ
x@t

> 0:

Since h0 ¼ r00ðg0�f 0Þ�ðg00�f 00Þr0
ðg0�f 0Þ2 , with Assumptions 3, 4, h0 < 0.

Thus, @p
�ðtÞ
@t < 0. tu

5 NUMERICAL STUDIES

In this section, we conduct numerical studies to verify the
properties of the optimal pricing policy. The system capacity
C is set to 10,000. This corresponds to a moderate scale data
center, such as a single availability zone of Amazon EC2,
with several thousand machines capable of running tens of
thousands of instances [5]. The decision horizon t is
normalized to ½0; 1�, which corresponds to a 1-hour period,
and prices are charged on a usage time basis as we discussed
in Section 2.2.

We follow the standard approach of numerically solving
a continuous time dynamic program—discretizing the time
horizon into N intervals of length �t and using a difference
equation to approximate the optimality equation. The
resulting difference equation

J�ðx; tÞ ¼ max
p2½0;1�

�
px�tþ fðpÞ�tJ�ðxþ 1; t��tÞ

þ gðpÞ�tJ�ðx� 1; t��tÞ
þ ð1� fðpÞ�t� gðpÞ�tÞJ�ðx; t��tÞ

�
can be solved by backward induction for the discrete time

set fn�t j n ¼ 0; 1; . . . ; Ng with boundary conditions

J�ðx; 0Þ ¼ 0. We consider demand functions of the form

fðpÞ ¼ k
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� p2Þ

p
and gðpÞ ¼ k� k

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� p2Þ

p
as shown in

Fig. 5. In this case, the optimal price has a closed-form

solution p�ðx; tÞ ¼ y=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þ y2

p
, where y ¼ x=ðJ�ðxþ 1;

t��tÞ � J�ðx� 1; t��tÞÞ. To be accurate, the total

number of time intervals N ¼ 1=�t should be much larger

than the maximum number of demand arrivals and

departures k. The time and space complexity of the

computation are both OðCNÞ.

5.1 Weak Dynamics Scenarios

We first consider a weak dynamics scenario, where the
maximum expected demand arrivals and departures during
the decision horizon k is orders of magnitude less than the
system capacity C. We assume that a cloud is expected to
launch and close several hundreds of instances per hour on
average. Thus, we set k to 500, much smaller than the
system capacity C ¼ 10;000. Time is discretized into N ¼
1;000 intervals, each corresponding to 3.6 seconds of time
for a 1-hour horizon. The results are shown in Fig. 6. The
optimal expected revenue clearly grows with decision
horizon t (which decreases with time in the figures) and
the utilization x as seen from Fig. 6a. The optimal price
decreases with t (increases with time), and increases with
the utilization as seen from Fig. 6b. These observations
validate our analysis in Section 3.

Note that the optimal price does not change much when
x decreases from 9,000 to 5,000, and is close to 1 for the
entire horizon. This is because the effect of demand
dynamics is small compared to a moderately loaded system
(x ¼ 5;000 ¼ 0:5C), and the expected revenue can be
maximized without considering much about the future
demand, i.e., setting price close to 1. To facilitate the
understanding, Fig. 6d shows a sample path of the optimal
price, with the corresponding system utilization process
XðsÞ starting from x ¼ 5;000. In the time period of ½0;0:25� (t
decreases from 1 to 0.75), p�ðXðsÞ; 1� sÞ grows only
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marginally from 0.98 to around 0.988, while XðsÞ slowly
decreases from 5,000 to about 4,930.

Thus, XðtÞ does not deviate much from x, and J�ðx; tÞ is
close to xt, which also explains its linearity as in Fig. 6c.
When the system is lightly loaded (x ¼ 1;000 ¼ 0:1C),
revenue generated from future demand becomes more
important, and p�ðx; tÞ is much lower and varies with time
as in Fig. 6b.

In summary, these results tell us that when the expected
dynamics is weak, or equivalently when the decision
horizon is short, it is almost optimal to use a static price
close to the maximum price 1 for a heavily or moderately
loaded system. The optimal expected revenue grows
linearly with the utilization. When the system is lightly
loaded, however, price has to be dynamically adjusted to
obtain maximum revenue.

5.2 Strong Dynamics Scenarios

The story becomes quite different when the problem
embraces a significant degree of demand dynamics. Here,
we let the maximum expected demand arrivals and
departures k equal to 50,000, much larger than the system
capacity C. Time is discretized into N ¼ 105 intervals.
Other parameters remain the same. The results are shown
in Fig. 7.

The optimal revenue and price clearly exhibit mono-
tonicity as expected from our analysis. Compared to the
weak dynamics case, the first interesting observation is
that optimal revenue is insensitive to the utilization. As
seen from Fig. 7a, J�ð9;000; tÞ improves J�ð1;000; tÞ only by
a small constant margin, and xt becomes a poor estimate
for J�ðx; tÞ, especially when t is close to 1. The reason is
that when the demand dynamics is strong, revenue from
future demand is dominant especially in the beginning of
the horizon (when t is close to 1). Since price can be
adjusted flexibly, the system can always be quickly tuned

to a heavy load setting with better revenue, and the end
result is that the expected revenue over the horizon is
relatively immaterial to the current utilization. This also
explains the stronger concavity of J�ðx; tÞ in x as seen in
Fig. 7c because the marginal benefit of increasing the
utilization is diminishing, causing the revenue curve to be
bent downwards.

The discussion above implies that dynamic pricing
becomes more critical in a strong dynamics setting. It is,
thus, expected to see the optimal price varying signifi-
cantly with the utilization, which is demonstrated in
Fig. 7b. Compared with Fig. 6b, for most of the time
p�ð1;000; tÞ remains to be much smaller than p�ð5;000; tÞ
which in turn is much smaller than p�ð9;000; tÞ. The reason
is that when the effect of dynamics is significant, we
should price to the future even when time left to consider t
is relatively small, and adopt a low price when the
utilization is low. Only when it is near the end of the
horizon, should we raise the price to harvest more revenue
from the existing customers.

A critical point here is that although p�ðx; tÞ remains
almost static most of the time for a given x, it does not
mean that we can safely use a static price at a small cost of
revenue loss. In fact, the number of instances in the system
is expected to fluctuate quickly over time, and whenever it
changes we ought to change the price on the spot. Since
p�ðx; tÞ differs widely with x, we ought to use a dynamic
pricing policy to maximize the revenue. This is demon-
strated in Fig. 7d with a sample path of the optimal price.
We can see that the utilization process XðsÞ quickly grows
from 5,000 to nearly 10,000, and the optimal price
p�ðXðsÞ; 1� sÞ rises from about 0.3 to over 0.8 in the time
period of ½0; 0:25�. Compared with Fig. 6d for the weak
dynamics case, the optimal price is clearly much more
dynamic. It is reasonable to conclude that dynamic pricing
plays an important role in the strong dynamics setting,
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Fig. 7. Numerical results with C ¼ 10;000; fðpÞ ¼ 50;000
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� p2

p
; gðpÞ ¼ 50;000� 50;000

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� p2

p
, and N ¼ 105 time intervals.

Fig. 6. Numerical results with C ¼ 10;000; fðpÞ ¼ 500
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� p2

p
; gðpÞ ¼ 500� 500

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� p2

p
, and N ¼ 1;000 time intervals.



and is expected to offer substantial revenue improvement
over static pricing.

5.3 Sensitivity Analysis

In the previous two sections, we studied the cases where the
maximum expected demand arrivals and departures k is set
to 500 and 50,000, respectively. These represent two extreme
cases, and naturally one may wonder if our observations
above are sensitive to the values of k, in the sense that the
results are skewed at the extreme points. In this section, we
provide evidence to confirm that the observations are
robust to k.

In this experiment, we vary k from 500 to 10,000, and
discretize time into 10,000 intervals. Other parameters are
the same as in the previous two sections. Fig. 10 shows the
optimal price at 50 percent utilization p�ð5;000; tÞ for
different values of k. Observe that when k is small
compared to C, p�ð5;000; tÞ behaves qualitatively similar to
the curve in Fig. 6b. As k increases, optimal price decreases.
The curve gradually becomes flatter, meaning that most of
the time the optimal price should be kept low until at the
end of the horizon. The shape of the curve also becomes
qualitatively similar to Fig. 7b for the strong dynamics case.

Thus, our results drawn from two extreme values of k are
also valid for intermediate values of k. We also studied
the effect of k for optimal revenue J� and the observation is
the same. For brevity, we omit the figure.

5.4 Impact of Delay

We have assumed that the provider always has perfect
information about the system utilization of the cloud at any
time. In reality, the infrastructure monitoring software for
the cloud may incur delay in processing and propagating
data, especially given the large scale of the system.
Delayed information inherently limits the provider’s ability
to make correct pricing decisions, and causes revenue loss.
In this section, we investigate the impact of delay on
provider’s revenue.

We conduct a set of numerical studies with k ¼ 10;000,
and N ¼ 1;000 intervals for T ¼ 1. We consider a moder-
ately loaded system with an initial utilization of x ¼ 5;000,
with varying information delay � ranging from 0.001 to 0.01.
We consider the time period of ½0; 0:25�. At each time
interval s, the provider sees a delayed utilization Xðs� �Þ
instead of XðsÞ, and makes a pricing decision based on
Xðs� �Þ. For each value of delay, we generate 50 sample
paths of the system utilization process XðsÞ and pricing

decisions p�ðXðs� �Þ; 1� sÞ, and compute the average
revenue for the period ½0; 0:25� across the 50 runs.

Fig. 11 plots the percentage of revenue loss due to delay.
As expected, revenue loss increases when delay is more
salient, since with a long delay the actual system utilization
is significantly different from what the provider sees. We
observe that when delay is small, i.e., less than 0.004,
revenue loss is less than or around 1 percent. However,
when delay is larger than 0.004, revenue loss is larger than
2 percent. In reality information, delay is usually small
compared to the time horizon T . For example, T is 1 hour
in our numerical study, and a 1-second delay is only
0:00026T .

To summarize, we find that information delay has direct
impact on revenue with dynamic pricing, and the provider
has financial incentives to develop a responsive and
accurate management system to obtain real-time informa-
tion about the resource utilization.

5.5 Nonhomogeneous Demand

Finally, we consider the nonhomogeneous demand model,

where the demand arrival and departure rate is XðsÞfðpðsÞÞ
and XðsÞgðpðsÞÞ, respectively. We use fðpÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� p2

p
and

gðpÞ ¼ 1�
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� p2

p
. This is consistent with the homoge-

neous demand functions except for the constant k, which is

equal to 1 for the nonhomogeneous case so that fð�Þ and gð�Þ
represent probabilities. The same discretization technique is

used to solve the dynamic program using backward

induction, and the entire decision horizon is discretized

into N ¼ 1;000 intervals. The optimal price in this case can

be readily obtained to be p�ðx; tÞ ¼ 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ y2

p
, where

y ¼ J�ðxþ 1; t��tÞ � J�ðx� 1; t��tÞ.
We first evaluate a small system with C ¼ 100. Fig. 8

shows the results. From Fig. 8a, we can see that the
optimal revenue J�ðx; tÞ is increasing in x and t, which
shows that Theorem 5 for the asymptotic case also holds
in general. The interesting story is in Fig. 8b. Compared
to Figs. 6b and 7b, optimal price p�ðx; tÞ is largely
indifferent for different values of x when t is smaller
than around 0.5. For t > 0:5 and t < 0:3, p�ðx; tÞ is still
distinct for different x. This demonstrates the intuition
revealed by Theorem 6 that the optimal price becomes
much less dependent on the utilization x, when demand
is non-homogeneous.

We then consider a large system with C ¼ 1;000, and
Fig. 9 shows the results. The revenue result in Fig. 9a does
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Fig. 8. Numerical results with C ¼ 100; fðpÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� p2

p
; gðpÞ ¼ 1�

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� p2

p
, and N ¼ 1;000 time intervals.



not show much difference from the small capacity case.
However, the optimal price becomes identical for different
values of x when t < 0:6 as shown in Fig. 9b, and the
difference is smaller when t > 0:6 compared to the small
capacity case in Fig. 8b. This is consistent with Theorem 6
that says when the capacity is large, the optimal price
becomes independent of the utilization x. Optimal revenue
is linear in x as shown in Figs. 8c and 9c and expected from
the fact that Mðx; tÞ ¼MðtÞ in the asymptotic case.

6 DISCUSSIONS

In this section, we discuss several issues pertaining to the
practicality and usefulness of this work, which also lead to
possible directions of future work.

6.1 Benefits of Dynamic Pricing for Users

In this paper, we mainly focus on the provider. Nevertheless,
dynamic pricing is also beneficial for users of the cloud. With
static pricing, the provider has limited ways to control the
user demand. When demand for resources (e.g., virtual
machines, bandwidth, etc.) increases, the performance of the
virtual machines degrades and the probability of failures
increases, leading to inferior user experience. With dynamic
pricing, the provider has an effective means to dynamically
control the demand, and ensure the overall performance of
the cloud is satisfactory for customers. Thus, we believe that
dynamic pricing is also beneficial to users, from the
performance point of view.

We did not explicitly model the resource contention (e.g.,
bandwidth, CPU, memory) and its effect on user experience
of using the cloud, which is an interesting future direction
of extending the work. Such an effect is in fact an important
topic in our community. Recently, there has been active
research on providing bandwidth guarantees and different
notions of fairness to users of the cloud (for example, [17],
[22], [23], [35]).

We have also reached out to public cloud providers such
as Microsoft Azure to comment on the practicality of
dynamic pricing [7]. They view dynamic pricing as an
viable option that will be increasingly adopted in addition
to static pricing. The motivation is that providers would like
to accommodate various customers to increase our revenue:
some customers care more on guaranteed SLA with fixed
costs so they may still choose static price, while some have
the flexibility to trade response time/quality for their cost
with dynamic pricing, by using less resources when prices
are high [7].

6.2 Potential Concerns

Here, we also discuss some limitations of dynamic pricing
and potential concerns a provider may have. First, as just
mentioned, dynamic pricing is more suitable for flexible
workloads that can be stopped or adjusted during the
execution. For example, if the workload is batch data
processing, it can be postponed to times when the price is
cheaper, or the user can purchase less virtual machines to
run it when price is high. However, if the workload is a web
service that has to response to user requests, then the user
has very little flexibility to adjust the consumption accord-
ing to the price. This may prevent the adoption especially
for smaller providers with few flexible workloads.

Second, to implement dynamic pricing, the provider
needs to collect demand information and empirically derive
the demand arrival and departure rate functions. It may
introduce a trial period, before the actual adoption, to
accumulate enough demand data to calculate the expected
demand change corresponding to a price change. Demand
information also needs to be continuously monitored and
analyzed to refine the functions and pricing strategy. This
may add managerial overhead to the provider.

Finally, for users, dynamic pricing may seem compli-
cated to understand psychologically, and they may prefer
fixed pricing for simplicity.
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Fig. 10. Optimal price p�ð5;000; tÞ for different values of k. C ¼ 10;000,
and N ¼ 10;000 time intervals.

Fig. 11. Revenue loss due to delay for a period of ½0;0:25�. C ¼ 10;000,
k ¼ 10;000, x ¼ 5;000, N ¼ 1;000 intervals.

Fig. 9. Numerical results with C ¼ 1;000; fðpÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� p2

p
; gðpÞ ¼ 1�

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� p2

p
, and N ¼ 1;000 time intervals.



6.3 Alternative Pricing Strategies

We studied dynamic pricing from a revenue management
perspective, which is widely adopted in traditional indus-
tries such as airlines, car rental, and hotels. Public cloud
providers share more similarity with Internet companies
such as Google and Facebook. Here, we briefly survey the
pricing strategies used by Internet companies and comment
on their applicability to cloud computing.

Internet companies usually provide their services free of
charge, and generate revenues from selling ads online.
Examples include Google AdWords [6] and Facebook Ads
[1]. Since the values of ads for different goods and services
could vary significantly and are difficult to determine,
bidding/auctions are usually used as the pricing strategy
[6]. Users submit bids as the maximum price they are
willing to pay for each click of their ads, and the company
runs an auction to determine which ads are displayed on
their page, and their rank on the page [6].

Compared to bidding, dynamic pricing has the following
advantages that are briefly discussed in Section 2.2. First,
with dynamic pricing, the provider has more control over
the price, while with bidding the provider cannot control
the final sale price, which can be well below the break-even
point for the provider to recover its costs. Second, dynamic
pricing eliminates the potential user collusion, which is a
common and difficult problem in practice for auctions [30].
With bidding, a group of users can collaborate to game the
mechanism for their own benefits in various ways. A public
cloud has a large number of users, making collusion
detection and prevention even more difficult.

Some may argue that users are unfairly taken advantage
of with dynamic pricing compared to bidding, as the price
is solely decided by the provider. We emphasize that first
price is determined taking into account users’ reactions
according to the demand arrival rate and departure rate
functions as in Section 2.2. Moreover, competition in the
market provides choices for users, and forces the price to
remain at a reasonable level. This is an important topic by
itself and can be explored further in future work.

6.4 Costs and Profit Maximization

We have mainly discussed revenue maximization without
considering costs. Operating costs of a cloud, mostly power
draw of servers and cooling systems, are fixed and do not
vary with the infrastructure utilization. The reason is that
operators typically leave all the servers and switches on at
all times [18]. Thus, we did not consider costs here.

Recently, some studies propose to dynamically turn off/
on servers and/or switches according to the workload to
save energy [26]. In these cases, costs are proportional to
demand, and a profit maximization formulation is more
appropriate for studying pricing which is beyond the scope
of this paper. Readers are referred to our work in [44] for
more details.

7 RELATED WORK

Our work has roots in revenue management. Since the
seminal work of [15], dynamic pricing has become an active
topic of revenue management, with many successful real-
world applications (see [14] and references therein). As

discussed in Section 1, with cloud computing, the unique
challenge is that we need to model stochastic demand
departures in addition to demand arrivals. This is because
in our problem, price is charged per unit of time and sale,
while previous works only consider the simple case of
charging per unit of sale.

An extensive literature exists on pricing in communica-
tion networks and Internet. Many works study offline
pricing, where pricing is computed offline to optimize
revenue, social welfare, and so on. Odlyzko [32] argues that
the predominant flat-rate pricing for selling retail Internet
access encourages waste and is incompatible with service
differentiation. The benefits of usage-based pricing are
studied in [25], [37], where it is shown that with price
differentiation one can use resources more efficiently. Paris
Metro Pricing, in which service differentiation and conges-
tion control are autonomously achieved by charging
different prices for different service tiers that share the
same infrastructure, is thoroughly studied in [11], [12], [31].
In [40], tiered pricing for Internet transit is further studied.
Time is another dimension to unbundle connectivity.
Hande et al. [20] characterize the economic loss due to the
ISP’s inability or unwillingness to price broadband access
based on time of day. Ha et al. [19] study the time-
dependent pricing for mobile data.

Our work is more related to the online pricing literature
that deals with instantaneous demand dynamics and
adjusts price on the spot. Compared with offline pricing it
is less explored in the community. Paschalidis and Liu [33],
Paschalidis and Tsitsiklis [34] study online pricing based on
congestion in networks as a dynamic program, and show
that static pricing achieves good performance in large
networks. Our main concern in this paper is revenue
maximization using dynamic pricing, and we consider a
finite horizon formulation, which is different from the
infinite horizon setting in [33], [34].

There have been some recent studies on the market and
pricing of cloud resources. Javadi et al. [21] propose a
stochastic model for the spot prices of EC2. The focus of [21]
is to better model and predict spot prices, while our focus is
to develop a new dynamic pricing scheme that improves
the revenue of the operator. Wang et al. [42] argue for the
importance of pricing in cloud computing for distributed
systems design. From a user perspective, Teng and
Magoulès [39] study the equilibrium pricing and allocation
policy between multiple users using game theory. From a
provider perspective, Mihailescu and Teo [29] propose a
computationally efficient pricing scheme based on mechan-
ism design, and Macı́as and Guitart [28] adopt a genetic
algorithm to iteratively optimize the pricing policy. The
most related work to ours are [24] and our own work [44],
where pricing strategies are developed by solving some
optimization problems. These approaches are primarily of a
one-shot nature without considering the effect of pricing on
future demand and revenue.

8 CONCLUDING REMARKS

We presented a revenue maximization framework to tackle
the dynamic pricing problem in an IaaS cloud. The unique
challenge is that prices are charged per instance per time
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unit, and as a result the demand departure process has to be
explicitly modeled. A stochastic dynamic program is
formulated, and optimality conditions and important
structural results of the optimal pricing policies are
presented. We then extended to a general nonhomogeneous
demand model.

We wish to emphasize that the broad literature of
revenue management provides many meaningful future
directions to study cloud resource pricing. For example, we
can model the resupply of computing resources to the
problem, which corresponds to the inventory control aspect
of the framework. Since different kinds of resources are
involved, how to choose the optimal mix of resources to
create a menu of final products, such as Amazon’s various
instance types, is also an important issue.
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