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Abstract—We study the resource allocation problem in an OFDMA-based cooperative cognitive radio network, where secondary

users relay data for primary users in order to gain access to the spectrum. In light of user and channel diversity, we first propose FLEC,

a novel flexible channel cooperation scheme. It allows secondary users to freely optimize the use of channels for transmitting primary

data along with their own, in order to maximize performance. Further, we formulate a unifying optimization framework based on Nash

bargaining solutions to fairly and efficiently allocate resources between primary and secondary networks, in both decentralized and

centralized settings. We present an optimal distributed algorithm and a suboptimal centralized heuristic, and verify their effectiveness

via realistic simulations. Under the same framework, we also study conventional identical channel cooperation as the performance

benchmark, and propose algorithms to solve the corresponding optimization problems.

Index Terms—Cognitive radio, cooperative communication, resource allocation, Nash bargaining solutions, OFDMA
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1 INTRODUCTION

COGNITIVE radio, with the ability to flexibly adapt its
transmission parameters, has been considered a revo-

lutionary technology to open up dynamic access to the
underutilized wireless spectrum [2], [3]. Recently, a new
paradigm where primary users (PUs) can leverage second-
ary users (SUs) for their own transmissions, termed
cooperative cognitive radio networks (CCRN), is advocated
[4], [5]. In CCRN, SUs cooperatively relay data for PUs in
order to access the spectrum. Assuming that SUs have
better channel conditions to the primary receiver, coopera-
tive relaying can greatly increase the primary transmission
rate. Meanwhile, SUs also gain opportunities to access the
spectrum, resulting in a “win-win” situation.

A single channel network with only one PU has been
considered in [4], [5]. The PU leases its channel to SUs for a
fraction of time in exchange for cooperative transmission.
SUs allocate a portion out of their time fraction for relaying
primary data, and the rest for their own traffic. A
Stackelberg game is formulated to determine the optimal
time-sharing strategy.

In this paper, we investigate cooperative cognitive radio
networks from a new perspective. We consider multichannel
cellular networks based on OFDMA, e.g., IEEE 802.16 [6] for
the primary network, with multiple SUs assisting multiple
PUs on the uplink. Multichannel networks impose unique
challenges of realizing the cooperative paradigm, as
we narrate below along with our original contributions.

First, we observe that conventional user cooperation
permeated through the literature [7] becomes inefficient

when directly applied to multichannel CCRN. It implicitly
postulates that data on one channel have to be relayed on
exactly the same channel, which may not be amenable to
relaying from a performance perspective. Meanwhile,
some other channel may have abundant capacity to
incorporate additional data with little cost. In other words,
cooperation using the same channel misses the bulk of
PU-SU cooperation opportunities, by unnecessarily limit-
ing the space of SU resource allocation to only the
temporal dimension.

Our first contribution in this paper is a new design for
cooperation among SUs and PUs, termed Flexible Channel
Cooperation (FLEC), that opens up all dimensions of
resource allocation for SUs. It takes advantage of channel
and user diversities available in multichannel networks [8],
[9], and allows SUs to freely optimize its use of resources,
including channels and time slots leased by PUs, as well as
power, for relaying primary data along with its own data, as
long as all the primary data it received can be delivered.

The basic idea of FLEC works as shown in Fig. 1. We
consider the simplified case where time is equally divided
into two slots among cooperating users.1 PUs transmit in
the first slot to SUs, and SUs transmit in the second to the
primary base station (BS) and to their own access point
(AP). An SU strategically optimizes its use of the leased
resources. For example, it can use subchannel 1 solely for
relaying data aggregated from both subchannels 1 and 2,
and use subchannel 2 solely for sending its own data as in
Fig. 1. The intuition is that, if subchannel 1 has superior
conditions on the SU-BS link but poor conditions on the SU-
AP link, it is much more efficient using subchannel 1 to
relay data from both subchannels. Such channel swapping or
shuffling results in boosted SU throughput, as well as larger
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1. Practical justifications for this simplification are as follows: due to
channel diversity, the optimal time-sharing strategy is considerably
different across the channels for a given pair of PU-SU. From a system
perspective, it becomes difficult to structure the uplink bursts in the frames,
because transmissions on some subchannels will finish earlier than those on
other subchannels.
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relay capacity for PU, since the overall spectral efficiency is
improved. The spectral efficiency gain can in turn be
translated into more cooperation opportunities, as well as
increased network capacity and better performance.

The preceding description assumes a decentralized setting
where the primary and secondary networks are independent.
Subchannels are assigned to PUs by the primary BS a priori to
SU cooperation, and only those assigned to the helped PUs
are leased to the respective helping SUs. In a centralized
setting where SU cooperation becomes an integral part of the
resource allocation performed by the primary BS, it becomes
possible to assign any subchannel to a helping SU, to further
improve the performance. We also consider the centralized
FLEC in our paper, which turns out to be more difficult.

The second challenge in multichannel CCRN is how to
schedule the transmissions and allocate resources, in order
to maximize performance gains while ensuring fairness
among all users. An SU may assist several PUs (as in Fig. 1)
simultaneously while a PU may also pair up with several
SUs, complicating the resource allocation problem. More-
over, in reality, PUs and SUs are selfish in maximizing their
own utility. PUs compete among themselves when one SU
resides in a suitable position to relay for all of them;
likewise, SUs compete among themselves if one channel has
good conditions for all of them. Our main objective in this
paper, therefore, is to develop efficient yet fair resource
allocation algorithms for FLEC in multichannel networks,
which has not been addressed yet.

To this end, our second contribution is a novel unifying
optimization framework that jointly considers relay and
subchannel assignment, relay strategy optimization, and
power control, based on the concept of Nash bargaining
[10]. PUs and SUs agree to jointly optimize a social cost
function, known as the Nash product, which is essentially
the product of utility functions of the cooperating PUs and
SUs. The solution concept, known as the Nash bargaining
solution (NBS), is a unique Nash equilibrium point that is
guaranteed to provide Pareto efficiency with NBS fairness
among PUs and SUs, which is a generalized proportional
fairness notion [11]. Therefore, gains from cooperation to
individual PU and SU are allocated proportionally according
to their channel conditions, i.e., their contributions to the
social welfare gain. These properties make NBS favorable in
our problem.

We consider both decentralized and centralized FLEC as
introduced above. In the decentralized case, we wish to
develop a distributed algorithm that can be performed by
users independently with local information only. We tackle
this using a dual decomposition technique to transform the

global optimization into many per-subchannel problems
that can be solved by the respective PUs distributively and
optimally. To account for SUs’ utility, we rely on the
subgradient method [12] to allow PUs to bargain with
neighboring SUs autonomously to arrive at the optimal
solution for the per-subchannel problem, i.e., the Nash
bargaining solution.

In the centralized case, cooperation opportunities are to
be carefully invented and engineered, rather than distribu-
tively harvested. We identify the inefficiency of subgradient
method in this problem, design a three-step heuristic via a
decoupling approach, and prove the approximation ratio
for the decoupled subchannel assignment algorithm. Both
algorithms are highly efficient in that they can meet typical
scheduling deadlines of 5-10 ms [6] in OFDMA systems. In
addition, we extend our framework to consider resource
allocation with conventional identical channel cooperation
(CC) to complete the analysis. Thus, we believe our work
sheds light on the design and implementation of OFDMA-
based cooperative cognitive radio networks.

The remainder of this paper is structured as follows:
Section 2.1 introduces our system models and the concepts
of NBS. In Section 3, we formulate the resource allocation
problem in decentralized setting and present optimal
distributed algorithms to solve it. In Section 4, we consider
the centralized version of the problem and propose
practical algorithms with performance guarantees. We
study the conventional identical channel cooperation in
Section 5. We conduct extensive simulations to verify our
algorithms in Section 6 and summarize related work in
Section 7. We finally give concluding remarks in Section 8.

2 AN OPTIMIZATION FRAMEWORK

2.1 System Model

We start by introducing the system model. We consider the
uplink of a single-cell OFDMA network. We do not consider
an ad hoc network where coordination between PUs and
SUs, and synchronization for effective cooperative commu-
nications are difficult to achieve especially with multiple
PUs. This is in line with previous work on cooperative
diversity [7], [13], [14], [15], and on cooperative cognitive
radio networks [4], [5], [16].2

We do not model the intercell interference due to
frequency reuse. Intercell interference significantly adds to
the complexity of the optimization problem, and shall be
dealt with as a separate issue on its own right [17]. This
simplified interference model is also commonly adopted in
related work [4], [5], [13], [14], [18], [19]. The throughput
of uplink transmission is typically limited due to the
power constraint of PUs. Thus, it is better suited to
employ cooperation.

A number of SUs are located in the cell and perform
cooperative transmission for PUs to access the primary
spectrum. We assume that PUs and SUs have infinite
backlogged data to send and the OFDM frames are
synchronized. Cooperative transmissions take place on an
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Fig. 1. The motivating scenario for Flexible Channel Cooperation.

2. Although Simeone et al. [4] consider an ad hoc secondary network, its
model consists of only one PU who effectively coordinates the time sharing
of the spectrum with SUs and the cooperative transmission.



OFDM subchannel basis, and transmissions in different
subchannels do not interfere with each other. Decode-and-
forward multihopping [7] is used when SUs relay primary
data. Note that our results are readily applicable when
other relaying scheme is used. Moreover, higher rates are
achievable with more sophisticated coding/decoding
schemes, e.g., maximum ratio combining based on the
signals received in both slots at the destination (instead of
multihopping) [7]. Here, we focus on decode-and-forward
multihopping only for simplicity of presentation. Our
analysis and algorithms are readily applicable to scenarios
with other relaying and coding/decoding schemes.

We model the fading environment by large-scale path
loss and shadowing, along with small-scale frequency-
selective Rayleigh fading. The coherence bandwidth is in
the order of the width of a few subchannels so that adjacent
subchannels have similar channel conditions. Fading
between subchannels in different frames is independent,
and remains stable during each frame. We assume
techniques for channel estimation are employed and full
channel side-information (CSI) is available, which makes
the optimization possible. Such assumptions about the
fading environment and CSI are commonly used as in [13],
[14], [18], [19]. Noises are modeled as i.i.d. circularly
symmetric complex Gaussian noises CN ð0; N0WÞ.

There are K subchannels, NP primary users and NS

secondary users in the network. Let N be the total number
of users, i.e., N ¼ NP þNS . Let K ¼ f1; 2; . . . ; Kg be the set
of subchannels, NP ¼ f1; 2; . . . ; NPg the set of PUs, NS ¼
fNP þ 1; NP þ 2; . . . ; Ng the set of SUs, and N ¼ NP [ NS
the entire set of users. To denote the possibility of direct
transmission, i.e., not cooperating with any SU, we denote
a void SU as user N þ 1, and let NþS ¼ fNP þ 1; NP þ
2; . . . ; N þ 1g be the extended set of SUs. One subchannel
can only be allocated to one PU, and can only be leased to
one SU.

For a given PU i 2 NP , if subchannel c 2 K with
bandwidth W and complex channel gain hci is allocated
for direct transmission, the achievable throughput is

Rc
i;Nþ1 ¼W log

�
1þ pcigci

�
; 8c 2 K; i 2 NP ; ð1Þ

where

gci ¼
jhci j

2

�N0W
:

As mentioned, the subscript ðN þ 1Þ is used to denote the
direct transmission mode. � is the coding gap to capacity
and pci denotes the allocated power. Without loss of
generality, W equals 1 in the subsequent analysis.

If PU i 2 NP decided to lease c 2 K to SU j 2 NS for
cooperative transmission, then in the first time slot, the
achievable throughput on PU-SU link is

Rc
i;j ¼

1

2
log
�
1þ 2pcig

c
i;j

�
; 8i 2 NP ; j 2 NS; c 2 K; ð2Þ

since the effective power and throughput should take into
account the two-slot structure of cooperative transmission.
For SU j in the second time slot, under FLEC, it can freely
decide whether to use c solely for relay, or solely for its own
data. For conventional cooperation, it uses c jointly for both

purposes in a time-sharing manner. W.L.O.G., let �cj 2 ½0; 1�
denote its relay time-sharing strategy. Then, j’s throughput
for relay and its own transmission is as follows, respectively:

Rc
j;P ¼

1� �cj
2

log
�
1þ 2pcjg

c
j;P

�
; Rc

j

¼
�cj
2

log
�
1þ 2pcjg

c
j

�
; 8j 2 NS; c 2 K:

ð3Þ

Note that for j ¼ N þ 1, i.e., direct transmission for PU,
obviously we have

Rc
Nþ1;P ¼ Rc

Nþ1 ¼ 0; 8j 2 NS; c 2 K: ð4Þ

In cases when other relaying and coding schemes are
used, for instance amplify-and-forward or compress-and-
forward with maximum ratio combining, we only need to
change the throughput expressions (3), and our results in
this paper are readily applicable. This is left as future work.

With conventional cooperation, Rc
i;j ¼ Rc

j;P holds for any
c PU i leases to SU j. With FLEC, this does not have to hold
for every leased subchannel. The only requirement is that
SU j should deliver all data from the cooperating PUs, i.e., a
total flow conservation requirement as follows:X

c2K

X
i2NP

Rc
i;j �

X
c2K

Rc
j;P ; 8j 2 NS: ð5Þ

2.2 Basics of Nash Bargaining Solutions

We present the salient concepts and results from Nash
bargaining solutions in this section, which are used in the
sequel. For details, we refer readers to [10].

The basic setting is as follows: Let N be the set of
players, including PUs and SUs. Let S be a closed and
convex subset of RN to represent the set of feasible payoff
allocations that players can get if they all work together. Let
Rmin
n be the minimal payoff that the nth player would

expect; otherwise, he will not cooperate. Suppose fRn 2
SjRn � Rmin

n ; 8n 2 Ng is a nonempty bounded set. Define
Rmin ¼ ðRmin

1 ; . . . ; Rmin
N Þ, then the pair ðS;RminÞ is called a

N-person bargaining problem.
Within the feasible set S, we first define the notion of

Pareto optimality as a selection criterion in a typical game
setting.

Definition 1. The point ðR1; . . . ; RNÞ is said to be Pareto

optimal if and only if there is no other allocation R0n such that

R0n � Rn; 8n 2 N , and R0n > Rn; 9n 2 N , i.e., there exists no

other allocation that leads to superior performance for some

user without inferior performance for some other user.

The question that arises is: at which of infinitely many
Pareto optimal points should we operate the system? A
possible further criterion is the fairness of resource
sharing. In this paper, we use the NBS fairness axioms
from game theory.

Definition 2. �r is a NBS, i.e., �r ¼ �ðS;RminÞ, if the following

axioms are satisfied [10]:

1. Individual Rationality: �Rn � Rmin
n ; 8n 2 N .

2. Feasibility: �r 2 S.
3. Pareto Optimality.
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4. Independence of Irrelevant Alternatives: If �r 2
S0 � S, �r ¼ �ðS;RminÞ, then �r ¼ �ðS0;RminÞ.

5. Independence of Linear Transformations: For
any linear scale transformation  ,  ð�ðS0;RminÞÞ ¼
�ð ðSÞ;  ðRminÞÞ.

6. Symmetry: If S is invariant under all exchanges of
players, then �iðS;RminÞ ¼ �i0 ðS;RminÞ8i; i0.

Axioms 4-6 are called axioms of fairness. The irrelevant
alternative axiom asserts that eliminating the feasible
solutions that would not have been chosen should not
affect the NBS solution. Axiom 5 asserts that the bargaining
solution is scale invariant. The symmetry axiom asserts that
if the feasible ranges for all players are completely
symmetric, then all users have the same solution.

The following theorem shows that there is exactly one
NBS that satisfies the above axioms.

Theorem 1. There is a unique solution function �ðS;RminÞ that
satisfies all axioms in Definition 2 such that [10]

�ðS;RminÞ 2 arg max
R2S;R�Rmin

Y
n2N

�
Rn �Rmin

n

�
: ð6Þ

It has been proved that, when Rmin
n ¼ 0 for all n, NBS

fairness reduces to proportional fairness [18]. Note that in
our problem, Rmin

n for PUs will surely be nonzero since they
get positive throughput if not cooperate, while that for SUs
will be zero. Therefore, NBS fairness here is different than
proportional fairness. In general, the intuitive idea is that
after the minimal requirements are met for all users, the rest
of the resources are allocated proportionally to users
according to their conditions.

2.3 An Optimization Framework Based on NBS

For our problem, we wish to consider long-term NBS
fairness, which depends on the average throughput gain
from cooperation over a relatively long period of time. For
elastic traffic, long-term fairness not only faithfully reflects
users’ perceived performance, but also gives more flexibility
to exploit time diversity of wireless channels. As discussed
above, the cooperative game in an OFDMA cooperative
cognitive radio networks can be formulated as follows.

Each user, being primary or secondary, has �Rn, the
average total throughput summed across all subchannels, as
its objective function. It is bounded above and has a
nonempty, closed, and convex support. �R

min
is an N-

dimensional vector that represents the minimal average
performance requirements as in Section 2.2. For PUs, the
minimal requirement will be the optimal average through-
put they could obtain should they choose not to cooperate
with SUs, given by a multiuser uplink scheduling algorithm
[20]. For SUs, their minimal requirement that can be
obtained without cooperation is clearly zero. S is the feasible
set of resource allocation that satisfies �Rn > �Rmin

n ; 8n.
The problem, then, is to find the NBS, i.e., to solve the

optimization problem (6) with �Rn and �Rmin
n . The product

terms in (6) make it difficult to solve. Mathematically, it is
equivalent to solve the following:

max
�R2S;R�Rmin

X
n2N

ln
�

�Rn � �Rmin
n Þ: ð7Þ

Notice that this is a long-term utility maximization
problem whose optimum is achieved over a period of time.
For the scheduling and resource allocation problem, it has
to be solved in each scheduling epoch because channel
conditions change over time. Therefore, it is important to
identify the instantaneous objective function we optimize in
each epoch in order to arrive at long-term utility optimum.
From the seminal paper of [21], it has been shown that
maximizing the aggregate marginal utility

P
U 0ð �RnÞ �Rn at

each epoch exactly achieves long-term utility maximization.
Therefore, separating the terms for PUs and SUs, the basic
resource allocation framework for OFDMA cooperative
cognitive radio networks at each epoch is

max
R2S;R�Rmin

X
i2NP

Ri �Rmin
i

�Ri � �Rmin
i

þ
X
j2NS

Rj

�Rj

: ð8Þ

Ri; �Ri;Rj, and �Rj denote the instantaneous and average
throughput for PU i and SU j at current epoch, respectively.
Both �Ri and �Rj can be readily obtained by applying the
exponential moving averaging technique. Rmin

i and �Rmin
i are

the instantaneous and average throughput requirement,
respectively, which can be obtained by running a multiuser
scheduling algorithm at each epoch [20], and using an
exponential moving averaging technique.

Note that without considering long-term performance,
the optimization must guarantee fairness in each epoch.
However, when a time window is used, the fairness
requirement is relaxed to the time window length. This
provides more flexibility to improve the spectral efficiency,
by making the current resource allocation related to
previous ones. The term �Rn � �Rmin

n in the denominator of
(8) serves as a weight factor to adjust the priority of user n.
If the user has an unfairly large throughput gain from
cooperation from previous epochs, it may need to con-
tribute more to others in the current epoch. Therefore, the
long-term fairness model encourages users to contribute
more when channel conditions are better, and in turn gain
more when it needs more help. In general, it helps to
achieve better system performance while enforcing the
fairness notion over long run.

A final remark is that our optimization framework
maximizes throughput gains without considering QoS
requirements for both PUs and SUs for reasons of both
tractability and conciseness. QoS requirements, such as
minimum delay, bit error rate, etc., are usually specific to
multimedia applications such as mobile video streaming,
and is not addressed in this work that targets a general data
transmission application. They can be incorporated as
additional constraints into the optimization framework,
and new algorithms can be developed as a possible
direction of future work.

3 AN OPTIMAL DISTRIBUTED ALGORITHM

3.1 Problem Formulation

We first consider a decentralized setting where the
secondary network is independent from the primary
network, and cannot be controlled by the primary BS.
Thus, BS allocates resources to PUs a priori to any
cooperative transmission, and SUs have to “negotiate”
distributively with PUs in order to have cooperation taking
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place. In other words, cooperative transmission serves as an
add-on component to the existing primary network, and is
opportunistically harvested. This may correspond to the most
immediate implementation scenario of CCRN that does not
call for any change in the existing primary infrastructure,
and therefore is of practical interest.

In this case, PU channel assignment is done separately by
the BS, and is not part of the optimization. The resource
allocation problem, including relay assignment, SU sub-
channel assignment, SU relay strategy optimization using
FLEC, and PU-SU power control within the basic frame-
work in Section 2.3 can be expressed succinctly as

max
R;P;�

X
i2NP

Ri �Rmin
i

�Ri � �Rmin
i

þ
X
j2NS

Rj

�Rj

s:t: 0 	 P � 1T 	 pmax;

R � Rmin;R 2 CðP; �Þ;

ð9Þ

where pmax ¼ ½pmax
1 ; . . . ; pmax

N �
T is the power constraint vector,

P is an N 
K matrix such that Pc
n denotes the power

expended by user n in subchannel c, �� is an NS 
K matrix
such that �cj denotes the FLEC strategy of SU j on c, and Cð�Þ
denotes the achievable rate region given P and �� ((1)-(4)),
with the flow conservation constraint at each SU (5). Since
only one PU and one SU can be active on each subchannel,
the column vector Pc has at most two nonzero entries, and it
also specifies relay and subchannel assignments.

3.2 Dual Decomposition

The decentralized problem (9) is essentially a mixed integer
program, with the objective function being neither convex
nor concave. However, in an OFDMA system with many
narrow subchannels, the optimal solution is always a
convex function of pmax, because if two sets of throughputs
using two different sets of P and �� are achievable
individually, their linear combination is also achievable by
a frequency-division multiplexing of the two sets of
strategies. In particular, using the duality theory of [22],
the following is true.

Proposition 1. The decentralized resource allocation problem (8)
has zero duality gap in the limit as the number of OFDM
subchannels goes to infinity, even though the discrete selection
of subchannels, SUs, and relay strategies are involved.

This proposition allows us to solve nonconvex problems
in their dual domain. Note that although the proposition
requires the number of subchannels to go to infinity, in
reality the duality gap is very close to zero as long as the
number of subchannels is large [13].

Introduce Lagrangian multiplier vectors �; �; ��; �; � to the
power, individual rationality, and flow conservation con-
straints. The Lagrangian becomes

LðR;P; �; �; �; �Þ ¼
X
i2NP

Ri �Rmin
i

�Ri � �Rmin
i

þ
X
j2NS

Rj

�Rj

þ
X
n2N

�n

�
pmax
n �

X
c2K

pcn

�
þ
X
i2NP

�i
�
Ri �Rmin

i

�

þ
X
j2NS

�j
X
c2K

Rc
j;P �

X
c2K

X
i2NP

Rc
i;j

 !
:

ð10Þ

The dual function becomes

gð�; �; ��; �; �Þ ¼
max
R;P;�

LðR;P; �; �; �; ��; �; �; �Þ
s:t: ð1Þ � ð4Þ:

(
ð11Þ

We know from convex optimization theory that as long as
we can solve the maximization problem denoted by the
dual function gð�; �; �Þð�; �; �Þ, we can obtain the optimal solution
of the dual problem by minimizing gð�; �; �Þð�; �; �Þ subject to the
constraint that �; ��; �, and �� are nonnegative. Thus, we focus
on solving the dual function in the following.

To solve gð�; �; �Þð�; �; �Þ with given �; �; ��; �; �, it is equivalent to
solving the same problem with the following objective:

X
c2K

X
i2NP

X
j2NþS

1
�Ri � �Rmin

i

þ �i
� �

Rc
i;j þ

X
j2NS

Rc
j

�Rj

0
@

�
X
i2NP

�ip
c
i �

X
j2NS

�jp
c
j þ

X
j2NS

�j

�
Rc
j;P �

X
i2NP

Rc
i;j

�1A;
where the term

P
n �np

max
n �

P
ið 1

�Ri� �Rmin
i

þ �iÞRmin
i from the

original objective is ignored for � is given. Notice that in the

first term of the objective, j could be N þ 1 which

corresponds to the possibility of direct transmission.
Therefore, the problem can be decomposed into K per-

subchannel problems. Recall that each subchannel is
already assigned to a PU by the BS, the per-subchannel
problem then reduces to finding the optimal helping SU,
relay strategy, and resource allocation, and can be shown
alternatively as follows:

max
j;pci ;p

c
j;�

c
j

1
�Ri � �Rmin

i

þ �i
� �

Rc
i;j þ

Rc
j

�Rj

� �ipci � �jpcj

þ �j
�
Rc
j;P �Rc

i;j

�
s:t: ð1Þ � ð4Þ; i ¼ F ðcÞ; �cj ¼ f0; 1g;

ð12Þ

where i is the primary user of subchannel c determined by
the conventional multiuser scheduling denoted as F ð�Þ:
K ! NP .

3.3 Solving the Per-Subchannel Problem

The previous sections show that in a decentralized setting
with per-user power constraint and per-SU total flow
constraint, the resource allocation problem (9) can be solved
optimally and efficiently in the dual domain. However, this
hinges upon efficient solutions to the per-subchannel
problem (12), which is required to solve the dual function
gð�; �; �Þð�; �; �Þ. In this section, we show the per-subchannel
maximization problem can be solved efficiently via ex-
haustive search.

The main idea is to consider pcn as the optimizing
variable and express Rc

i;j; R
c
j; R

c
j;P in terms of pci ; p

c
j. The

per-subchannel problem is essentially a joint optimization
of transmission strategy, relay assignment, and relay
strategy. For each subchannel c, its PU i needs to decide
whether to use direct or cooperative transmission, which
SU to cooperate with, while the chosen SU j needs to
optimize its relay strategy denoted by the time-sharing
parameter �cj 2 f0; 1g. Therefore, the exhaustive search is
performed over a finite set defined by
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. PU transmission strategies: {direct, cooperative}

. SU relay assignment: j; j 2 NS

. SU relaying strategies: {primary data only (�cj ¼ 0),
its own data only (�cj ¼ 1)}.

We derive optimal solutions ~pci ; ~p
c
j; ~�cj under direct or

cooperative transmission modes for any combination of
subchannel c with its PU i and the SU j in the following.

3.3.1 Direct Transmission

If PU i chooses direct transmission, the problem becomes

max
pci

1

ð �Ri � �Rmin
i Þ
þ �i

� �
log
�
1þ pcigci

�
� �ipci ; ð13Þ

the solution of which is readily available by simple calculus:

~pci ¼
1

�i �Ri � �Rmin
i

� �þ �i
�i
� 1

gci

" #þ
: ð14Þ

3.3.2 Cooperative Transmission

Substituting the rate formulas (2)-(3) into (12) and regroup-
ing the terms, the objective (12) becomes

log
�
1þ 2pcig

c
i;j

�
2ð �Ri � �Rmin

i Þ
þ
ð�i � �jÞ log

�
1þ 2pcig

c
i;j

�
2

� �ipci

þ
�cj log

�
1þ 2pcjg

c
j

�
2 �Rj

þ
�j
�
1� �cj

�
log
�
1þ 2pcjg

c
j;P

�
2

� �jpcj:

ð15Þ

The first three terms, denoted as bcðj; �i; �i; �jÞ, represent
PU i’s benefit by having SU j as its relay, discounted by
possible violation of flow conservation with price �j and
power expenditure with price �i. bcðj; �i; �i; �jÞ can be easily
optimized by i as only pci is involved:

~pci ¼
1

2

1

�ið �Ri � �Rmin
i Þ
þ ð�i � �jÞ

�i
� 1

gci;j

" #þ
: ð16Þ

The last three terms, denoted as bjðc; �j; �jÞ, represent SU
j’s benefits from transmitting either its own or PU i’s data
on subchannel c, discounted by the power expenditure
with price �j. Two optimizing variables �cj and pcj are
involved here.

Maximization of bjðc; �j; �jÞ can be done by setting �cj
to 0 and 1, deriving the optimal pcj, respectively, as shown
(17), and comparing the objective values. Ties can be
broken arbitrarily

~pcj ¼

1

2

�j
�j
� 1

gcj;P

" #þ
; when ~�cj ¼ 0;

1

2

1

�j �Rj
� 1

gcj

" #þ
; when ~�cj ¼ 1:

8>>>>><
>>>>>:

ð17Þ

To summarize, the per-subchannel problem (12) can be
efficiently solved via exhaustive search over a finite set
defined by the transmission strategies, SUs, and SU relay
strategies with FLEC as discussed above. The size of this
discrete set is very limited, making it feasible for a practical
network. The entire procedure can be summarized as follows:

Subroutine 1. Exhaustive search for solving (12) for a given
subchannel c and its PU i:

. Every SU j maximizes bjðc; �j; �jÞ using (17), and

obtains ~pcj; ~�cj. It then sends its optimal utility
~bjðc;�j;�jÞ, and �j, to its neighboring PUs.

. Every PU solves for ~pci using (14) for direct
transmission.

. Every PU solves the joint utility maximization (15)
distributively using (14), (16) and ~bjðc; �j; �jÞ to get
~pci for cooperative transmission for each j. Then, find
the optimal ~j that maximizes the joint utility.

. Choose the transmission mode with better joint utility.
The corresponding optimal resource allocation
~j; ~pci ; ~p

c
j; ~�cj is then fixed.

Note that message exchange between PU and SUs are
necessary here. Specifically, �j and the optimal value of
SU’s benefits ~bjðc; �j; �jÞ needs to be passed to PU i.

3.4 An Optimal Distributed Algorithm

We have shown that the dual function can be decomposed
into K per-subchannel problems, the optimal solutions of
which can be obtained efficiently through exhaustive
search. Then, the primal problem (9) can be optimally
solved by minimizing the dual objective:

min gð�; �; ��; �; �Þ
s:t: ��; �; � � 0:

ð18Þ

Subgradient method can be used to solve this dual problem.
The updating rules are as follows:

�ðlþ1Þ
n ¼

�
�ðlÞn þ �ðlÞn

�X
c2K

~pcn � pmax
n

��þ
; ð19Þ

�
ðlþ1Þ
i ¼

�
�
ðlÞ
i þ �ðlÞn

�
Rmin
i �Ri

�	þ
; ð20Þ

�
ðlþ1Þ
j ¼

�
�
ðlÞ
j þ 	

ðlÞ
j

�X
c2K

X
i2NP

~Rc
i;j �

X
c2K

~Rc
j;P

��þ
: ð21Þ

~pcn denotes the optimal power allocation for user n; n 2 N .
Following a diminishing step size rule for choosing
�ðlÞ; �ðlÞ; 	ðlÞ, the subgradient method above is guaranteed
to converge to the optimal dual variables [12]. The optimal
primal variables can then be easily found.

Observe that, because of the dual decomposition, dual
optimization by subgradient method can be done in a
distributed fashion. First, in each iteration, the per-sub-
channel problems (12) can be solved simultaneously by
the PU of the subchannel exchanging information with
neighboring SUs as in Subroutine 1, though the objective
jointly involves PU’s and SU’s benefits.

Second, subgradient updates can also be distributively
performed by each primary and secondary users. The
algorithm can be perceived as an iterative bargaining
process. The dual variable �j is exchanged between PUs
and SUs and serves as a relay price signal to coordinate the
level of cooperation. When the relay traffic demandP

c

P
i

~Rc
i;j from PUs exceeds the supply

P
c

~Rc
j;P from j,

i.e., PUs over-exploit j, j increases its relay price �j for the
next round of bargaining to suppress the excessive demand,
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as shown in (21). Similarly, if j has redundant relay capacityP
c

~Rc
j;P >

P
c

P
i

~Rc
i;j, it will decrease the relay price �j to

attract more relay traffic and therefore obtain more channels
to use. The process continues until it converges to the
optimal resource allocation.

The interpretation of other dual variables �n and �i is
also worth mentioning. For each user, �n is easily under-
stood as a price signal to regulate its power consumption. �i
for each PU is used to ensure that the resource allocation is
individual rational, i.e., it is beneficial for each PU in that
the total throughput obtained from cooperation Ri is larger
than Rmin

i . When Ri < Rmin
i , �i will be increased as in (20),

and so will ~pci as in (16). Therefore, Rc
i will be larger in the

next iteration. Both dual variables are kept privately and
updated independently with only local information.

Algorithm 1. Optimal Distributed Bargaining for FLEC

1. The primary BS runs a multiuser scheduling algorithm
to determine Rmin

i for PUs without cooperation.

2. Each primary user initializes �
ð0Þ
i ; �

ð0Þ
i . Each secondary

user initializes both power and relay prices �
ð0Þ
j ; �

ð0Þ
j .

3. Given �ðlÞ; �ðlÞ; �ðlÞ, each PU i coordinates with each

neighboring SU j concurrently to solve the

per-subchannel resource allocation problem (12) using

Subroutine 1.

4. SU j bargains by performing a subgradient update for

the relay price �
ðlÞ
j as in (21). PU i updates �

ð0Þ
i as in (20).

Each user also updates the power price �ðlÞn as in (19).

5. Return to step 3 until convergence.
6. Every user updates �Rn from its total throughput Rn in

this epoch. Every PU i updates �Rmin
i from Rmin

i in Step 1.

They will be used for resource allocation in next epoch.

The complete bargaining algorithm is shown in
Algorithm 1. Since it optimally solves the dual problem
(18), it optimally solves the primal problem (9) according
to Proposition 1.

Theorem 2. The distributed bargaining algorithm as shown in
Algorithm 1 always converges, and when it converges its
solution optimally solves the decentralized resource allocation
problem (9).

We now analyze the amount of message exchanges and
complexity here. For a pair of PU-SU, two messages
�j; ~bjði; �j; �jÞ need to be exchanged for each c. They can
easily be piggybacked in the probing packets from SU to PU
to measure the channel gain, resulting in zero message
exchange overhead. The complexity of solving K per-
subchannel problems by exhaustive search is OðKNSÞ.
The complexity of the subgradient update is polynomial
in the dimension of the dual problem, which is K.
Therefore, the complete algorithm has complexity poly-
nomial in KNS . While this may render it infeasible for real-
time scheduling within 5-10 ms when the network scales,
the distributed nature of the algorithm makes it possible for
each PU to concurrently solve the per-subchannel problem,
reducing the complexity to only OðNSÞ. Also, each user can
update their own prices as dual variables independently.
Further, in reality, only a few SUs residing in the
neighborhood of the PU can potentially help and thus have
to be considered. Therefore, from the network point of
view, each round of bargaining has complexity Oð1Þ.

Careful readers may be concerned with the slow
convergence of the subgradient updates, especially when
the problem scales up. We comment that since each PU only
needs to bargain with neighboring SUs, the convergence
complexity is limited by the size of the neighborhood and
does not scale up with the problem size. Also, only scalar
dual variables need to be updated for each user. We observe
in simulations in Section 6.3 that the algorithm converges
within about 20 iterations in most cases.

4 A CENTRALIZED HEURISTIC ALGORITHM

We now proceed to the centralized setting. Recall that in the
decentralized setting, the subchannel assignment to PUs is
done by the BS without considering the possibility of
cooperative transmission, and thus is not part of the
optimization. This enables efficient development of dis-
tributed algorithms, but is suboptimal in general. Here, we
consider the scenario where the SU cooperative transmis-
sion becomes an integral part of primary BS scheduling, and
SUs abide by the scheduling decisions, provided that the
resource allocation is fair as reflected by the NBS fairness.
With centralized FLEC, we have an additional dimension to
optimize: global subchannel assignment for both PU and SU.

4.1 Motivation for Developing Heuristics

The problem can be formulated in a similar way as the
decentralized problem (9), and optimally solved via dual
decomposition and subgradient update. However, it is
computationally prohibitive to do so. Since the BS can now
assign any subchannel used by any helped PU to any
helping SU, at each iteration, the per-subchannel problem
now becomes

max
i;j;i0;j0;pci ;p

c
j0 ;�

c
j0

1
�Ri � �Rmin

i

þ �i
� �

Rc
i;j þ

Rc
j0

�Rj0
� �ipci

� �j0pcj0 þ �j0
�
Rc
j0;P �Rc

i0;j0
�

s:t: ð1Þ � ð4Þ; �cj0 ¼ f0; 1g:

ð22Þ

Compared to the decentralized version (12), there are
additional variables i; i0; j0 to optimize, which represents
the global subchannel assignment. Specifically, i is the PU
assigned to use c and j is its helping SU, while j0 is the SU
assigned to use c and i0 is the PU whose data is relayed by
j0. Note that i (j) needs not to be equal to i0 (j0). The
solution of this problem thus has to exhaustively search all
possible combinations of PU-SU pairs for each subchannel,
which has a complexity of OðKN2

PN
2
SÞ since distributed

concurrent optimization is not possible.
Moreover, because of the global impact of centralized

subchannel assignment, the speed of convergence of dual
variables �; �; ��; �; � scales up with the size of the dual problem
which scales quadratically with NP and NS , instead of being
independent of the dual problem size as in the decentra-
lized case. Note that although the convergence of sub-
gradient method is guaranteed, the speed of convergence is
not, and often depends heavily on problem conditioning
and scaling [12]. From our computational experiences, the
convergence of subgradient updates is too slow to be useful
for practical use as will be shown in Section 6.3.

Given that complexity has been significantly increased,
we focus on developing efficient heuristics in this section,
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which reduce the complexity while maintaining good
performance. Nevertheless, the slow subgradient-based
centralized algorithm, called Centralized Optimization for
FLEC hereafter, is used to derive the optimal performance
as a benchmark as in Section 6.4.

4.2 Overview of the Heuristic Algorithm

To make the problem more tractable, we decouple it to three
orthogonal dimensions: relay assignment, subchannel as-
signment, and power control. First, we derive optimal relay
assignment using bipartite matching, assuming that each SU
is only able to help one distinct PU and one PU can only be
matched to one SU. This simplification is reasonable as it
ensures a certain level of fairness. Then, we assume that
power is equally distributed, and derive an subchannel
assignment algorithm. Even with optimal relay and equal
power assignment, this turns out to be an NP-hard problem.
We propose a suboptimal algorithm based on randomized
rounding and prove its approximation ratio. Finally, power
allocation is solved to maximize performance with the given
subchannel assignment. Be reminded that as an initializa-
tion step, the BS first performs a multiuser scheduling [20] to
determine Rmin

i ; �Rmin
i for PUs before the three component

algorithms run. The entire heuristic algorithm is called
Centralized Heuristic for FLEC hereafter.

We do not claim that our heuristic design is the only
choice here. In fact, other heuristic designs are entirely
possible. For example, one may choose to solve the
subchannel assignment first, then relay assignment, and
finally power control. It is also possible to jointly solve two
of the three orthogonal dimensions. For example, one may
choose to solve the joint problem of relay and subchannel
assignment and then compute the power allocation based
on the solution of the joint problem. These possibilities are
beyond the scope of this paper and left as future research,
since they have different formulations and require different
solutions. We do not claim that our heuristic design is the
best, although simulation studies in Section 6 show that it
improves performance significantly compared to the con-
ventional identical channel cooperation.

4.3 Relay Assignment

Here, we model each user n as having an imaginary channel
with a normalized channel gain to noise ratio �gcn ¼ 1

K

P
c g

c
n

and power pmax
n . Then, the optimal FLEC strategy reduces

to simple time-sharing on this channel. Assuming each SU
can only help one distinct PU and one PU can only be
matched to one SU, the optimal relay assignment under the
basic framework in Section 2.3 can be determined by

max
xi;j2f0;1g

X
i2NP

X
j2NþS

xi;j
R̂i;j �Rmin

i

�Ri � �Rmin
i

þ R̂j;i

�Rj

 !

s:t: R̂i;j ¼
1

2
min

�
log
�
1þ 2pmax

i �gi;j
�
; log

�
1þ 2pmax

j �gj;P
��
;

R̂j;i ¼
1

2
log
�
1þ 2pmax

j �gj
�

1� logð1þ 2pmax
i �gi;jÞ

logð1þ 2pmax
j �gj;P Þ

" #þ
;

8i 2 NP ; j 2 NS;
R̂i;Nþ1 ¼ log

�
1þ pmax

i �gi
�
; R̂Nþ1;i ¼ 0; �RNþ1 ¼ 1:X

i2NP

xi;j ¼ 1; 8j 2 NS;
X
j2NS

xi;j ¼ 1; 8i 2 NP :

xi;j is the binary variable denoting the relay assignment of
SU j to PU i. Thus, for PU i, its overall cooperative
throughput Ri;j when matched to SU j is the minimum of
the two hops PU-SU and SU-BS. When i chooses j ¼ N þ 1,
i.e., direct transmission, the throughput is calculated from
the Shannon formula. For SU j, the overall cooperative
throughput Rj;i when matched to PU i is implied from the
time-sharing strategy, since it must relay all primary traffic
whenever possible.

The above relay assignment is a weighted bipartite
matching problem that can be optimally solved. To see this,
construct a graph A ¼ ðV1 
 V2; EÞ where V1 and V2 corre-
spond to the set of PUs and SUs, respectively, as shown in
Fig. 2. We patch a void vertex to V2 to incorporate the direct
transmission. The edge set E corresponds to NP ðNS þ 1Þ
edges connecting all possible pairs of users in the two vertex
sets. Each edge ði; jÞ carries a weight, wi;j, where

wi;j ¼
R̂i;j �Rmin

i

�Ri � �Rmin
i

þ R̂j;i

�Rj

:

For edges connecting PUs to the void SU that we patched,
the edge weights have captured the maximum marginal
utility given by direct transmission. Observe that A is
bipartite, optimal relay assignment is then equivalent to
finding maximum weighted bipartite matching on A. The
Hungarian algorithm is a popular polynomial-time algo-
rithm to solve it optimally [23].

4.4 Subchannel Assignment

For PUs using direct transmission as determined by optimal
relay assignment, they do not share resources with SUs, and
as such cannot benefit from SU cooperation. Therefore, they
use the same subchannels as allocated in the initialization
step. For the set of PUs NRP that use cooperative transmis-
sion, the set of their allocated subchannels KR in the
initialization step will be collected and reassigned by the
following algorithm. For each PU i and its unique helping
SU jðiÞ, we assume they will use power

�pi ¼
pmax
i

Ki
; �pjðiÞ ¼

pmax
jðiÞ
Ki

;

respectively, on each subchannel, where Ki is the number of
subchannels allocated to i in the initialization step [20].
Such an equal power assumption is widely used and leads
to subchannel assignment algorithms with near-optimal
performance, as reported extensively [20], [24] and will be
shown in Section 6.4.
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The subchannel assignment problem can be formulated as

in (23): where wc1

i;jðiÞ denotes the marginal utility (normalized

to a large value wmax) obtained by PU i on being assigned

c1 on PU-SU link in the first time slot (i.e., wc1

i;jðiÞ ¼
0:5 logð1þ 2�pig

c1
i;jÞ=ð �Ri � �Rmin

i Þ), and wc2

jðiÞ;P denotes the mar-

ginal utility of assigning c2 for jðiÞ on SU-BS link in the

second slot (i.e., wc2

jðiÞ;P ¼ 0:5 logð1þ 2�pjðiÞg
c2

jðiÞ;P Þ=ð �Ri � �Rmin
i Þ.

wc2
j denotes the normalized marginal utility of SU j on being

assigned c2 for its own data 0:5 logð1þ 2�pjg
c2
j Þ= �Rj, and ai; bj

denote the aggregate marginal utility (flow) achieved by PU i

and SU j, respectively. xc1
i is the binary variable denoting

whether c1 is assigned to PU i in the first time slot, yc2
i denotes

whether c2 is assigned to i’s helper SU jðiÞ for relaying in the

second time slot, and yc2
j denotes whether c2 is assigned to

SU j for its own transmission in the second time slot

max
x
c1
i ;y

c2
i ;y

c2
j

X
i2NRP

ai þ
X
j2NS

bj

s:t:
X
c22KR

yc2
j � w

c2
j ¼ bj; 8j 2 NS;X

c12KR
xc1
i � w

c1

i;jðiÞ ¼ ai;
X
c22KR

yc2
i � w

c2

jðiÞ;P ¼ ai; 8i 2 N
R
P ;X

i2NRP

xc1
i ¼ 1;

X
i2NRP

yc2
i þ

X
j2NS

yc2
j ¼ 1; 8c1; c2 2 KR:

ð23Þ

Theorem 3. The subchannel assignment problem under the above

IP formulation is NP-hard.

Proof. The problem can be reduced from type-dependent
multiple knapsack problems (MKP), where each set of
knapsacks (users) belongs to a different type (time slot
and primary/secondary). The profit of allocating an item
(subchannel) depends not only on the knapsacks but also
the type of them. The one-type MKP is known to be NP-
hard and even hard to approximate [25]. Therefore, our
problem is NP-hard. tu

Given the hardness of the problem, we present a round-
ing-based algorithm to solve it as shown in Algorithm 2. It
ensures that each subchannel is assigned to at most one user
for both slots. We now capture the performance of the
algorithm.

Theorem 4. Algorithm 2 provides an approximation ratio of

1�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4cNS

KR
lnðKRÞ

r

with high probability, where KR is the cardinality of the

subchannel set KR.

Proof. Refer to the Appendix in the supplemental material,
which can be found on the Computer Society Digital
Library at http://doi.ieeecomputersociety.org/10.1109/
TMC.2012.62, for a detailed proof. tu

Therefore, its performance becomes better when there is
a larger magnitude of available subchannels to users in the
system. Since the number of subchannels in a practical
OFDMA system is much bigger than that of users,
Algorithm 2 can be expected to provide good performance.

Algorithm 2. Rounding-based Subchannel Assignment
1. Formulate the problem using the IP above. Solve its LP

relaxation with xc1
i ; y

c2
i ; y

c2
j being relaxed to ½0; 1�. Let the

LP solutions be x̂c1
i ; ŷ

c2
i ; ŷ

c2
j , and âi; b̂j.

2. Adopt the following procedure to round the fractional

solutions, x̂c1
i ; ŷ

c2
n , to integral values, ~xc1

i ; ~y
c2
n , where

n 2 fi 2 NRP g [ fj 2 NSg.
. For every c2, round yc2

n to 1 (~yc2
n ) with probability

ŷc2
n . If ~n is the user to whom c2 is assigned, then
ŷc2
n ¼ 0; 8n 6¼ ~n.

. Update ~ai ¼
P

~y
c2
i w

c2
jðiÞ;P

1�� ; ~bj ¼
P

~y
c2
j w

c2
j

1�� , where � is a

constant derived in the Appendix, available in the

online supplemental material. Run the LP again on

xc1
i only. Let �xc1

i be the solutions of the new LP.

. For c1, round xc1
i to 1 (~xc1

i ) with probability �xc1
i . If ~i is

the PU c1 is assigned to, then ~xc1
i ¼ 0; 8i 6¼ ~i.

4.5 Power Control

After all the subchannels are allocated as above, power can

be allocated to each user optimally. For PUs with direct

transmission, optimal power allocation is a simple water-
filling solution. For PUs with cooperative transmission,

optimal power allocation is performed on a per-pair basis

with their unique helping SUs. With subchannels allocated

and their use on an SU determined, power allocation on
each pair of PU-SU is a standard convex optimization

problem and can be readily solved by KKT conditions. We

omit the details here.

5 IDENTICAL CHANNEL COOPERATION

In previous sections, we have addressed the resource

allocation problem with FLEC in both decentralized and
centralized settings. In this section, we present solutions for

resource allocation with conventional identical channel

cooperation, which makes our analysis complete. The
motivation to study CC here is that it can serve as the

performance benchmark for our flexible channel coopera-

tive scheme. Also, due to implementation and complexity

considerations, FLEC may not be feasible in certain
scenarios, whereas CC is comparatively easier to implement

due to its simplicity. Similar to FLEC, we also consider both

decentralized and centralized CC.

5.1 Decentralized CC

5.1.1 Problem Formulation

Scheduling and resource allocation of decentralized CC can

be similarly formulated as that of FLEC in Section 3.1. The

key difference is that the per-subchannel flow conservation
constraints need to be satisfied for each subchannel, instead

of only total flow conservation (5) for FLEC. Mathematically,X
i2NP

Rc
i;j � Rc

j;P ; 8j 2 NS; c 2 K: ð24Þ

In addition, we have the following for the time-sharing

strategy:

�cj 2 ½0; 1Þ; 8c 2 K; j 2 NS ð25Þ
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instead of �cj ¼ f0; 1g for FLEC. �cj 6¼ 1 since j must relay in
CC. The problem can then be presented as

max
R;P;��

X
i2NP

Ri �Rmin
i

�Ri � �Rmin
i

þ
X
j2NS

Rj

�Rj

s:t: P � 1T 	 pmax;R � Rmin; ð1Þ � ð4Þ; ð24Þ � ð25Þ:
ð26Þ

From an intuition level, CC has more flexible time-sharing
strategy, but requires the relay transmission to be on the
identical subchannel. FLEC is more flexible in terms of

channel sharing strategy for cooperative transmission, but
the time-sharing strategy is restricted. From an optimization

point of view, CC has NSK per-subchannel flow conserva-
tion constraints, while FLEC only has NS total flow

conservation constraints, where NS is the number of SUs
and K the number of subchannels as in Section 2.1. Given

that K is typically on the order of hundreds in a practical
OFDMA system, CC formulation has far more constraints

than FLEC. Because these flow conservation constraints
directly impact SU’s throughput for relay and its own

transmission as shown in (3), they are active constraints that
directly impact the optimization objective. Thus, it is not a

surprise that FLEC outperforms CC in both decentralized
and centralized settings, as we will show in Section 6.

In general, (26) can also be solved in the dual domain by

taking advantage of convexity through frequency sharing
in OFDMA networks. The same set of techniques, includ-

ing dual decomposition, exhaustive search for the per-
subchannel problems, and subgradient method to update

the dual variables, can be applied in the same way as in
Section 3.2. However, due to the per-subchannel flow

constraint, a different dual decomposition technique is
used to efficiently achieve the dual optimum via the
subgradient method, making the analysis different. We

show the differences in detail in the following.

5.1.2 Dual Decomposition

Recall in the decentralized FLEC problem (9), we relax

power, flow, and individual rationality constraints, so they
can be decoupled into per-subchannel constraints, and the

dual variable updates can be understood as coordinating
these constraints such that, when combined together, they

are satisfied at the end of the process. In the decentralized
resource allocation problem of CC (26), the flow constraint

is already in the decoupled form to be satisfied for each
subchannel. Thus, we only need to relax the total power and

individual rationality constraints.
As discussed, the Lagrangian can be written as

LðR;P; �; �; ��; �; �Þ ¼
X
i2NP

Ri �Rmin
i

�Ri � �Rmin
i

þ
X
j2NS

Rj

�Rj

þ
X
n2N

�n

�
pmax
n �

X
c2K

pcn

�
þ
X
i2NP

�i
�
Ri �Rmin

i

�
:

ð27Þ

The dual function is

gð�; ��; �Þ ¼
max
R;P;��

LðR;P; �; �; ��; �; �Þ
s:t: ð1Þ � ð4Þ; ð24Þ � ð25Þ:

(
ð28Þ

By expanding the term Ri;Rj, ignoring constant terms, and
realizing that each subchannel is already assigned to a PU,
the per-subchannel problem can be written as

max
j;pci ;p

c
j ;�

c
j

Rc
i;j

�Ri � �Rmin
i

þ �iRc
i;j þ

Rc
j

�Rj

� �ipci � �jpcj

s:t: ð1Þ � ð4Þ; ð25Þ; Rc
i;j � Rc

j;P ; i ¼ F ðcÞ
ð29Þ

where i is the primary user of subchannel c determined by

the conventional multiuser scheduling denoted as F ð�Þ:
K ! NP .

5.1.3 Solutions to the Per-Subchannel Problem

Exhaustive search can also be used to solve the per-
subchannel problem, as in Section 3.3. As we have seen, to

enable such search we need to derive optimal solutions
~pci ; ~p

c
j; ~�cj under direct and cooperative transmission modes

for any combination of subchannel c with its PU i and the
SU j. Readily, we can see that for direct transmission, the

optimal solution ~pci is the same as in (14). However, for
cooperative transmission, the derivations are different from
the previous analysis.

The first observation is that maximization of the problem

is achieved with the inequality of the flow conservation
constraint achieved as equality. This can be easily verified
by observing that increasing Rc

j;P any further beyond Rc
i;j

will not increase the utility of PU i. On the other hand, it

will decrease the utility of SU j in the objective function,
since j will inevitably have less resources to improve its
own throughput.

With this observation, and by substituting the rate
formulas (2)-(3), we need to solve the following:

max
pci ;p

c
j;�

c
j

1

2ð �Ri � �Rmin
i Þ
þ �i

� �
log
�
1þ 2pcig

c
i;j

�
� �ipci

þ
�cj log

�
1þ 2pcjg

c
j

�
2 �Rj

� �jpcj

s:t:
log
�
1þ 2pcig

c
i;j

�
2

¼
�
1� �cj

�
log
�
1þ 2pcjg

c
j;P

�
2

;

�cj 2 ½0; 1Þ:

ð30Þ

Essentially, this is a constrained nonlinear maximization

with respect to two variables with standard solution
methods. But it turns out quite difficult to obtain a closed-
form solution. We resort to numerical methods to obtain
solutions efficiently.

The entire procedure to solve the per-subchannel
problem for CC thus can be summarized as follows:

Subroutine 2. Exhaustive search for solving (29) for a given

subchannel c and its PU i:

. Solve for ~pci using (14) for direct transmission.

. Contact each neighboring SU j to obtain �j; g
c
j, and

�Rj. Solve the joint utility maximization problem (30)
numerically to get optimal ~pci ; ~p

c
j; ~�cj for each j. Then,

find the optimal ~j that maximizes the joint utility.
. Choose the transmission mode with larger utility.

Output the corresponding optimal resource allocation
~j; ~pci ; ~p

c
j, and ~�cj.
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The complete resource allocation for CC, denoted as
Distributed Bargaining for CC, is shown in Algorithm 3.

Algorithm 3. Distributed Bargaining for CC

1. The primary BS runs a multiuser scheduling algorithm
to determine Rmin

i for PUs without cooperation.

2. Each user initializes its power price �ð0Þn . Each PU

initializes the dual variable �
ð0Þ
i .

3. Given �ðlÞ, each PU i solves the per-subchannel

resource allocation problem (29) using Subroutine 2.

4. Each user n bargains by performing a subgradient

update for the price �n as in (19). Each PU i also

updates �ias in (20).

5. Return to step 3 until convergence.

6. Every user updates �Rn from its total throughput Rn in
this epoch. Every PU i updates �Rmin

i from Rmin
i in Step 1.

They will be used for resource allocation in next epoch.

5.2 Centralized CC

Finally, we consider resource allocation of centralized CC,
which takes into account subchannel assignment to PUs
and SUs. By the same argument as in Section 4, our focus is
on developing efficient heuristics with short running time.
We follow the same approach in developing Centralized
Heuristics for FLEC and divide the problem into three
dimensions, i.e., relay assignment, subchannel assignment,
and power control. Readily, we can see that the same relay
assignment algorithm based on maximum weighted bipar-
tite matching can be used here, since we would have an
exactly the same problem formulation with only total flow
conservation constraints, when all the channels are com-
bined to form an imaginary channel as in Section 4.3. It is
also straightforward that optimal power allocation follows
the famous water-filling solution, given the relay and
subchannel assignment. The only difference then lies in
solving the subchannel assignment, which turns out to be
much easier. The entire algorithm is referred to as
Centralized Heuristics for CC thereafter.

5.2.1 Subchannel Assignment

As in Section 4.4, we only consider the set of PUs NRP that
are assigned with an unique helping SU each. Their
allocated subchannels KR in the initialization step is
reassigned by the channel assignment algorithm. The same
assumptions are inherited, that each PU i and its unique
helping SU jðiÞ use equal power

�pi ¼
pmax
i

Ki
; �pjðiÞ ¼

pmax
jðiÞ
Ki

;

respectively, on each subchannel, where Ki is the number of
subchannels allocated to i in the initialization step.

From the per-subchannel flow conservation constraint
(24), optimal time sharing ��cjðiÞ can be uniquely determined
under equal power allocation �pi; �pjðiÞ on each subchannel.
Specifically, from (24),

��cjðiÞ ¼ 1�
log
�
1þ 2�pig

c
i;jðiÞ
�

log
�
1þ 2�pjðiÞg

c
jðiÞ;P

� ; 8c 2 KR; ð31Þ

when c is allocated to i; jðiÞ. Thus, the corresponding
optimal utility uci;jðiÞ is simply

uci;jðiÞ ¼
log
�
1þ 2�pig

c
i;jðiÞ
�

2
�

�Ri � �Rmin
i

� þ
��cjðiÞ log

�
1þ 2�pjðiÞg

c
jðiÞ
�

2 �RjðiÞ
: ð32Þ

The subchannel assignment problem can be casted as

max
xci

X
c2KR

X
i2NRP

xciu
c
i;jðiÞ

s:t:
X
i2NRP

xci ¼ 1; 8c 2 KR:

The constraint is such that each subchannel is only allocated
to one pair of PU-SU. This can be easily solved by assigning
each subchannel c to a PU i that has the largest uci;jðiÞ. That
is, ~ic ¼ argmaxi2NRP

uci;jðiÞ.

5.3 Discussions

Through the analysis in this section, we can see that our
NBS resource allocation framework is readily applicable to
identical channel cooperation. In general, CC makes the
problem easier to solve compared to that with FLEC. The
reason is the straightforward time-sharing cooperation
strategy that simplifies the scenario and reduces the degrees
of optimization freedom. However, optimality is sacrificed
simply because time-sharing accounts for only a subset of
all possible cooperation strategies under FLEC, as we have
already seen from the analysis and will be verified in the
simulation studies in the next section.

6 PERFORMANCE EVALUATION

To evaluate the performance of FLEC with the proposed
resource allocation algorithms, we adopt empirical para-
meters to model the fading environment. There are 128
subchannels centered at 2.5 GHz, each with 312.5 kHz
bandwidth. Channel gain can be decomposed into a large-
scale log normal shadowing component with standard
deviation of 5.8 and path loss exponent of 4, and a small-
scale Rayleigh fading component. The inherent frequency
selectivity is captured by an exponential power delay
profile with delay spread 1:257 �s as reported via extensive
measurements [26]. The entire 40 MHz channel is parti-
tioned into blocks of size equal to the coherence bandwidth
Bc � 795:6 KHz. Three independent Rayleigh waveforms
are generated for each block using the modified Jakes
fading model and a weighted sum is taken to calculate the
SNR. A scheduling epoch is of 5 ms duration, and an
evaluation period consists of 1,000 scheduling epochs. The
number of PUs is set to 60, and the number of SUs varies.

6.1 Overall Performance of FLEC

We first evaluate the overall performance of distributed and
centralized FLEC compared with conventional identical
channel cooperation (“CC” in the figures). We use Centralized
Heuristic for CC to derive CC performance as the benchmark
here. In Fig. 3, we plot the average throughput of both PUs
(first three bars) and SUs (last three bars). We can see that
Distributed Bargaining for FLEC and Centralized Heuristic for
FLEC as in Sections 3 and 4 provide 20-40 percent and 30-
60 percent improvement, respectively. It clearly demon-
strates the advantage of FLEC. A similar trend is also
observed for SUs, although the improvement becomes
marginal when the number of SUs scales up. The reason is
that, though a larger number of SUs provides more and
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better cooperation for PUs and thus improves their through-
put, it results in fewer channels leased to each SU, and a
lower degree of optimization freedom.

6.2 Effects of Topology

Next, we investigate the effects of topology on FLEC. We
choose Distributed Bargaining as the representative algo-
rithm, and evaluate three representative topologies, where
NS equals 40 and the average distance from PU to BS is
controlled to be 0.8, 0.65, and 0.5 of the cell radius
(topology 1, 2, and 3, respectively). We observe from
Fig. 4 that while cooperation always results in some
improvement in PU throughput, scenarios dominated by
high path loss and poor shadowing benefit the most
(topology 1), as more cooperation opportunities can be
explored. SU’s throughput also becomes better in these
scenarios, which we do not show here due to space limit.
This observation justifies the deployment of SU coopera-
tion for throughput enhancement in primary networks
with high path loss and limited coverage.

6.3 Practicality of FLEC Algorithms

In this section, we are concerned with the practicality of the
FLEC algorithms. First, we study the convergence of our
distributed algorithm for decentralized FLEC. Fig. 5 shows

the convergence of Distributed Bargaining for two randomly
chosen PUs with different number of neighboring SUs. It
is clear that the distributed algorithm converges within
20 iterations, validating its feasibility in practice. The reason
for the fast convergence, as discussed in Section 3.4, is
mainly the limited size of neighborhood. With distributed
and concurrent operations, it is indeed suitable for practical
implementation.

We then study the algorithms for the centralized
problem. We first observe that Centralized Optimization for
FLEC does not converge even after 1,000 iterations in
Fig. 5. This echoes our concern about the complexity of
centralized subgradient update of two vector dual vari-
ables in Section 4, and justifies our motivation to design
efficient heuristics.

To understand the practicality of Centralized Heuristic, we
observe the running time of its component algorithms in
our simulations. Table 1 summarizes the average as well as
the minimum and maximum running time of the three
component algorithms. We can see that all of them are on
the order of milliseconds on an Intel Xeon Quad-core CPU
running at 3 GHz with 2 GB memory and without any
multithreading. Therefore, the usual scheduling deadlines
of 5-10 ms [6] can be satisfactorily met. Through the
discussions here, we summarize that both the Distributed
Bargaining and Centralized Heuristic are practical in terms of
running time.

6.4 Near-Optimality of Centralized Heuristic

We now evaluate the performance loss of Centralized
Heuristic compared with that of Centralized Optimization.
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Fig. 3. Overall throughput performances. The first three bars represent
PU throughput, and the last three bars represent SU throughput.

Fig. 5. Convergence of the algorithms (NS ¼ 50).

Fig. 4. Effects of topology on PU throughput improvement.

TABLE 1
Running Time of Component Algorithms

in Centralized Heuristic for FLEC



Recall that Centralized Optimization is developed via the
same methodology of dual decomposition and subgradient
update as used in Distributed Bargaining in Section 4. As
seen from Fig. 6, with respect to the average throughput of
both PU and SU, Centralized Heuristic losses about 5 percent
in all cases. We also evaluate the performance loss with
different values of pmax

i , and find that the gap widens
when pmax

i decreases. The reason is that our subchannel
assignment is based on the assumption of equal power
allocation, which becomes invalid when pmax

i is small, and
affects the performance of our Centralized Heuristic.
Numerical details are not presented because of limited
space. Due to slow convergence of Centralized Optimization,
we may conclude that Centralized Heuristic achieves a good
tradeoff between performance and complexity, and is
amenable to practical implementations.

7 RELATED WORK

A plethora of work has been done on spectrum sharing
based on cognitive radio [2]. Generally, they fall into three
paradigms, interweave, underlay, and overlay [27]. The
interweave paradigm insists that SUs should only transmit
when PUs are not, while the underlay paradigm allows SUs
to transmit concurrently with PUs provided that their
signals do not cause harmful interference. Essentially, in
both cases, SUs are transparent to PUs. The overlay
paradigm, which is the focus of this paper, assumes PUs
have side information about SUs, and leverages them to
improve primary network performance. However, most
existing works focus on information theoretic analysis [28].

In networking literature, Simeone et al. [4] first propose
the idea of cooperative cognitive radio network, where the
secondary users can earn spectrum access in exchange for
cooperation with the primary user. A Stackelberg game is
formulated where the primary user acts as the leader and
determines the optimal time-sharing strategy in maximizing
its transmission rate. Zhang and Zhang [5] consider a
slightly different setting where the traffic demand of
primary user is taken into account, and the utility function
includes a revenue component from secondary users. Wang
et al. [29] consider the game of one PU and multiple SUs in
which the PU decides the portion of access time and the SU
decide the relay power level. In [30], a priority queuing
system model is developed, and in [16] a credit-based

spectrum sharing scheme is studied for cooperative cogni-
tive radio network. These work adopt a single shared
channel setting with a single primary user and an ad hoc
network of secondary users. On contrary, in this paper, we
consider a multichannel setting where the OFDMA-based
primary and secondary networks colocate, which represents
a more practical network scenario and has not been
considered before.

Resource allocation with cooperative diversity has been
extensively studied in general wireless networks [31], [32],
[33]. Specifically, our paper is more related to work in
cognitive radio or cooperative OFDMA networks. For the
former, most work [34], [35], [36] consider maximizing SUs’
throughput with constrained interference to PUs. In other
words, they all consider the underlay paradigm. For the
latter, most related to our work are [13] and [14]. Ng and Yu
[13] address the problem with a joint consideration of relay
assignment, channel allocation, relay strategy optimization,
and power control. Our previous work [14] considers the
problem with a novel network coding-based cooperation
strategy, and proposes approximation algorithms with
performance guarantees. Compare to these work, we
consider the performance of primary and secondary users
jointly, and apply the concept of Nash bargaining solutions
[10] to ensure both parities benefit from cooperation fairly.

The application of Nash bargaining to multicriteria
optimization is not new in the networking field. Mazumdar
et al. [37] applies it to ensure fairness in a network flow
control problem. Kelly in the seminal work [11] has also
shown that Nash bargaining ensures proportional fairness
in a TCP setting. NBS has been also applied to allocate
resources in cooperative OFDMA networks [18], [19]. These
works do not consider the inefficiency of conventional
cooperation methods in the context of multichannel CCRN,
and only heuristics without any performance bounds are
given. Finally, our conference version of this paper [1] does
not study the identical channel cooperation in detail.

8 CONCLUDING REMARKS

This work represents an early attempt to study OFDMA
cooperative cognitive radio networks. The central question
addressed is how to effectively exploit secondary user
cooperation when conventional cooperation method be-
comes inefficient in this scenario, which has not yet been
explored. We propose FLEC, a flexible channel coopera-
tion design to allow SUs to customize the use of leased
resources in order to maximize performance. We develop
a unifying optimization framework based on Nash
bargaining solutions to address the resource allocation
problem with FLEC, where relay assignment, subchannel
assignment, relay strategy optimization, and power con-
trol intricately interplay with one another. An optimal
distributed algorithm as well as an efficient centralized
heuristic with near-optimal performance are proposed. We
also extend our framework to consider resource allocation
with conventional cooperation.
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