
When Power-of-d-Choices Meets Priority
Jianyu Niu∗¶, Chunpu Wang†, Chen Feng‡, Hong Xu§

∗Research Institute of Trustworthy Autonomous Systems, Southern University of Science and Technology
†Unity Technologies, ‡School of Engineering, University of British Columbia

§Department of Computer Science and Engineering, Chinese University of Hong Kong
Email: ∗niujy@sustech.edu.cn, †chunpu.wang@alumni.ubc.ca, ‡chen.feng@ubc.ca, §hongxu@cuhk.edu.hk

Abstract—Power-of-d-choices (Pod) is a popular load balancing
strategy, which has received much attention from both academia
and industry. However, much prior work on Pod has focused
on uniform tasks without priorities. In reality, tasks may have
different priorities according to their service sensitivity, pricing,
or importance to guarantee the quality of service (QoS). In this
work, we distinguish two types of priorities in Pod: scheduling
and service priorities. We propose Pod-SSP, which is a Pod
algorithm with Scheduling and Service Priorities. To better
understand the impact of priorities on the performance of
tasks, we consider two simple variants of Pod-SSP: Pod with
SCheduling Priorities (Pod-SCP) and Pod with SErvice Priorities
(Pod-SEP). Utilizing mean-field approximation, we systematically
study the performance of these protocols in the large-system
regime. Our theoretical and simulation results show that high-
priority tasks can have a more than 3x better delay relative to
a system running the original Pod algorithm, and meanwhile,
low-priority tasks only slightly sacrifice their delay.

Index Terms—Load balance, Power-of-d-Choices (Pod), Task
priorities, Quality-of-Service (QoS).

I. INTRODUCTION

Load balancing plays a crucial role in large server farms
(e.g., data centers or fog computing) for scheduling incoming
tasks amongst servers in order to minimize task response
time and improve user experience. Join-the-Shortest-Queue
(JSQ) is a natural load balancing algorithm, which tracks the
queue lengths of all servers and selects the least loaded server
whenever a task arrives. Although JSQ is proven to be delay-
optimal in certain regimes [1], it does not scale well. This is
because the algorithm needs to continuously monitor servers’
loads, which incurs high message and computation overhead.

To improve scalability, a new load balancing algorithm
called Power-of-d-choices (Pod) (also known as JSQ(d) in
the literature) is proposed with low message overhead [2],
[3]. Specifically, Pod probes only d servers uniformly at
random upon task arrival and then dispatches the task to the
least loaded one among the d samples, as shown in Fig. 1.
Despite its simplicity, Pod can achieve a low average task
response time even with d as small as two [2]. The salient
performance makes Pod gain considerable attention and be
widely implemented [4]–[8]. Industry, such as NGINX [4] and
HAProxy [5], has already adopted Pod as one of their load
balancing algorithms. Besides, Pod has shown great potentials
in scheduling applications in various systems, ranging from

¶ Part of this work was done when Jianyu Niu was at UBC.

server 1 server 2 server

d = 2

Task

server 3 N

scheduler

Fig. 1. An overview of the Pod algorithm for many-server system.

data center networks [9], [10], large-scale storage systems [6],
[11], fog computing systems [7], blockchain systems [12],
[13], to wireless networks [8].

However, most prior work on Pod focused on uniform tasks
without priorities. In reality, tasks may have different priorities
according to their service sensitivity, pricing, or importance.
For example, the completion-times of some tasks (e.g., online
gaming or real-time search) are more sensitive for users; some
users are willing to pay more for their tasks in a system
with differential service; certain tasks are more important for
business or computing jobs (e.g., a Map job in the Map/Reduce
framework). Under these circumstances, the time-sensitive,
high-priced, or important tasks need higher priority in execu-
tion to guarantee the quality of service (QoS) [14]. Therefore,
in order to meet these demands, Pod-based systems should
provide such task priorities. This motivates our study.

In this paper, we conduct an in-depth analysis of the Pod
algorithm with task priorities. We distinguish two types of
priorities: scheduling and service priorities. Algorithms can
schedule high-priority tasks to the less-loaded servers by
probing more servers, and a server can first process high-
priority tasks in its queues. In particular, we propose a new
Pod algorithm with Scheduling and Service Priorities, namely
Pod-SSP. We use the mean-field analysis (also referred to
as fluid-limit analysis) to rigorously analyze task response
times. Our studies show that high-priority tasks’ response
times can be significantly shortened with a slight sacrifice
of low-priority tasks’ delay under some conditions. Besides,
we systematically evaluate the impact of these two priorities
on tasks’ performance by studying two variants of Pod-SSP.
Although the focus of this paper is on the Pod algorithm,
we believe that the algorithm design and analysis can be
extended to other scheduling strategies such as Join-the-Idle-
Queue (JIQ) [3], [15].

Our main contributions are as follows:
• We propose a new Pod algorithm with Scheduling and

Service Priorities (Pod-SSP). We study its performance in
the large-system regime using a mean-field analysis. The
analysis shows that high-priority tasks’ response times can
be significantly shortened at the only slight sacrifice of low-
priority tasks.

• To better evaluate the impact of priorities on tasks’ per-
formance, we propose two variants of Pod-SSP: Pod with
SCheduling Priorities (Pod-SCP) and Pod with SEvice
Priorities (Pod-SEP). By studying them, we find that ser-
vice priorities are more important than scheduling priorities
in guaranteeing high-priority tasks’ QoS, especially when
high-priority workloads are small.

• We perform extensive simulations to verify that our analyt-
ical results are indeed accurate in large, but finite, systems.
Simulation results show that when workloads are high, even
sampling one more server for a small fraction of high-
priority tasks can greatly reduce task responses times.

• We discuss communication costs caused by service and
scheduling priorities. We also discuss how to achieve zero
delay for high-priority tasks in Pod-SSP.

The rest of this paper is organized as follows. In Section II,
we provide the related work of the Pod algorithm. We then
introduce the system model, the algorithm Pod-SSP, and the
main results in Section III. We present the analysis of Pod-
SSP in Section IV. We analyzed two variants of Pod-SSP
in Section V. We evaluate these protocols in Section VI.
We discuss communications costs and optimization of task
response times in Section VII and conclude the paper in
Section VIII.

II. RELATED WORK

The Pod algorithm and its variants have been widely studied
and applied in today’s computer systems [2], [3], [16]–[25].
The Pod algorithm was first studied based on the system model
of Poisson task arrivals, exponential service times, single
dispatcher without memory, and homogeneous servers [2], [3].
Later on, many studies were conducted to extend the above
system. For example, Bramson et al. extended the exponential
service times to general service requirement distributions [16].
In [17], [18], Pod algorithms with heterogeneous servers are
studied. Ying et al. studied the Pod algorithm with batch task
arrivals and found that sampling slightly more than one queue
on average per task can achieve a lower tail response time
than the original Pod algorithm [19]. In [20], Serguei and
Natalia studied a multiple-dispatcher system, in which tasks
are clustered into several classes, and tasks in the same class
are accessible to some dispatchers (not all) for scheduling.
They obtained simple stability criteria for two particular cases
when service rates are either dispatcher-independent or class-
independent. Shay et al. studied the system with heteroge-
neous servers and multiple dispatchers [23]. In [21], [22], the
dispatcher is assumed to have the memory to store servers’
queue information such that the dispatcher doesn’t need to

probe servers every time upon a task arrival. Kristen et al.
studied a Pod algorithm, in which an arriving task is copied
and dispatched to multiple servers, and the task is completed
once any copy is finished [24]. In [25], Wang et al. proposed
a hybrid algorithm that combines the Pod with a centralized
helper.

Despite the numerous variants of Pod algorithms, there are
very few works focusing on task priorities. Mitzenmacher et
al. in [26] proposed a simple variant of Pod, which provides
scheduling priorities by choosing the shortest server of two
servers for high-priority tasks and randomly choosing a server
for low priority tasks. This algorithm can be viewed as a
special case of our Pod-SCP algorithm. In addition to schedul-
ing priorities, we have also considered service priorities and
provided a systematical analysis of both of them in this
paper. In [27], Alistarh et al. used the power-of-two-choices
to remove elements from multiple concurrent priority queues,
and their study is orthogonal to ours. Our work is among the
first to systematically analyze the impact of priorities on tasks’
performance.

III. SYSTEM MODEL AND MAIN RESULTS

A. System Model

We consider an online service with N identical servers,
each with a separate queue to store tasks including the one in
service, as illustrated in Fig. 2. We assume that task arrivals
follow a Poisson process with rate λN . There are two types
of tasks, namely, low-priority tasks and high-priority tasks.
High-priority tasks enjoy priorities in terms of scheduling and
service (with details introduced shortly). The probability that
a task belongs to the high priority (resp., low priority) is p
(resp., 1−p). Therefore, p represents the ratio of high-priority
tasks and is called the privilege ratio. The processing time
of each task is exponentially distributed with mean µ = 1,
which is independent across tasks and servers. We assume
that λ < 1, because otherwise, the system is unstable. In
addition to servers, there is a centralized scheduler that runs
the load balancing algorithm to dispatch tasks to servers. Due
to space constraints, in this work, we focus on homogeneous
tasks, i.e., tasks with different priorities have the same service
distribution. Besides, we do not consider a more general
service model.

B. Algorithms

We first describe the original power-of-d-choices (Pod) al-
gorithm and then introduce our Pod-SSP, a new Pod algorithm
with scheduling and service priorities.
Power-of-d-Choices [2], [3]: When a task arrives, the sched-
uler probes d servers uniformly at random (with replacement)
and dispatches the task to a server with the shortest queue.
If multiple servers have the same shortest queue length, the
scheduler chooses one uniformly at random.
Pod with Scheduling and Service Priorities: On the server
side, each server gives strict priority to high-priority tasks.
In particular, a server is processing a low-priority task only
if there is no cached high-priority task in its queue. When a

server 1 server 2

d2 = 2

High-priority taskLow-priority task

server 1 server 2

d1 = 1

a) Low-priority task arrival b) High-priority task arrival

server N server N

scheduler scheduler

Fig. 2. An illustration of the Pod-SSP algorithm for scheduling tasks.

high-priority task arrives, this server will stop processing its
low-priority task (if any) and start processing the new high-
priority task.

Note that the above service strategy is called preemptive
resume priority in the field of priority queuing [28]. When
implemented, each server can maintain two separate queues,
one for each priority class. When a server becomes free, the
first task of the highest nonempty priority queue enters the
service. The service of a low-priority task is interrupted when
a high-priority task arrives and is resumed from the point of
interruption once all high-priority tasks (in the higher priority
queue of a server) have been served.

On the scheduler side, upon a low-priority task arrival, the
scheduler probes d1 servers (with replacement) and dispatches
the task to a server with the minimum number of all tasks.
Upon a high-priority task arrival, it probes d2 (where d2 > d1)
servers and dispatches the task to a server with the minimum
number of high-priority tasks. We call this server sA. In
addition, if server sA isn’t one of the servers with the minimum
number of tasks (among d2 servers), the last low-priority
task in sA is transferred to one of the servers with the
minimum number of tasks for better load balancing. (This
action happens only if a high-priority task arrives.)

Fig. 1 a) illustrates a simple case in which the scheduler
dispatches the low-priority tasks to a randomly chosen server
(i.e., d1 = 1). In Fig. 1 b), upon a high-priority task arrival,
server 1 and server 2 are randomly chosen (i.e., d2 = 2), and
this task is dispatched to server 1 for it has the minimum
number of high-priority tasks (i.e., no high-priority tasks in
queue). Since server 1 is not the server with the minimum
number of all tasks, the last low-priority task in server 1 will
be transferred to server 2 by the above algorithm. It is easy to
see that the transfer of low-priority tasks makes loads among
servers more balanced.

C. Main Results

We first introduce several metrics to characterize the per-
formance of load balancing algorithms and then present our
main results.
Task response time. The response time of a task is the time
duration between its arrival and departure. The task response
time is defined as the average response time of tasks of the
same type over the long run. Low-priority and high-priority
task response times in Pod-SSP are denoted by TL(λ, p) and
TH(λ, p), respectively. The task response time reflects the
average delay performance of tasks.

TABLE I
THE EXPECTED RESPONSE TIMES OF TASKS.

T̂ (λ) TH(λ, p) TL(λ, p)
∞∑
i=1

λ
di−d
d−1

∞∑
i=1

(pλ)
di−d
d−1

∞∑
i=1

(1
(1−p)

λ
di−d
d−1 − p

(1−p)
(pλ)

di−d
d−1)

Priority gain and loss. We introduce the priority gain and loss
to evaluate the impact of priorities on the delay performance of
tasks with different priority levels. Specifically, we use T̂ (λ)
to denote the task response time of the system running the Pod
algorithm with d = d1 [2]. (The system can also be treated
as a system running Pod-SSP with p = 0. Therefore we have
T̂ (λ) = TL(λ, 0).) The priority gain for high-priority tasks
γ(λ, p) is defined as:

γ(λ, p) = T̂ (λ)/TH(λ, p). (1)

Similarly, the priority loss for low-priority tasks is defined as

η(λ, p) = TL(λ, p)/T̂ (λ). (2)

For example, if the high-priority task response time TH(λ, p)
is half of T̂ (λ), then the priority gain is 2 (indicating a two-
fold improvement for high-priority tasks). Clearly, both γ(λ, p)
and η(λ, p) are greater than one when p ∈ (0, 1).

In this paper, we study Pod-SSP in the large-system limit
(i.e., n→∞), since a data center today may consist of tens of
thousands of servers. Table I presents our main results about
TH(λ, p) and TL(λ, p) in Pod-SSP with d1 = d2 = d. (Note
that the expression for T̂ (λ) has been provided in Theorem 1
in [2].)

Several remarks are in order. First, we observe that TH(λ, p)
is always smaller than T̂ (λ) for p ∈ (0, 1), because TH(λ, p)
has smaller base pλ (instead of λ) given the same exponent.
Hence, the smaller p is, the smaller TH(λ, p) is. Second, we
observe that TL(λ, p) is always larger than T̂ (λ) for p ∈ (0, 1).
This is because TL(λ, p) can also be expressed as

TL(λ, p) =

∞∑
i=1

(
λ

di−d
d−1 +

p

1− p
(
λ

di−d
d−1 − (pλ)

di−d
d−1

))
.

Clearly, the term p
1−p
(
λ

di−d
d−1 − (pλ)

di−d
d−1

)
is always greater

than zero for p ∈ (0, 1). Furthermore, with TH(λ, p), TL(λ, p)
and T (λ), it is easy to derive γ(λ, p) and η(λ, p) by Eq. (1) and
Eq. (2), respectively. To better illustrate these results, we pro-
vide a concrete numerical example here. When d1 = d2 = 2,
λ = 0.95 and p = 0.3, TL(λ, p) = 1.08, TH(λ, p) = 4.37,
and T̂ (λ) = 3.38. Additionally, we have γ(λ, p) = 3.13,
and η(λ, p) = 1.29. Due to space constraints, results for
TH(λ, p) and TL(λ, p) in Pod-SSP with d1 6= d2 are provided
in Theorem 3 and 4.

IV. ANALYSIS OF POD-SSP
In this section, we prove our main results by studying the

delay performance of high-priority and low-priority tasks in
Pod-SSP. In particular, we derive the stationary distribution of
a single server’s queue length under the large-system limit,
which allows us to characterize the average task response
times.

High-priority task Low-priority task

server 1 server 2 server 3 server 4 server 5

Fig. 3. An illustration of N = 5 servers’ states at time t.

A. System States

First, we look at the state of a single server in the system.
Let Qk(t) (resp. Q̃k(t)) for k ∈ {1, 2, ..., N} denote the the
queue length of all tasks (resp., high-priority tasks) of server k
at time t. For any fixed N , the queue length vector {Qk(t)}Nk=1

forms an irreducible, aperiodic, continuous-time Markov chain
since all events (task arrivals and departures) are generated
according to independent Poisson process, and the change
of queue lengths only depends on the current queue lengths.
Therefore, {Qk(t)}Nk=1 is positive recurrent [2]. Additionally,
let V Ni (t) denote the fraction of servers with at least i tasks
at time t, which is also known as the tail distribution. Thus,
we have

V Ni (t) =
1

N

N∑
k=1

I(Qk(t) ≥ i), i ≥ 0, (3)

where I(·) is the indicator function. Here, V Ni (t) can also be
interpreted as the tail probability of a typical server having at
least i tasks. Also,

∑N
i=1 V

N
i (t) is equal to the average queue

length of all tasks at time t. We can use the new random
process {V Ni (t)}∞i=1 to represent the server states of all tasks
at time t. In fact, {V Ni (t)} is also a Markov process. Similarly,
we use Ṽ Ni (t) to denote the fraction of servers with at least
i high-priority tasks and the random process {Ṽ Ni (t)}∞i=1 to
represent the server states of high-priority tasks at time t.

To better understand these states, we provide a simple
example in Fig. 3 in which there are N = 5 servers. As server
4 has one high-priority task and one low-priority task at time
t, we have Q4(t) = 2 and Q̃4(t) = 1. Additionally, there are
three servers with at least 2 tasks at time t (i.e., server 2, 4
and 5), so V N2 (t) = 3/5. Similarly, we have Ṽ N2 (t) = 1/5.

B. Analysis

We start from a special case of Pod-SSP in which d1 =
d2 = d. We then extend to the general case d1 6= d2.
Pod-SSP with d. To facilitate our analysis, we consider two
other systems that run the Pod algorithm (using d) with the
task arrival rates λN and pλN , respectively. In addition, we
use S, S1, and S2 to denote the system running Pod-SSP with
d and the other two systems running Pod, respectively. The
number of servers and servers’ task processing rates are the
same in these three systems. Similarly, we use Xk(t) and Yk(t)
to denote servers’ queue lengths of tasks in the system S1 and
S2, respectively. The queue length vectors {Xk(t)}Nk=1 and
{Yk(t)}Nk=1 are also two Markov processes. What is more,
the preemptive resume priority in Pod-SSP does not affect
servers’ queue lengths of all tasks [29], and Xk(t) is also
positive recurrent. Next, we present several technical lemmas.

Lemma 1. The Markov chain {Qk(t)}Nk=1 of Pod-SSP with
d has the same stationary distribution as the Markov chain
{Xk(t)}Nk=1.

Proof: First, {Qk(t)}Nk=1 and {Xk}Ni=1 are positive re-
current, they all have unique stationary distributions. Next, we
show that for any given values {qk}Nk=1 and {xk}Nk=1 at time t
with qk = xk for k ∈ {1, 2, ..., N}, the transition rates for the
state evolution of {Qk(t)}Nk=1 and {Xk(t)}Nk=1 are the same.
Specifically, there are two state transition rates: task arrival
rate with λN and task departure rate with µN .

Given a task departure and a randomly chosen server (whose
index is denoted by the variable j), if there are queued tasks
in this server, the chosen server completes a task, i.e., qj − 1
in system S or xj − 1 in the system S1. Therefore, the state
evolution of {Qk(t)}Nk=1 is the same as that of {Xk(t)}Nk=1

under task departures.
Given a task arrival and the same d servers chosen for

systems S and S1, the server with the minimum tasks will
be the same and its index is denoted by the variable j. On
the one hand, by the Pod algorithm in the system S1, the j-th
server receives the task and its queue length will increase by
one, i.e., xj + 1. Meanwhile, other servers still have the same
queue length. On the other hand, as there are two types of
tasks in system S, we consider two cases.
• High-priority task: According to the Pod-SSP algorithm, this

task will be dispatched to the server with the minimum
number of tasks (whose index is k). If j = k, we have qj+1.
Otherwise, the task is sent to k-th server, and meanwhile,
the latest low-priority task from the k-th server will be
transferred to the j-th server. Thus, the queue length of the
j-th server will be increased by one, i.e., qj + 1, while the
queue lengths of other servers remain the same.

• Low-priority task: This task will be dispatched to the server
with the minimum number of tasks (whose index is j). So
the queue length of the j-th server will be increased by one.

In either case, we can see that the state evolution of
{Qk(t)}Nk=1 and {Xk(t)}Nk=1 are the same under task arrivals.
Therefore, {Qk(t)}Nk=1 and {Xk}Nk=1 will have the same
stationary distribution.

Lemma 2. The Markov chain {Q̃k(t)}Nk=1 of Pod-SSP with
d has the same stationary distribution as the Markov chain
{Yk(t)}Nk=1.

Proof: The proof is very similar to Lemma 1. Thus, we
omit it here due to space constraints.

With these two lemmas, we can derive the tail distribution
of tasks and expected task response times in Pod-SSP.

Lemma 3. In the large-system limit, the stationary tail dis-
tribution of servers with all tasks and the stationary tail
distribution of servers with high-priority tasks in Pod-SSP with
d are vi = λ

di−1
d−1 and ṽi = (pλ)

di−1
d−1 , respectively.

Proof: Given the stationary distribution of {Qk(t)}Nk=1, it
is easy to derive the corresponding stationary tail distribution
of servers by Eq. (3). This also holds for the Markov chain

{Xk(t)}Nk=1. Additionally, Lemma 1 shows that {Qk(t)}Nk=1

has the same unique stationary distribution as the Markov
chain {Xk(t)}Nk=1. Thus, the corresponding stationary tail dis-
tributions of the system S and S1 are the same. Furthermore,
by Lemma 2 [2], the stationary tail distribution of servers with
tasks can be derived as vi = λ

di−1
d−1 . Similarly, by Lemma 2,

we can have the stationary tail distribution of servers with
high-priority tasks as ṽi = (pλ)

di−1
d−1 .

Theorem 1. In the large-system limit, the expected response
time of all tasks and the expected response time of high-

priority tasks in Pod-SSP with d are T (λ, p) =
∞∑
i=1

λ
di−d
d−1 and

TH(λ, p) =
∞∑
i=1

(pλ)
di−d
d−1 , respectively.

Proof: In Pod-SSP, a task that arrives at time t becomes
the i-th task in the queue with probability vi−1(t)d − vi(t)d.
Hence, the expected response time of a task in the system is

T (λ, p) =

∞∑
i=1

i
(
vi−1(t)d − vi(t)d

)
=

∞∑
i=0

vi(t)
d.

Note that the expected processing time of task is 1. As t→∞,
the limiting system converges to the fixed point. Hence, the
expected response times of a task can be made arbitrarily close
to

T (λ, p) =

∞∑
i=0

vd1i =

∞∑
i=1

λ
di−d
d−1 .

Similarly, we can obtain the expected response time of high-
priority tasks.

By this theorem, we find that T (λ, p) is the same with T̂ (λ)
(see Table I). This means that the task priorities do not affect
the average response time of all tasks.

Theorem 2. In the large-system limit, the expected response
time of low-priority tasks in Pod-SSP with d is TL(λ, p) =
∞∑
i=1

(
1

1−pλ
di−d
d−1 − p

1−p (pλ)
di−d
d−1

)
.

Proof: As we know, T (λ, p) can also be derived as

T (λ, p) = pTH(λ, p) + (1− p)TL(λ, p). (4)

By using T (λ, p) and TH(λ, p) provided by Theorem 1, we
can easily derive TL(λ, p).

Note that dividing both sides of Eq. (4) by T (λ, p), we can
obtain

1 = p
TH(λ, p)

T (λ, p)
+(1−p)TL(λ, p)

T (λ, p)
=

p

γ(λ, p)
+(1−p)η(λ, p).

(5)
In the last step, because T (λ, p) = T̂ (λ) (see Theorem 1),
TH(λ, p)/T (λ, p) = TH(λ, p)/T̂ (λ) = γ(λ, p). This equation
illustrates the relationship between γ(λ, p) and η(λ, p).
Pod-SSP with d1 and d2. Similarly, to facilitate our analysis,
we consider a system in which the scheduler dispatches low-
priority tasks to the least loaded server among d1 sampled
servers, whereas dispatches high-priority tasks to the least

loaded server among d2 sampled servers. The running algo-
rithm is also called Pod-SCP (with more details to be presented
in Sec. V). In particular, we assume that the task arrival rate
for the system is λN . We use S∗ and S3 to denote the system
running Pod-SSP with d1 and d2 and the systems running Pod-
SCP, respectively. The number of servers and servers’ task
processing rates are the same in these two systems. Similarly,
we use Zk(t) to denote the queue lengths of tasks of servers
in the system S3. The queue length vector {Zk(t)}Nk=1 is also
a Markov process.

We have the following observation of Pod-SSP. In Pod-
SSP, the number of sampling servers d1 for low-priority
tasks doesn’t affect the stationary tail distribution of servers
with high-priority tasks and response times of high-priority
tasks. The reasons behind this observation are two-folds. First,
when scheduling high-priority tasks, low-priority tasks are not
considered for choosing the server. Second, servers always first
process high-priority tasks, so low-priority tasks don’t affect
the processing of high-priority tasks. With this observation,
we have the following theorem.

Theorem 3. In the large-system limit, the expected response
time of high-priority tasks in Pod-SSP with d1 and d2 is

TH(λ, p) =
∞∑
i=1

(pλ)
di2−d2
d2−1 .

Proof: It follows directly from Theorem 1 and the above
observation.

By analyzing Pod-SSP and Pod-SCP, we have the following
lemma.

Lemma 4. The Markov chain {Qk(t)}Nk=1 of Pod-SSP with
d1 and d2 has the same stationary distribution as the Markov
chain {Zk(t)}Nk=1.

Proof: The preemptive resume priority does not affect
servers’ queue length of all tasks, so the proof is very similar
to Lemma 1. We omit it here due to space constraints.

With this lemma, we then derive the tail distribution of tasks
in Pod-SSP and expected task response times.

Theorem 4. In the large-system limit, the stationary tail
distribution of servers with all tasks in Pod-SSP with d1 and
d2 is given by{

v1 = λ

vi = λ
(

(1− p)vd1i−1 + pvd2i−1

)
for i ≥ 1.

(6)

The expected response time of all tasks is T (λ, p) =∑∞
i=0

(
(1− p)vd1i + pvd2i

)
.

Proof: Lemma 4 shows that {Qk(t)}Nk=1 has the
same unique stationary distribution as the Markov chain
{Zk(t)}Nk=1. Thus, the corresponding stationary tail distribu-
tions of the system S∗ and S3 are the same. By Lemma 5,
the stationary tail distribution of servers with all tasks can be
derived. Moreover, due to the same stationary tail distribution
of all tasks, the response time of all tasks in Pod-SSP with

d1 and d2 is the same as that in Pod-SCP. By Theorem 6, the
response times of all tasks is

T (λ, p) = pTH(λ, p) + (1− p)TL(λ, p)

=

∞∑
i=0

(
(1− p)vd1i + pvd2i

)
.

(7)

Theorems 3 and 4 present the task response times of high-
priority tasks TH(λ, p) and all task T (λ, p), respectively. By
Eq. (4), we can easily derive TL(λ, p).

V. VARIANTS AND ANALYSIS

In Pod-SSP, there are two types of priorities: scheduling and
service priorities. Both of them guarantee that high-priority
tasks have shorter response times than low-priority tasks.
Hence, two questions arise naturally:
• Do scheduling and service priorities play the same role

for high-priority tasks’ QoS?
• If not, which one is more important?
To answer the above questions, we need to separately study

these two priorities to evaluate their impacts. To this end, we
propose two simple variants of Pod-SSP: Pod with SCheduling
Priorities (Pod-SCP) and Pod with SEvice Priorities (Pod-
SEP). Pod-SCP differs from Pod-SSP in not providing ser-
vice priorities, while Pod-SEP treats all tasks equally when
scheduling. We introduce these two algorithms below.
Pod with Scheduling Priorities: In Pod-SCP, the scheduler
probes d1 servers uniformly at random for a low-priority task,
whereas probes d2 (where d2 > d1) servers for a high-priority
task. For any task, the scheduler dispatches it to the least
loaded one among all sampled servers. Servers don’t have the
priority information of tasks and process them according to
the arriving sequence.
Pod with Service Priorities: In Pod-SEP, the scheduler
behaves in the same way as in Pod, i.e., sampling d servers
and dispatching the task to the least loaded server. Servers
follow the same policy as in Pod-SSP to process tasks.

Remark 1. Note that in Pod-SEP, the scheduler could utilize
servers’ information of high-priority and low-priority tasks
for better scheduling (e.g., Pod-SSP with d). However, Pod-
SEP uses the simple Pod algorithm to minimize the impact of
scheduling.

A. Analysis of Pod-SCP

We use the same system states in Sec.IV-A to analyze Pod-
SCP. In particular, let V Ni (t) denote the fraction of servers
with at least i tasks at time t. The process {V Ni (t)}∞i=1 is
a Markov process. Given states v, v′ ∈ {V Ni (t)}∞i=1, the
transition rates from state v to v′ are

Rv,v′ =
N(vi − vi−1), if v′ = v − 1i

N

λ(1− p)(vd1i−1 − v
d1
i) + λp(vd2i−1 − v

d2
i), if v′ = v + 1i

N
0, otherwise.

(8)

where we define v0 ≡ 1 for convenience. Now consider a
sufficiently small time interval δ. According to the transition
rates above and a standard argument for Markov processes,
we have

E[Vi(t+ δ)− Vi(t)|V (t) = v] = λN(vd1i−1 − v
d1
i)δ

−N(vi − vi+1)δ +O(δ2),
(9)

where λN(vd1i−1δ is the probability that during [t, t+δ], a new
task (either low-priority or high-priority task) arrives and is
routed to a server with i− 1 tasks already, and N(vi− vi+1)δ
is the probability that during [t, t+ δ], one of the servers with
i tasks completes the task in service. Defining

v̇i = lim
δ→0

E[Vi(t+ δ)− Vi(t)|V (t) = v]

Nδ

leads to the following mean-field model [2], [3]:


dvi
dt = λ(1− p)(vd1i−1 − v

d1
i) + λp(vd2i−1 − v

d2
i)

−(vi − vi+1) for i ≥ 1;
v0 = 1.

(10)

The mean-field model is a dynamical system that approx-
imates the original stochastic system by using the expected
drift (4) as the system dynamic. We expect the mean-field
approximation to be accurate when N is large because each
transition leads to only a small change (1/N) in the stochastic
system. In that case, the equilibrium point of the mean field
model is expected to be “close” to the stationary distribution
of the stochastic system. Similarly, by Theorem 1 in [25], we
have the following theorem.

Theorem 5. The Markov process {V Ni (t)}∞i=1 is ergodic,
hence it has a unique state steady-state stationary distribution
as following{

limN→∞ limt→∞ V Ni (t) = vi in distribution
limt→∞ limN→∞ V Ni (t) = vi in distribution. (11)

The proof of this theorem is in a spirit similar to the proof of
Theorem 3 in [2] and Theorem 1 in [25]. Here, we are more
interested in the fixed point of the steady-state distribution,
which can be obtained by solving the above mean-field model
as shown in the following lemma.

Lemma 5. In the large-system limit, Pod-SCP with d1 and d2
has a unique fixed point with

∑∞
i=1 vi <∞ given by{

v1 = λ

vi = λ
(

(1− p)vd1i−1 + pvd2i−1

)
for i ≥ 1.

(12)

Proof: It is easy to check that the proposed fixed point
satisfies dsi

dt = 0 for all i ≥ 1. First, v1 = λ at the fixed
point can be intuitively obtained by the fact that at the fixed
point, the rate at which tasks enter and leave the system must
be equal. Then, from the dsi

dt = 0 for all i, we can derive vi
by summing (10) over all i ≥ 1. (Note that

∑∞
i=1 vi < ∞

guarantees that the sum converges absolutely.)
There does not appear to be a convenient closed form for

the fixed point for vi. Still, with this lemma, it is easy to

pi-1l1

...

p1l1

Starting state
Ending state

1

i+1,i+1 i,i i-1,i-1 1,1 0,0

1 1 1

pil1pi+1l1

1

pil1

...

p2l1

1

i+1,i+2 i,i+1 i-1,i 1,2 0,1

1 1 1

pi+1l1pi+2l1

1

pi-1+jl1

...

p1+jl1

1

i+1,i+1+j i,i+j i-1,i-1+j 1,1+j 0,j

1 1 1

pi+jl1pi+j+1l1

1

.
.
.

.
.
.

.
.
.

.
.
.

.
.
.

p1l2pi-1l2pil2pi+1l2

p2l2pil2pi+1l2pi+2l2

pj+1l2pi+j-1l2pi+j l2pi+j+1l2

Fig. 4. The Markov model of a low-priority task becoming the ith task
at a server. Note that λ1 = λp and λ2 = λ(1−p). The variable pi is related
with the probability that the server with i tasks is chosen for a new task.

determine the distribution of servers’ queue length tasks of
tasks, and then derive the expected task response times of
tasks in the following theorem.

Theorem 6. In the large-system limit, the expected response
times of high-priority tasks and low-priority tasks in Pod-
SCP with d1 and d2 converge to TL(λ, p) =

∑∞
i=0 v

d1
i and

TH(λ, p) =
∑∞
i=0 v

d2
i , respectively.

Proof: The proof is very similar to Theorem 1. We omit
it here due to space constraints.

B. Analysis of Pod-SEP

We also use the same system states in Sec.IV-A to analyze
Pod-SEP. As Pod-SEP uses the same scheduling algorithm as
Pod, they have the same stationary distributions of servers’
queue lengths (of all tasks). Therefore, we have the following
lemma by using Lemma 2 in [2].

Lemma 6. In the large-system limit, Pod-SEP with d has a
unique fixed point with

∑∞
i=1 vi <∞ given by vi = λ

di−1
d−1 .

Furthermore, since service priorities don’t affect the pro-
cessing rate of tasks, the expected task response time of tasks
in Pod-SEP is the same as that in Pod. Hence, we have the
following theorem by Corollary 2 [2].

Theorem 7. In the large-system limit, the expected response
times of tasks T (λ, p) in Pod-SCP with d ≥ 2 converge to

T (λ, p) =

∞∑
i=1

λ
di−d
d−1 .

Note that the expected response time of all tasks can be
derived by Eq. (4). With T (λ, p), we can see that obtaining
either TL(λ, p) or TH(λ, p) can easily derive another one.
Our observation is that first obtaining TL(λ, p) is easier.
This is because, although TH(λ, p) can be easily derived
when knowing the stationary distributions of servers’ queue
lengths of high-priority tasks (see Theorem 1), the stationary
distributions of high-priority tasks are coupled with the arrival
and processing of low-priority tasks and is hard to be obtained.

pi-1l1

...

p1l1

Starting state
Ending state

1

i+1 i i-1 1 0

1 1 1

pil1pi+1l1

1

p1l2pi-1l2pil2pi+1l2

Fig. 5. The simplified Markov model.

Therefore, we turn our focus to the expected task response
times of low-priority tasks.
Mean-field approximation. Now consider the queue evolu-
tion of one server in the system with a newly arriving low-
priority task. Here, we use P (t) and L(t) to denote the queue
length of this server and the position of the newly arriving low-
priority tasks in this queue. As low-priority tasks are processed
after high-priority tasks in Pod-SEP, low-priority tasks are
always viewed to be queued after high-priority tasks. It is easy
to see that when the low-priority task is arriving at the server,
it will be stored at the tail of the queue, and so L(t) = P (t).
Besides, we have L(t) ≤ P (t).

We can use (L(t), P (t)) to capture the state of the low-
priority task in the server at time t. Note that we track the
state until this low-priority task is completed, i.e., L(t) = 0.
Fig. 4 illustrates the Markov process of the low-priority task.
Given states (L(t), P (t)), we can obtain the transition rates
for the state evolution. Moreover, by Lemma 6, we can obtain
the stationary distributions of N servers’ queue lengths in the
mean-field analysis. We can further assume that the queue
lengths are identically and independently distributed (i.i.d.)
with distribution {vi}∞i=0 (which can be validated in the large-
system limit). With this, we can derive arrival rates of both the
high-priority and low-priority tasks for the server. The results
are provided below.
• q(i,j),(i−1,j−1) = 1 for j ≥ i ≥ 1.

This transition happens if the server completes a task in the
head of the queue, in which both L(t) and P (t) decrease
by one. Therefore, the rate is 1.

• q(i,j),(i,j+1) =
λ(1−p)(vdi−v

d
i+1)

vi−vi+1
for j ≥ i ≥ 1.

This transition happens if a low-priority task is dispatched
to the server. The probability for the server with j tasks to
be choose is (vdi − vdi+1)/((vi − vi+1)N), where vdi − vdi+1

is the probability that a new task is dispatched to servers
with ith tasks, and 1/((vi − vi+1)N) is the probability that
the given server is chosen. The arrival rate of low-priority
tasks is (1− p)λN . Thus, the transition rate is λ1pj , where
λ1 = λ(1− p) and pj = (vdi − vdi+1)/(vi − vi+1).

• q(i,j),(i+1,j+1) =
λp(vdi−v

d
i+1)

vi−vi+1
for j ≥ i ≥ 1.

This transition happens if a high-priority task is dispatched
to the server. The probability that the server is chosen for
a high-priority task is the same as that in the above case.
The arrival rate of high-priority tasks is pλN . Hence, the
transition rate is λ2pj . Here, λ2 = pλ.
Next, we will compute the expected time for the low-

priority task from state (i, i) (i ∈ {1, 2, 3}) to first enter state
(0, j) (j ∈ {0, 1, 2, 3}). Here, state (i, i) denotes that the task
becomes the ith task in the server. However, it is hard to
solve the above Markov process. This is because, for each

state, the state transition rate varies according to its queued
number of all tasks. To make this solvable, we consider a
simple case, in which the arrival of low-priority tasks isn’t
counted for the number of all tasks. The associated Markov
process is illustrated in Fig. 5. In the simple case, the server
has fewer tasks than that in reality, and so the arriving rate
of high-priority tasks is higher. In other words, more high-
priority tasks are inserted before the low-priority task in the
queue, and so the waiting time for service is longer. Hence,
the derived expected response time is an upper bound for the
low-priority task.

We first introduce a new variable ri to denotes the expected
time for a low-priority task from state i (i ∈ {0, 1, 2, 3}) to
first enter state 0. With the state transitions, we can have the
following equation:

ri =
1

piλ+ 1
(1+piλ2ri+ri−1+piλ1ri+1), for 1 ≤ i. (13)

Note that r0 = 0. By defining di = ri − ri−1, we have

di−1 = 1 + pi−1λ1di, for 1 ≤ i. (14)

Note that when we assume j+ 1 is large, pj+1λ1 and pj+1λ2
are small. Thus, we have rj+1 = rj + 1. By substituting rj+1

into Eq. (13), we have

rj =
1

pjλ+ 1
(1 + pjλ2rj + rj−1 + pjλ1(rj + 1)) .

By solving the above equation, we have

dj = 1 + pjλ1. (15)

By substituting dj into Eq. (14), we can obtain dj−1. Repeat-
ing the process will give di = 1 +

∑j−i+1
k=1 λk1

∏k−1
m=0 pi+m

(1 ≤ i ≤ j). Finally, we have

ri =

i∑
z=1

dz = i+

i∑
z=1

j−z+1∑
k=1

λk1

k−1∏
m=0

pz+m.

Theorem 8 (Upper bound). In the large-system limit, the
expected response times of low-priority tasks TL(λ, p) in Pod-
SEP converge to

TL(λ, p) =

∞∑
i=1

ri(vi−1(t)d − vi(t)d).

With Theorem 7 and 8, we can derive a corresponding lower
bound for high-priority tasks TH(λ, p).

VI. EVALUATION

In this section, we evaluate the performance of Pod-SSP
and its variants through simulations. We consider a system
with N = 1000 servers. The task arrival process is a Poisson
process with mean λN , and the task processing time follows
an exponential distribution with mean µ = 1 (as described
in our system model). We evaluate response times of high-
priority and low-priority tasks with different λ, number of
sampling servers, privilege ratio p. The simulation results are
based on the average of 10 runs, where each run lasts for
100, 000 unit times.

0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95

Task arrival rate λ

0

1

2

3

4

5

6

7

8

9

T
a
sk

re
sp
o
n
se

ti
m
e

TH(λ, p) : d1 = 1, d2 = 2 (sim)
TH(λ, p) : d1 = 1, d2 = 2
TH(λ, p) : d1 = 2, d2 = 2
TH(λ, p) : d1 = 2, d2 = 2 (sim)
TH(λ, p) : d1 = 2, d2 = 4
TH(λ, p) : d1 = 2, d2 = 4 (sim)
TL(λ, p) : d1 = 1, d2 = 2
TL(λ, p) : d1 = 1, d2 = 2 (sim)
TL(λ, p) : d1 = 2, d2 = 2
TL(λ, p) : d1 = 2, d2 = 2 (sim)
TL(λ, p) : d1 = 2, d2 = 4
TL(λ, p) : d1 = 2, d2 = 4 (sim)

(a) The expected task response time
with different λ in Pod-SSP.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Privilege ratio p

0

2

4

6

8

10

12

14

T
a
sk

re
sp
o
n
se

ti
m
e

TH(λ, p) : d1 = 2, d2 = 2
TL(λ, p) : d1 = 2, d2 = 2
TH(λ, p) : d1 = 2, d2 = 4
TL(λ, p) : d1 = 2, d2 = 4
TH(λ, p) : d1 = 2, d2 = 6
TL(λ, p) : d1 = 2, d2 = 6

(b) The task response times with dif-
ferent privilege ratio p in Pod-SSP.

Fig. 6. The evaluation results of Pod-SSP.

A. Pod-SSP

Fig. 6(a) shows task response times with different λ under
p = 0.5. We can see that simulation results match the theo-
retical analysis. From Fig. 6(a), we find that TH(λ, p) slightly
increases as λ increases due to its high priorities in scheduling
and service. By contrast, increasing λ can significantly affect
TL(λ, p), especially when λ is big. This is because due to
increasing workloads, low-priority tasks have to wait a long
time for being severed until high-priority tasks are completed.
Besides, we find that when d1 is increased from one to two,
TL(λ, p) is significantly shortened. This suggests us to set
d1 ≥ 2 for systems running the Pod-SSP algorithm.

Fig. 6(b) shows task response times with different privilege
ratio p under λ = 0.95 and d1 = 2. We can see that the larger
d2 is, the smaller response times TL(λ, p) and TH(λ, p) are.
However, the increase of d2 only slightly affects the high-
priority tasks. This is because high-priority tasks already have
shorter delay even under d2 = 2. By contrast, the increasing of
d2 can significantly reduce the TL(λ, p) when p is large. This
is because a larger d2 can make high-priority workloads more
balanced, leading to a shorter waiting time for low-priority
tasks.

Fig. 7 shows the priority gain γ(λ, p) and priority loss
η(λ, p) with different privilege ratio p under λ = 0.95.
We can see that the larger p, the larger η(λ, p) is and the
smaller γ(λ, p) is. Besides, a larger d2 can guarantee that the
increasing high-priority workloads don’t affect both η(λ, p)
and γ(λ, p) too much. This enable us to find a suitable p
for the given γ(λ, p) and η(λ, p). For example, given a Pod-
SSP system with d1 = 2 and d2 = 4, we need to guarantee
γ(λ, p) ≥ 2.5, η(λ, p) ≤ 2, so maxp{γ(λ, p) ≥ 2.5, η(λ, p) ≤
2} = 0.5 can satisfy this.

B. Pod-SCP

Fig. 8(a) shows task response times with different λ under
d1 = 1, d1 = 2 and p = 0.5. We first see that simulation re-
sults match the theoretical analysis. Second, when λ becomes
large, both TH(λ, p) and TL(λ, p) suffers from significant
increasing. In other words, when workloads are large, a small
increase in loads can dramatically increase servers’ queue
lengths of both low-priority and low-priority tasks.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Privilege ratio p

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

P
ri
o
ri
ty

g
a
in

a
n
d
lo
ss

γ(λ, p) : d1 = 2, d2 = 2
η(λ, p) : d1 = 2, d2 = 2
γ(λ, p) : d1 = 2, d2 = 4
η(λ, p) : d1 = 2, d2 = 4
γ(λ, p) : d1 = 2, d2 = 6
η(λ, p) : d1 = 2, d2 = 6

Fig. 7. The priority gain and loss with different privilege ratio p in Pod-SSP.

Fig. 8(b) shows task response times with different privilege
ratio p under λ = 0.95. We can see that when d1 = 1 and d2 =
2, the increasing p (p < 0.3) can significantly decrease both
TH(λ, p) and TL(λ, p). This means even sampling one more
server for a small fraction of high-priority tasks can greatly
reduce task responses times. When p is close to one (i.e., two
servers are probed for most tasks), the response times become
stable. This is, even sampling two servers on average for tasks
can significantly decrease task response times. However, when
d2 ≥ d1 ≥ 2, the increasing of sampling servers d1 or d2
neither significantly decreases the response times of tasks nor
brings too much advantage for high-priority tasks. This also
verifies the previous observations bout Pod-SSP.

C. Task Latency in Pod-SEP

Fig. 8(c) shows task response times with different λ under
d = 2. From Fig. 8(c), we first observe that when p = 0.9,
both the theoretical bounds of high-priority and low-priority
task response times are close to the simulation results. This
is because in this case, the arrival rate of low-priority tasks is
low, and so ignorance of them doesn’t have too much effect.
Similarly, when λ is small (i.e., λ ≤ 0.6), the derived bounds
also well match the simulation results. In addition, due to
the service priorities, the response times of high-priority low-
priority tasks don’t increase too much as λ increases.

Fig. 8(d) shows task response times with different privilege
ratio p under λ = 0.95. We can see that the increasing work-
loads of high-priority tasks (i.e., increasing p) only slightly
affect TH(λ, p), whereas TL(λ, p) increases significantly. Be-
sides, by comparing with results in Fig. 8(b), we can see that
services priorities play a more important role when p is small.

VII. DISCUSSION

A. Communication Costs

The communication cost is measured as the total number
of interactions for a certain amount of tasks. Specifically, an
interaction means a probing operation between a scheduler and
a server. As analyzed previously, the scheduling priorities (i.e.,
a larger d) for high-priority tasks can guarantee that they have
shorter response times than low-priority tasks. However, this
comes at an increasing communication cost.

0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95

Task arrival rate λ

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

6

T
a
sk

re
sp
o
n
se

ti
m
e

TH(λ, p)
TH(λ, p) (sim)
TL(λ, p)
TL(λ, p) (sim)

(a) The task response times with dif-
ferent λ in Pod-SCP.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Privilege ratio p

2

4

6

8

10

12

14

16

18

20

T
a
sk

re
sp
o
n
se

ti
m
e

TH(λ, p) : d1 = 1, d2 = 2
TL(λ, p) : d1 = 1, d2 = 2
TH(λ, p) : d1 = 2, d2 = 4
TL(λ, p) : d1 = 2, d2 = 4
TH(λ, p) : d1 = 2, d2 = 6
TL(λ, p) : d1 = 2, d2 = 6

(b) The task response times with dif-
ferent privilege ratio p in Pod-SCP.

0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85

Task arrival rate λ

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

T
a
sk

re
sp
o
n
se

ti
m
e

TH(λ, p) : p = 0.1
TH(λ, p) : p = 0.1 (sim)
TL(λ, p) : p = 0.1
TL(λ, p) : p = 0.1 (sim)
TH(λ, p) : p = 0.9
TH(λ, p) : p = 0.9 (sim)
TL(λ, p) : p = 0.9
TL(λ, p) : p = 0.9 (sim)

(c) The task response times with dif-
ferent λ in Pod-SEP.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Privilege ratio p

0

2

4

6

8

10

12

T
a
sk

re
sp
o
n
se

ti
m
e

TH(λ, p) : d = 2
TL(λ, p) : d = 2
TH(λ, p) : d = 4
TB(λ, p) : d = 4

(d) The task response times with dif-
ferent privilege ratio p in Pod-SEP.

Fig. 8. The evaluation results of Pod-SCP and Pod-SEP.

By contrast, service priorities are almost for free. This is
because task types could be distinguished by adding one-
bit information, and so there are no additional interactions.
Besides, in Pod-SSP, the scheduler utilizes servers’ reporting
information of the number of high-priority and low-priority
tasks for better scheduling, which also has no additional com-
munication costs (only additional information fields). What is
more, service priorities can play a more important role than
scheduling priorities in guaranteeing the QoS of high-priority
tasks. Thus, we advise that Pod-SSP should first use service
priorities (i.e., d1 = d2).

B. Achieving Zero Delay for High-priority Tasks

In Pod-SSP, we can choose suitable d2 for high-priority
tasks to achieve zero delay, i.e., an incoming high-priority
task is always scheduled to an empty server with a probability
asymptotic one. To achieve this, we can set d2 = Ω(logN/(1−
pλ)), when high-priority task arrival rate pλN is less than
(1 − γN−α)N (0 < γ < 1 and 0 ≤ α < 1/6) [30]. (The α
can also be extended to [0, 1] with different settings [30].)

In real systems, task workloads may approach the pro-
cessing capacity of all servers (i.e., λN → µN) for high
utilization. Under these cases, it is hard to achieve zero delay
for all tasks because of the heavy communication costs (i.e.,
sampling ω(1

1−λ) servers for each task [30]). In addition, this
is unnecessary because some tasks may be delay tolerant.
By contrast, in Pod-SSP, by categorizing tasks into different
priorities according to their QoS demands, we can achieve zero

delay for high-priority tasks using a larger d1, while achieving
low communication costs using a small d2 for low-priority
tasks. In this way, a system can well balance communication
costs and tasks’ performance.

VIII. CONCLUSION AND FUTURE WORK

In this paper, we study the performance of the Pod algorithm
with task priorities. We propose Pod-SSP, a new Pod algo-
rithm with scheduling and service priorities. Besides, to better
evaluate the impact of priorities on tasks’ performance, we
propose two variants of Pod-SSP: Pod-SCP and Pod-SEP. We
study these three algorithms in the large-system regime using a
mean-field analysis. Our studies show that introduced priorities
can significantly shorten high-priority tasks’ response times,
and service priorities are more important than scheduling
priorities. We also present how to achieve zero delay for high-
priority tasks in Pod-SSP.

There are several avenues for future work. First, in this
paper, we only consider exponential service times and homo-
geneous servers and will extend our analysis to general service
and heterogeneous server models in future work. Second, we
mostly focused on algorithms with two task priorities. One
can extend our analysis to more task priorities. Third, we
utilize mean-filed approximation to analyze Pod-SEP. We leave
formal proofs as our future work.

IX. ACKNOWLEDGEMENT

We thank the anonymous IEEE IWQoS reviewers for their
detailed and helpful comments on this paper. We also thank
Renming Qi and Zerui Chen for their helpful discussion. Chen
Feng was supported by the Natural Sciences and Engineer-
ing Research Council of Canada (NSERC) Discovery Grant
RGPIN-2016-05310. Hong Xu also acknowledges the support
from the Research Grants Council of Hong Kong (11209520)
and CUHK (4055138, 4937007, 4937008, 5501329, 5501517).

REFERENCES

[1] A. Eryilmaz and R. Srikant, “Asymptotically tight steady-state queue
length bounds implied by drift conditions,” Queueing Syst. Theory Appl.,
vol. 72, no. 3–4, p. 311–359, Dec. 2012.

[2] M. Mitzenmacher, “The power of two choices in randomized load
balancing,” IEEE Transactions on Parallel and Distributed Systems,
vol. 12, no. 10, pp. 1094–1104, 2001.

[3] N. D. Vvedenskaya, R. L. Dobrushin, and F. I. Karpelevich, “Queueing
system with selection of the shortest of two queues: An asymptotic
approach,” Problemy Peredachi Informatsii, vol. 32, pp. 20–34, 1996.

[4] O. G. of F5, “NGINX and the “power of two choices” load-balancing
algorithm,” Nov. 2018. [Online]. Available: https://www.nginx.com/
blog/nginx-power-of-two-choices-load-balancing-algorithm/

[5] W. Tarreau, “Test driving, power of two random choices load
balancing,” Feb. 2019. [Online]. Available: https://www.haproxy.com/
blog/power-of-two-load-balancing/

[6] Z. Liu, Z. Bai, Z. Liu, X. Li, C. Kim, V. Braverman, X. Jin, and I. Stoica,
“DistCache: Provable load balancing for large-scale storage systems with
distributed caching,” in 17th USENIX Conference on File and Storage
Technologies (FAST), Boston, MA, Feb. 2019, pp. 143–157.

[7] X. Gao, X. Huang, S. Bian, Z. Shao, and Y. Yang, “PORA: Predictive
offloading and resource allocation in dynamic fog computing systems,”
IEEE Internet of Things Journal, vol. 7, no. 1, pp. 72–87, 2020.

[8] B. Li, J. Liu, and B. Ji, “Low-overhead wireless uplink scheduling for
large-scale internet-of-things,” IEEE Transactions on Mobile Computing,
vol. 20, no. 2, pp. 577–587, 2021.

[9] P. Wang, G. Trimponias, H. Xu, and Y. Geng, “Luopan: Sampling-based
load balancing in data center networks,” IEEE Transactions on Parallel
and Distributed Systems, vol. 30, no. 1, pp. 133–145, 2019.

[10] K. Ousterhout, P. Wendell, M. Zaharia, and I. Stoica, “Sparrow: Dis-
tributed, low latency scheduling,” in Proceedings of the Twenty-Fourth
ACM Symposium on Operating Systems Principles (SOSP), New York,
NY, USA, 2013, p. 69–84.

[11] B. Fan, H. Lim, D. G. Andersen, and M. Kaminsky, “Small cache, big ef-
fect: Provable load balancing for randomly partitioned cluster services,”
in Proceedings of the 2nd ACM Symposium on Cloud Computing, ser.
SOCC ’11, 2011.

[12] G. Fanti, J. Jiao, A. Makkuva, S. Oh, R. Rana, and P. Viswanath,
“Barracuda: The power of `-polling in proof-of-stake blockchains,” p.
351–360, 2019.

[13] B. Doerr, L. A. Goldberg, L. Minder, T. Sauerwald, and C. Scheideler,
“Stabilizing consensus with the power of two choices,” in Proceedings of
the Twenty-Third Annual ACM Symposium on Parallelism in Algorithms
and Architectures, ser. SPAA ’11, New York, NY, USA, 2011, p.
149–158.

[14] C. Pham, N. H. Tran, C. T. Do, E.-N. Huh, and C. S. Hong, “Joint
consolidation and service-aware load balancing for datacenters,” IEEE
Communications Letters, vol. 20, no. 2, pp. 292–295, 2016.

[15] C. Wang, C. Feng, and J. Cheng, “Distributed join-the-idle-queue for
low latency cloud services,” IEEE/ACM Transactions on Networking,
vol. 26, no. 5, pp. 2309–2319, 2018.

[16] M. Bramson, Y. Lu, and B. Prabhakar, “Asymptotic independence of
queues under randomized load balancing,” Queueing Syst. Theory Appl.,
vol. 71, no. 3, p. 247–292, Jul. 2012.

[17] A. Mukhopadhyay and R. R. Mazumdar, “Analysis of randomized join-
the-shortest-queue (JSQ) schemes in large heterogeneous processor-
sharing systems,” IEEE Transactions on Control of Network Systems,
vol. 3, no. 2, pp. 116–126, 2016.

[18] A. Moaddeli, I. N. Ahmadi, and N. Abhar, “The power of d choices in
scheduling for data centers with heterogeneous servers,” arXiv preprint
arXiv:1904.00447, 2019.

[19] L. Ying, R. Srikant, and X. Kang, “The power of slightly more than
one sample in randomized load balancing,” in 2015 IEEE Conference
on Computer Communications (INFOCOM), 2015, pp. 1131–1139.

[20] S. Foss and N. Chernova, “On the stability of a partially accessible multi-
station queue with state-dependent routing,” Queueing Syst. Theory
Appl., vol. 29, no. 1, p. 55–73, May 1998.

[21] A. Jonatha and D. Francois, “Power-of-d-choices with memory: Fluid
limit and optimality,” Mathematics of Operations Research, vol. 45, 02
2018.

[22] T. Hellemans and B. Van Houdt, “Performance analysis of load balanc-
ing policies with memory,” in Proceedings of the 13th EAI International
Conference on Performance Evaluation Methodologies and Tools (VAL-
UETOOLS), New York, NY, USA, 2020, p. 27–34.

[23] S. Vargaftik, I. Keslassy, and A. Orda, “LSQ: Load balancing in large-
scale heterogeneous systems with multiple dispatchers,” IEEE/ACM
Transactions on Networking, vol. 28, no. 3, pp. 1186–1198, 2020.

[24] K. Gardner, S. Zbarsky, M. Harchol-Balter, and A. Scheller-Wolf, “The
power of d choices for redundancy,” SIGMETRICS Perform. Eval. Rev.,
vol. 44, no. 1, p. 409–410, Jun. 2016.

[25] C. Wang, C. Feng, and J. Cheng, “Randomized load balancing with a
helper,” in 2017 International Conference on Computing, Networking
and Communications (ICNC), 2017, pp. 518–524.

[26] A. W. R. Michael, Mitzenmacher, , and R. Sitaraman, “The power of
two random choices: A survey of techniques and results,” in Handbook
of Randomized Computing, pp. 255–312, 2000.

[27] D. Alistarh, J. Kopinsky, J. Li, and G. Nadiradze, “The power of choice
in priority scheduling,” in Proceedings of the ACM Symposium on
Principles of Distributed Computing (PODC), New York, NY, USA,
2017, p. 283–292.

[28] D. Bertsekas and R. Gallager, Data Networks (2nd Ed.). USA: Prentice-
Hall, Inc., 1992.

[29] J. P. Buzen and A. B. Bondi, “The response times of priority classes
under preemptive resume in m/m/m queues,” Operations Research,
vol. 31, no. 3, pp. 456–465, 1983.

[30] X. Liu and L. Ying, “On achieving zero delay with power-of-d-
choices load balancing,” IEEE Transactions on Network Science and
Engineering, vol. 6, no. 4, pp. 909–916, 2019.

