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Abstract—We present Sentinel, a novel failure recovery system
for traffic engineering that pre-computes and installs backup
tunnels to improve the robustness of software defined wide area
networks (WANs). When a link fails, switches locally redirect
traffic to backup tunnels and recover immediately in the data
plane, thus substantially reducing the transient congestion com-
pared to reactive rescaling. On the other hand Sentinel completely
avoids the bandwidth headroom required by existing proactive
approaches like FFC, and improves efficiency of operating the
expensive WAN.

We make several technical contributions in designing Sentinel.
We formulate traffic engineering with backup tunnels (TE-
BT) as optimization programs. We propose an approximation
algorithm to efficiently solve the problem. We further present
a concrete design and implementation of the system based on
Openflow group tables for backup tunnels. Extensive experiments
on Mininet and numerical simulations show that similar to FFC,
Sentinel reduces congestion by 45% compared with rescaling, and
its algorithm runs much faster than FFC. Sentinel only introduces
a small number of additional forwarding rules and can be readily
implemented on today’s Openflow switches.

I. INTRODUCTION

Centralized traffic engineering (TE) is widely used in prac-
tice to improve performance of wide area networks (WANs).
Increasingly TE is implemented using software defined net-
working (SDN), where a logically centralized controller main-
tains a global view of the network state and dispatches TE
plans as forwarding rules to the data plane. Usually tunnel
based forwarding is used: the controller establishes multiple
tunnels (i.e. network paths) between an ingress-egress switch
pair, and configures splitting weights at the ingress switch for
its traffic [10], [11], [15].

While a vast literature on TE exists, the issue of robustness
is largely ignored. Failures are rather common in production
networks with many network devices. Table I shows failure
statistics data from Microsoft’s data center WAN that connects
its data centers worldwide [4]. The probability of having at
least one link failure within five minutes, which corresponds
to the TE frequency [10], [11], is more than 20%. Even with
a single link failure, the impact can be severe as a SDN based
WAN operates near capacity for efficiency [10], [11]. Say a
20 Gbps link fails and traffic is re-directed to another 100 Gbps
link. Even with 100 MB buffer, the switch is unable to buffer
after 40 ms, leading to a burst of packet loss.

TABLE I
LINK FAILURE FREQUENCIES IN MICROSOFT DATA CENTER WAN [4].

Number of link failure Time intervals
2 min 5 min 10 min

1 10.6% 21.5% 31.2%
2 0.14% 1.1% 4.2%
3 0.14% 0.7% 1.4%

In general there are two approaches to failure recovery in
TE: reactive and proactive, depending on whether failure is
handled before happening or after. In data plane, the de facto
reactive method is rescaling. Upon detecting the failure, the
ingress switch normalizes splitting weights to re-direct traffic
among the remaining tunnels [15]. Rescaling quickly restores
connectivity. However it is purely local and may leave the
network in a congested state. A better reactive approach is
to resort to control plane intervention: the switch informs the
controller, who can then compute a TE plan based on the new
topology and update the entire network. This process takes
substantially more time: according to [15], updating 100 rules
on a single Openflow switch takes 1 second in median and
20 seconds in the worst case; it is also too slow to react to
frequent failures in production settings.

To overcome these limitations, Liu et al. [15] propose a
proactive approach called Forward Fault Correction (FFC).
The idea is to proactively consider failures when formulating
the TE problem, so that the TE solution can guarantee no
congestion happens as long as the number of failures is at most
k. FFC outperforms rescaling in performance and control plane
intervention in responsiveness. Yet, it still suffers from several
drawbacks. First, a portion of the network capacity has to be
left vacant to guarantee that the network is congestion-free
under arbitrary k failures. We find that, even with the lowest
level of protection against just single link failures, FFC needs
100 Gbps–200 Gbps bandwidth headroom in Google’s WAN
topology with 38 100 Gbps links (details in Sec. VI). Though
the overhead is only around 5%, leaving 200 Gbps capacity
unused most of the time when no link is down translates to
enormous amounts of monetary loss for the operator. Second,
FFC needs to solve an LP with a large number of constraints
and variables, which may be too slow for production networks.

We present Sentinel, a novel TE failure recovery system



using backup tunnels that has the benefits of both reactive
and proactive approaches. In Sentinel, upon a link failure, the
failing switch immediately activates the corresponding backup
tunnels connecting itself to the egress switches of the flows
affected by the failure, so the victim traffic on the failed
tunnels can still reach their destinations. Moreover, Sentinel
can also adjust the splitting weights at the original ingress
switches for the victim traffic to reduce the congestion on
the backup tunnels. Backup tunnels and splitting weights are
pre-computed with global network state and installed at each
switch in each TE interval. This enables fast and efficient
failure recovery just like the proactive approach. On the other
hand Sentinel does not need any bandwidth headroom; the
network still runs at near perfect utilization without failure,
preserving the utilization benefit of reactive approach.

Inevitably, we cannot guarantee our approach is congestion-
free with Sentinel. As argued above, since the network
is fault-free most of the time, the bandwidth wastage re-
quired by congestion-free recovery methods far outweighs the
congestion-induced traffic loss after failures, which eventually
is taken care of by TCP in a time scale of seconds in the
worst case. Thus it is only practical to use schemes like FFC
just for high-priority traffic to reduce the bandwidth wastage
[15]. Then most of the elastic traffic may still suffer from
congestion, just as in Sentinel, when failures happen.

An immediate challenge of using backup tunnels is that
there are exponentially many failure possibilities, and it is
infeasible to account for all of them. In the current design
Sentinel only considers single link failures, which in fact
represents the overwhelming majority of failure scenarios.
From Table I, for TE intervals of 2 or 5 minutes, multiple link
failures happen rather infrequently. To reduce complexity and
preserve scarce rule space on switches [8], leaving multiple
link failures to controller intervention is a reasonable tradeoff.

We make three novel contributions in designing Sentinel.
First, we propose a simple yet general optimization framework
to model TE with backup tunnels (TE-BT) for single link
failures. Compared to existing work that only considers routing
over the remaining tunnels for failover, we additionally con-
sider routing over the backup tunnels from the failing switch
to egress switches. The two aspects are clearly coupled for
the demand on backup tunnels is determined by routing at
the flow’s ingress switch. The objective is to minimize the
maximum link utilization to reduce the transient congestion
as much as possible. We formulate the TE-BT problem as a
mixed integer program, which is hard to solve especially when
the scale is large. We prove that this problem is NP-hard and
Ω(log log n)-hard to approximate where n is the number of
switches.

Our second contribution is an efficient approximation algo-
rithm to solve TE-BT in Sentinel. We relax the problem to
an LP, which is still time-consuming to solve using standard
solvers since we must solve it for every possible single link
failure case at each TE interval. Inspired by the framework
in [9], [14], we develop a fast approximation algorithm with
a configurable accuracy parameter ε to solve this LP instead.

Based on the fractional solution, we then apply randomized
rounding to obtain a feasible solution of TE-BT. The complete
algorithm yields a (1 + ε)O(log n) upper bound for the
maximum link utilization, where n is the number of switches.

Our third contribution is a concrete implementation and
evaluation of Sentinel. We develop a prototype of Sentinel
based on Openflow v1.3 using its fast failover group tables
[3]. We evaluate the Sentinel prototype using Mininet with
Google’s data center WAN topology. We also conduct ex-
tensive simulations using realistic topologies to evaluate our
algorithms in large-scale. Similar to FFC, Sentinel reduces
congestion by 45% compared with rescaling, while completely
avoiding the bandwidth headroom overhead of FFC. Sentinel
only requires a small number of additional rules for backup
tunnels, and its approximation algorithm runs much faster than
FFC and standard LP methods.
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Fig. 1. A simple motivation example.

TABLE II
DESCRIPTION OF TUNNELS USED IN FIG. 1.

Tunnel Id Tunnel Type Tag Tunnel Description
1 primary T1 〈R4, R3, R2, R1〉
2 primary T2 〈R4, R7, R1〉
3 primary T3 〈R4, R5, R6, R1〉
4 backup T4 〈R2, R3, R5, R1〉

II. A MOTIVATING EXAMPLE

Let us start with a toy example to illustrate the potential
benefits of Sentinel. Consider the network in Fig. 1, in which
there are seven switches R1, . . . , R7, and all links have a
capacity of 10 Gbps. We consider the flow from the ingress
switch R4 to egress switch R1. Details of all the TE tunnels
between this switch pair are shown in Table II. In Fig. 1(a),
three tunnels T1, T2 and T3 are established from R4 to R1.
Our flow with 30 Gbps demand is routed with splitting weights
of ( 1

3 ,
1
3 ,

1
3 ), i.e. each tunnel carries 10 Gbps.

Now suppose the link from R2 to R1 fails, and tunnel
T1 fails immediately as well. In current SDN this is han-
dled by data plane rescaling [15]. The ingress switch R4

normalizes the splitting weights for the flow, which yields



(0, 1/3
1/3+1/3 ,

1/3
1/3+1/3 ) = (0, 12 ,

1
2 ), and rescales the flow onto

the remaining tunnels T2 and T3. The load in these tunnels is
30 × 1

2 = 15 Gbps, which exceeds the link capacity by half.
Thus local rescaling results in severe congestion and packet
loss. Further, note that before R4 detects the tunnel failure and
applies rescaling, traffic is still routed on path 〈R4, R3, R2〉.
These packets are simply dropped at R2, wasting precious
WAN bandwidth and creating unnecessary packet loss.

The state of the art, FFC, aims to guarantee that no con-
gestion occurs after rescaling for k arbitrary failures. Assume
the simplest case with k = 1. Then FFC cannot satisfy the
flow demand requirement of 30 Gbps from R4 to R1 in the
first place. The maximum flow between these two switches
is only 20 Gbps in FFC, so that rescaling does not result in
congestion in T2 and T3. Thus FFC results in 10 Gbps capacity
loss. Moreover FFC does not re-direct the victim flow at R2

affected by the failure neither.
Our idea is to use pre-installed backup tunnels to route the

victim flow to the egress switch. Different from existing work
that no longer use the failed tunnels, we rely on backup tunnels
to recover them as much as possible to reduce congestion and
improve performance. In this example, we can use T4 as the
backup tunnel as shown in Fig. 1(b). When packets from T1
reaches R2, R2 applies the backup tunnel and routes them to
R3 and eventually R1. This way R2 does not have to drop
any packets, and the flow can still reach its destination with
the original rate of 10 Gbps without causing any congestion
as shown in Fig. 1(c).

One may notice that the victim flow is rerouted at R2 and
causes redundant traffic from R2 to R3. We argue that this
is acceptable since the main purpose of Sentinel is to quickly
reroute traffic and minimize packet loss in the data plane when
a link fails, instead of deploying the optimal TE solution to
recover from the failure. Sentinel is the first line of defense and
relies on simple rerouting as the temporary solution, before the
controller updates the entire network based on the new optimal
TE solution calculated from the new topology as shown in
Fig. 1(d).

III. SENTINEL OVERVIEW

On a high level, Sentinel is a TE failure recovery system
that does the following at each TE interval: (1) computes and
installs backup tunnels and splitting weights for all single link
failures, and (2) activates them when a failure does happen.

We use our motivating example to illustrate how Sentinel
works. At each interval, a baseline TE solution is first com-
puted without any failure and configured by the controller as
usual (i.e. T1, T2, T3 each with a weight of 1/3). Based on
the baseline TE solution, Sentinel then enumerates each link
failure case, and computes backup tunnels to recover the failed
tunnels, as well as new splitting weights at ingress switches
to reduce congestion on backup tunnels for the failure.

The backup tunnels are configured using Openflow fast
failover group tables designed specifically to detect and over-
come port failures [3]. A group has a list of action buckets
and each bucket has a watch port as a special parameter. The

TABLE III
FLOW TABLE AND GROUP TABLE AT R2 FOR THE TOY EXAMPLE.

Flow table at R2

Match Field InstructionSrcPfx DstPfx Tag
— — T1 Gr 2.1

Group table at R2

Group Identifier Group Type Action Buckets

Gr 2.1 Fast Failover Outport: W
Tag ← T4; Outport: E

TABLE IV
FLOW AND GROUP TABLES AT R4 IN THE TOY EXAMPLE.

Flow table 0 at R4

Match Field InstructionSrcPfx DstPfx Tag
R4 R1 — Goto Table 1

Flow table 1 at R4

Match Field Instruction
∗ Gr 4.1

Flow table 2 at R4

Match Field Instruction
∗ Gr 4.2

......

Flow table i at R4

Match Field Instruction
∗ Gr 4.i

Group table at R4

Group Identifier Group Type Action Buckets

Gr 4.1 Select
Weight: 1

3
; Tag ← T1; Outport: N

Weight: 1
3

; Tag ← T2; Outport: NW
Weight: 1

3
; Tag ← T3; Outport: W

Gr 4.2 Select ...
... ... ...

Gr 4.i Select ...

switch monitors liveness of the indicated port. If it is down,
this bucket will not be used and the group quickly selects the
next bucket (i.e. the backup tunnel) in the bucket list with
a watch port that is up. In the running example, the backup
tunnel is T4, and the corresponding flow table and group table
configurations for R2 are shown in Table III. The backup
splitting weights for each link failure case are configured using
the group table and multi-level flow tables [3] as shown in
Table IV for R4. We have one flow table for each possible link
failure case. These flow tables are sequentially numbered. The
packets are first matched against flow entries of flow table 0
before going to the next flow table. Other flow tables may be
used for different link failure cases.

Now using the running example, when the link fails, R2

immediately detects the failure and applies the fast failover
action in the group Gr 2.1. It changes the tunnel tag for the
traffic from T1 to T4, and forwards packets destined to R1

eastbound to R3. At the same time, it sends a message to the
controller about the link failure, and the controller instructs
R4 to modify the goto-table instruction in flow table 0 to
match the packets to a different flow table (say flow table
2). Traffic is then routed according to a different group of



action buckets, i.e. the new splitting weights for this failure
over the original tunnels, as shown in Table IV. Note that
the processing pipeline stops when a table does not include
goto-table instruction. This completes the failover process in
Sentinel.

We still rely on the controller in Sentinel. However the
overhead of controller involvement is significantly decreased.
The new splitting weights are calculated and pre-configured in
the multi-level flow tables of ingress switches. In addition, we
only modify the goto-table instruction (equivalent to a pointer)
in the ingress switch to apply new weights, and thus update
time can also be reduced. Note although we use multi-level
flow tables, packets are actually processed with just two flow
tables. The first one is table 0. The second one is table i, where
the value of i depends on the failure case and is specified by
goto-table instruction in flow table 0. Thus this does not incur
much packets delay. We can also merge the items with the
same splitting weights to save limited flow table space.

The central challenge in designing Sentinel is how to
compute the backup tunnels and splitting weights with failures
in TE, which is our focus in the following sections.

IV. AN OPTIMIZATION FRAMEWORK

We introduce our optimization framework for traffic en-
gineering with backup tunnels (TE-BT) in Sentinel. As dis-
cussed, we limit ourselves to considering single link failures
for tractability, and leave multiple link failures which happen
rarely to controller intervention.

A. Network Model

We first present our network model. A network is a directed
graph G = (V,E) where V is the set of switches and E the
set of directed links. Each link l has a capacity Cl, and we
use e to denote a particular failed link. The malfunctioning
switch serving as the sending side of link e is denoted as s.
Traffic can be carried over a set of pre-established tunnels (i.e.
network paths). In SDN, flow tables are implemented using
expensive TCAM with limited space for forwarding rules.
Thus between each ingress-egress switch pair, we compute and
establish a small number of edge-disjoint tunnels to preserve
the scarce rule space. For example, 15 tunnels are available
for any switch pair in Microsoft’s SWAN [10]. We assume
a baseline TE solution has been computed for the network
without any failure, and the allocated rates of each flow on
each tunnel are known.

When e fails, all tunnels traversing this link also fail
immediately, but traffic continues to flow into these tunnels.
Thus for each failed tunnel, we associate it with a victim flow
i, i = 1, 2, . . . ,m, which needs to be routed from the failing
switch s to its egress switch. We use pi to denote the failed
tunnel corresponding to i, and Pi the set of backup tunnels
connecting s and i’s egress switch without e. To avoid loops,
we assume the backup tunnels do not involve i’s original
ingress switch. For example in Fig. 1(b), the victim flow is
the traffic from R2 destined to R1 which is sent along T1 to
R2, pi = T1, and Pi = {T5}.

A victim flow i is always part of a unique original flow from
its original ingress switch, and vice versa because all tunnels
are edge-disjoint. For example in Fig. 1(b), the victim flow
from R2 to R1 is part of the original flow of 30 Gbps from R4

to R1. We slightly abuse the notation and use the same index
variable i to refer to the original flow corresponding to the
victim flow i for convenience. The meaning of i is clear given
the context as we will see soon. The demand of an original
flow i, di, is the total bandwidth allocated to the flow in the
baseline TE solution. This can only be changed by modifying
the rate limiters at the hosts, and is much slower than switch
failover. Thus we do not consider it as a degree of freedom
in our problem. Finally, we use Bl to denote bandwidth used
by traffic other than original and victim flows on link l.

It should be noted that a (victim or original) flow in our
model is in fact an aggregate of all TCP flows between the
same switch pair. This does not lose generality of the model,
and is in line with previous work such as FFC [15]. For
convenience, important notations are summarized in Table V.

TABLE V
KEY NOTATIONS IN THIS PAPER.

TE-BT
Input

G Network graph with switches S and directed
links E

Lp,l 1 if tunnel p uses link l and 0 otherwise
e The failed link
m Number of victim (original) flows
Pi Backup tunnel set for i
pi Failed tunnel corresponding to i
Qi Tunnels used for original flow i in the baseline

TE
di Bandwidth demand of i from the baseline TE
Cl Capacity of link l
Bl Used bandwidth of link l

TE-BT
Output

xi,p The allocated rate on tunnel p ∈ Pi for victim
flow i after e fails

yi,q The allocated rate on tunnel q ∈ Qi for original
flow i after e fails

B. TE-BT Formulation

We now present the TE-BT formulation. When link e fails,
we consider two types of flows—victim flows and original
flows—in order to recover from the failure. First, we need to
obtain new routing for each victim flow i over the backup
tunnels Pi, so that they can still reach their egress switches
from the failing switch after the failure. This aspect has not
been studied in previous work [15], [17]. Here we assume
single path routing: each victim flow (i.e. failed tunnel) is re-
routed via one backup tunnel to its egress switch. The main
reasons are to save rule space in the switch flow tables and
ease the implementation of failover which will be discussed
in Sec. VI-A. Note it is possible to use multipath routing and
we present the corresponding formulation in Sec. IV-C.

Second, we also need to compute the routing of original
flows after the failure. Each original flow i is still routed
through the same tunnels Qi used in the baseline TE since
the failed tunnel is recovered by a backup tunnel. Its splitting
weights may change in order to reduce the traffic to the backup
tunnel and congestion in the network given the demand.



The TE-BT problem is then to compute the optimal routing
for both victim and original flows that minimizes the maxi-
mum link utilization λ in the network. Succinctly,

min λ, (1)

s.t.
m∑
i=1

∑
p∈Pi

xi,pLp,l +

m∑
i=1

∑
q∈Qi

yi,qLq,l +Bl ≤ λCl,

∀l ∈ E \ e, (1a)∑
q∈Qi

yi,q = di, yi,q ≥ 0,∀i, q, (1b)

xi,p = zi,pyi,pi , zi,p ∈ {0, 1},
∑
p∈Pi

zi,p = 1,∀i, p. (1c)

The LHS of (1a) characterizes the total link load, which
takes both types of flows into account. Constraint (1b) is
the usual flow conservation constraint with multipath routing
for original flows. Constraint (1c) is the flow conservation
constraint with single path routing for victim flows. The
demand of victim flow i is equal to the rate of its original
flow allocated to tunnel pi, i.e. yi,pi , and zi,p is the binary
variable indicating if i is routed to p or not.

Theorem 1: The TE-BT problem is not only NP-hard but
also Ω(log log n)-hard to approximate, where n is the number
of switches.

Proof: We reduce the NP-hard congestion minimization
problem [7] to the TE-BT problem. Without loss of generality,
we consider a special case of TE-BT with only one tunnel
for each source destination switch pair. In such cases, when
link e fails, the victim flow is the original flow. For each
tunnel routed through link e, we need to find a backup tunnel
from the failing switch to its egress switch. Thus, the con-
gestion minimization problem can be reduced to our problem
and vice visa. Furthermore, since congestion minimization
is Ω(log log n)-hard to approximate unless NP ⊆ DTIME
(nO(log log logn)) [7], the TE-BT problem is Ω(log log n)-hard
to approximate as well.

C. TE-BT with Multipath Routing for Victim Flows

If multipath routing is allowed over the backup tunnels for
the victim flows, we only need to change the flow conservation
constraint for victim flows in the formulation:

min λ, (2)
s.t. (1a), (1b) (2a)∑

p∈Pi

xi,p = yi,pi , xi,p ≥ 0,∀i, p. (2b)

Clearly this is a classical multicommodity flow problem [5]. It
can be solved in polynomial time using standard LP solvers,
or even faster using fully polynomial time approximation
algorithms [12]. Thus we focus on solving (1) in the following.

V. AN APPROXIMATION ALGORITHM

The mixed integer program (1) can be relaxed to a linear
program which is exactly the multipath routing formulation

(2). The optimal fractional solutions {x̃i,p} and {ỹj,q} of
the relaxed LP can be obtained in polynomial time using
standard solvers. However, solving this LP is time-consuming
especially when the number of flows is large, and we must
solve the LP for every possible single link failure case at
each TE interval (5 minutes usually) to increase robustness of
data plane. Thus we set out to find an efficient approximation
algorithm to solve the LP instead. Inspired by the framework
in [9], [14], we develop a fast approximation algorithm shown
in Algorithm 1. Generally, Algorithm 1 consists of finding
initial routing, which may not be feasible, and continuously
reroute flows until it is within (1+ε) of optimal solution, where
ε is an accuracy parameter and as an input of our algorithm.
We then apply randomized rounding [19] to obtain a feasible
solution to (1). The entire algorithm is shown in Algorithm 3.

Algorithm 1 Fast approximation algorithm
Input: Network topology G′ = (V,E \ e); backup tunnel set Pi;

tunnels set Qj used in the baseline TE; accuracy ε.
Output: The approximate fractional {x̃i,p} and {ỹj,q} to (2).

1: for each i do
2: for each q ∈ Qi do
3: ỹi,q = di · φ(q)∑

q∈Qi
φ(q)

, where φ(q) = argminl∈q Cl.
4: end for
5: for each p ∈ Pi do
6: x̃i,p = ỹi,pi ·

φ(p)∑
p∈Pi

φ(p)

7: end for
8: end for
9: Calculate {λ̃l} corresponding to {x̃i,p} and {ỹj,q}

10: λ̃ = maxl∈E λ̃l
11: β = 2 (1 + ε) ln(|E|ε−1)λ̃−1ε−1

12: repeat
13: γ = ε

8βλ̃
14: for each l ∈ E do
15: Hl =

eβ·λ̃l
Cl

, where e is Euler’s Number.
16: end for
17: Run Algorithm 2 to obtain solutions {x̃i,p} and {ỹj,q}
18: Update {λ̃l} and λ̃ corresponding to {x̃i,p} and {ỹj,q}
19: until (R1) and (R2) hold

We now explain the high level working of Algorithm 1. We
first obtain an initial fractional solution by assigning rates to
flows proportional to the bottleneck capacity of their available
tunnels (lines 1-8). Then we calculate the load of each link λ̃l,
and the current cost of each link Hl as defined in line 15. Note
that link cost increases exponentially with the link load. Now
with this link cost concept, we iteratively adjust each flow’s
routing in order to gradually reduce the congestion (lines 12-
19), until two relaxed optimality conditions are satisfied which
will be discussed soon.

The rerouting procedure is shown in Algorithm 2. First we
calculate Mi, the cost of current routing x̃, ỹ for each i based
on link costs {Hl}, and sort them in a descending order of
Mi (lines 1-2). Then we start from the flows with the highest
routing cost (i.e. worst routing) and try to reroute them. We
obtain the best routing {x̂i,p} and {ŷi,q} that minimizes the
routing cost Mi without increasing λ̃ (line 5). This can be
easily done by just routing the original and victim flows to



Algorithm 2 Reroute algorithm
Input: Initial solution {x̃i,p} and {ỹi,q}; parameter γ.
Output: The solution {x̃i,p} and {ỹi,q} after rerouting.

1: Calculate the cost of routing Mi for each i, where Mi =∑
p∈Pi x̃i,pLp,lHl +

∑
q∈Qi ỹi,pLq,lHl.

2: Sort {i} according to Mi in a descending order.
3: for each i do
4: if i ∈ A then
5: Calculate {x̂i,p} and {ŷi,q} to minimize Mi.
6: for each q ∈ Qi do
7: ỹi,q = (1− γ)ỹi,q + γŷi,q
8: end for
9: for each p ∈ Pi do

10: x̃i,p = (1− γ)x̃i,p + γx̂i,p
11: end for
12: break
13: end if
14: end for

the tunnel with most inexpensive total cost first before the
bottleneck link reaches λ̃, and switch to the second most
lightly used tunnel and so on until the demands are satisfied.
Because the link cost is an exponential function of its load that
magnifies the impact of congestion, it punishes the rerouting
from choosing highly congested links and tunnels, and the
new routing {x̂i,p} and {ŷi,q} is guaranteed to reduce the
maximum link congestion in the network [14]. We then obtain
a new routing by rerouting γ portion of the flow according to
the new routing and reserving 1− γ portion with the original
routing (lines 5-12).

We now complete the algorithm by giving the two relaxed
optimality conditions with the following theorem from [14]:

Theorem 2: [14]. Let {x̃i,p} and {ỹi,p} be the solution
to (2) computed by Algorithm 1, which satisfies constraint
(1a). Then for a given ε > 0, this solution is ε-optimal if the
following relaxed optimality conditions (R1) and (R2) hold:

(R1): For each edge l ∈ E, either (3) or (4) holds:∑
i

∑
p∈Pi

xi,pLp,l +
∑
i

∑
q∈Qi

yi,qLq,l +Bl ≥
λ̃ · Cl

(1 + ε)
, (3)

ClHl ≤
ε

|E|
∑
l′∈E

(Cl′Hl′), (4)

where λ̃ and Hl are defined in Algorithm 1 (lines 12 and 17).
(R2): The following holds:∑

i′∈A
Mi′ ≤ ε

m∑
i=1

Mi,

A =

{
i

∣∣∣∣Mi − M̂i > εMi +
ελ̃

m

∑
l∈E

ClHl

}
,

(5)

where Mi is the cost of the routing {x̃i,p} and {ỹi,p} defined
in line 1 of Algorithm 2, and M̂i represents the minimum cost
of routing just the victim and original flows i given {λ̃l}.

Note the parameter β (line 11 in Algorithm 1) is selected so
that relaxed optimality condition (R1) is always satisfied [14].
The process of rerouting flow gradually enforces the relaxed

optimality condition (R2). When both (R1) and (R2) are sat-
isfied, the procedure stops and we obtain ε-optimal fractional
solutions {x̃i,p} and {ỹi,q}.

Algorithm 3 TE-BT Solution Algorithm
Input: Network topology G′ = (V,E − e); backup tunnel set Pi;

tunnels set Qj used in the baseline TE.
Output: The solution {xi,p} and {yj,q} to (1)

1: Run Algorithm 1 and obtain solutions {x̃i,p} and {ỹj,q}
2: for each i do
3: for each q ∈ Qi do
4: yi,q = ỹi,q
5: end for
6: P̂ = ∅
7: for each p ∈ Pi and p 6∈ P̂ do
8: P̂ = P̂ ∪ p
9: zi,p =

x̃i,p
yi,pi

10: li,p =
∑
p∈P̂ zi,p

11: end for
12: Generate a number r in (0,1] uniformly at random
13: Find p̂ such that r ≤ li,p and li,p − r is minimum
14: xi,p̂ = yi,pi
15: end for

Finally, Algorithm 3 shows the entire solution algorithm
that transforms the fractional solution from Algorithm 1 to
a feasible solution to the TE-BT problem by randomized
rounding. For {ỹi,q}, it is already a feasible solution (lines
3-5). For {x̃i,p}, we apply randomized rounding to obtain an
integer solution {xi,p} (lines 6-14). To ensure that only one
tunnel is chosen for victim flow i, the fractional solution can be
viewed as partitioning the interval [0, 1] to intervals of lengths
{zi,p} (lines 8-10). A real number is generated uniformly at
random in (0, 1] and the interval in which it lies determines
the tunnel (lines 12-14).

Before analyzing the performance of Algorithm 3, we
introduce some necessary notations. Let Zi,p be a binary
random variable that indicates whether flow i is routed through
tunnel p ∈ Pi. If i passes through tunnel p, Zi,p = 1, otherwise
Zi,p = 0. Let yl =

∑
i

∑
q∈Qi ỹi,qLq,l, which represents the

maximum load on link l for the original flow when link e
fails, and let Zl =

∑
i

∑
p∈Pi Zi,pỹi,pi + yl +Bl be a random

variable that indicates the total maximum load on link l when
link e fails.

Let λ̃opt be the optimum of (2), and λopt be the actual
optimum of (1). Clearly λ̃opt ≤ λopt.

Theorem 3: Algorithm 3 outputs a feasible solution
bounded by O(log n)(1 + ε)λopt with high probability, where
n is the number of switches in the network.

Proof: Fractional solution {x̃i,p} and {ỹj,q} are obtained
by Algorithm 1. Thus,

λ̃ ≤ (1 + ε)λ̃opt (6)



According to constraints (1a) and (6),

E[Zl] =
∑
i

∑
p∈Pi

E [Zi,p · ỹi,pi ] + yl +Bl

=
∑
i

∑
p∈Pi

Pr [Zi,p = 1] · ỹi,pi + yl +Bl

=
∑
i

∑
p∈Pi

zi,p · ỹi,pi + yl +Bl

≤ λ̃Cl

≤ (1 + ε)λ̃optCl

≤ (1 + ε)λoptCl

Let Wl = Zl
Cl

=
∑

i

∑
p∈Pi Zi,p ·

ỹi,pi
Cl

+ yl+Bl
Cl

. From
above, E[Wl] ≤ (1 + ε)λopt. The random variables {Zi,p}
are mutually independent since tunnel p for flow i is chosen
independently in Algorithm 3. Therefore, Wl, the sum of
random variables {Zi,p}, is independent. Choose δ such that
(1 + δ) = 8 lnn

ln lnn and apply Chernoff bound [19],

Pr

[
Wl ≥

8 lnn

ln lnn
(1 + ε)λopt

]
≤
(

8 ln k

e ln lnn

)−8 lnn
ln lnn

≤ 1

n4
.

There are n switches in the network, so the number of links
between nodes is at most n2. Let σ = 8 lnn

ln lnn (1 + ε)λopt and
by union bound,

Pr

[
max
l∈E

Wl ≥ σ
]
≤
∑
l∈E

Pr [Wl ≥ σ] ≤ n2·Pr [Wl ≥ σ] ≤ 1

n2
.

VI. EXPERIMENTAL EVALUATION

We evaluate Sentinel using both prototype implementation
and large-scale simulation.

Benchmark Schemes: We compare the following schemes
with Sentinel.
• SR: The baseline failover mechanism using simple rescal-

ing in the data plane.
• FFC: State-of-the-art proactive failure recovery mecha-

nism [15]. We configure FFC to handle arbitrary single
link failure, a setting identical to Sentinel.

For Sentinel, unless stated otherwise, we configure the accu-
racy parameter ε to 1.0 in Algorithm 1.

A. Implementation and Mininet Emulations

Implementation: We develop a prototype of Sentinel using
the Floodlight 1.1 [1] controller with Openflow v1.3. The
forwarding rules are installed and updated via Floodlight’s
REST API. We use VLAN IDs as labels to perform tunnel-
based forwarding. Ingress switches assign VLAN ID to each
flow and intermediate switches simply forward packets based
on the input port and VLAN ID.

At each TE interval, after obtaining the baseline TE solu-
tion, Sentinel does the following iteratively: A link is removed
from the topology to represent link failure. For each tunnel
on this link, we compute a corresponding backup tunnel

set that connects the malfunctioning switch to the tunnel’s
egress switch, taking into account the current flow table space
constraint. It then applies Algorithm 3 to solve the TE-BT
problem (1), assigns new VLAN IDs to the computed backup
tunnels, and installs them on their corresponding switches. It
also installs the computed splitting weights in the multi-level
flow tables of the tunnels’ ingress switches. We use floodlight
setTableId() function to specify the index for different flow
tables. There are at most 256 flow tables in each switch, whose
index ranges from 0 to 255. We use various standard Openflow
messages in our implementation. Notably, when a link fails,
the switch sends an OFPT_PORT_STATUS message about the
port down event to the controller. The controller then sends an
OFPT_FLOW_MOD message to modify the goto-table instruction
using the pre-computed mapping from link failure case to
goto-table instruction.

Note that in Sentinel, flow table configurations for ingress
switches are different from intermediate switches and require
special attention. Ingress switches carry out two functions:
flow splitting and failover when its incident links fail. Both
require the use of group tables. However, one group in an
Openflow group table can only be configured to one type
and perform one function. Thus we need to cascade multiple
groups for ingress switches in our implementation. For exam-
ple for R1, the action of flow table 0 points to table 1, which
is implemented by floodlight buildGotoTable() function.
Flow table 1 points to the first group Gr 1.1 of type select
as shown in Table VI. Its group table is shown in Table VII.
Gr 1.1 performs multipath routing over three tunnels in the
normal case. It also cascades a fast failover group for
each tunnel for their backup tunnels, which is only effective
when the watch port is down. Thus R1’s group table has four
groups in total.

TABLE VI
AN EXAMPLE OF A FLOW TABLE IN AN INGRESS SWITCH.

Flow table 0 at R1

Match Field InstructionSrcPfx DstPfx Tag
R1 R12 — Goto Table 1

Flow table 1 at R1

Match Field Instruction
∗ Gr 1.1

For completeness we explain the implementation of rescal-
ing and FFC now. Rescaling usually relies on some data
plane link monitoring protocol to detect link failures and
notify corresponding ingress switches [15]. We simplify it
with a control plane implementation: The Floodlight controller
monitors the link status using its APIs, and directly notifies
ingress switches to rescale traffic upon a failure. We implement
algorithms in [15] to compute TE solutions for FFC. When a
failure happens FFC still uses rescaling.
Mininet Setup: We conduct experiments on Mininet
2.2.1 [13], a high fidelity network emulator for SDN, running
on a PC with an Intel i5-2400 quad-core processor. We
use OpenvSwitch version 2.3.1. Due to the single machine



TABLE VII
AN EXAMPLE OF A GROUP TABLE FOR THE INGRESS SWITCH R1 .

Group Identifier Group Type Action Buckets

Gr 1.1 Select
Weight: 1

4
; Tag ← T1; Gr 1.2

Weight: 1
4

; Tag ← T2; Gr 1.3
Weight: 1

2
; Tag ← T3; Gr 1.4

Gr 1.2 Fast Failover Outport: E
Tag ← T4; Outport: SE

Gr 1.3 Fast Failover Outport: SE
Tag ← T5; Outport: S

Gr 1.4 Fast Failover Outport: S
Tag ← T6; Outport: E

limitation of Mininet, we adopt a small scale WAN topology
for Google’s inter-data center network reported in [11]. There
are 12 switches and 38 links as illustrated in Fig. 2. We set link
bandwidth to 700 Mbps with 1 ms delay, and switch per-port
buffer size 1 M. We use the link down command in Mininet
to simulate failures.

R2

R7

R5

R11

R10

R9

R12

R1 R4

R8R6R3

Fig. 2. The Google data center WAN topology used in Mininet.

Experiment Results: We evaluate the effectiveness of Sentinel
and FFC in handling link failures. In this set of experiments,
we generate 20 UDP flows in each run, and fail a link
randomly in the topology. We focus on the victim flows
affected by the failed link, and vary its rate from 0 Mbps to
500 Mbps at the increment of 10 Mbps. We perform the same
experiment with 10 runs for both Sentinel and FFC, and report
the average values of numbers of lost packets and out-of-order
packets measured by iperf for the victim flows.

Fig. 3 depicts the number of lost packets comparison. We
can see that, as the rate of the victim flows increases, SR and
FFC result in dramatically more lost packets while Sentinel
only leads to a mild number of lost packets. Specifically, when
the flow rate is 500Mbps, Sentinel reduces lost packets by
87.8% and 70.8% compared with SR and FFC. Packets are lost
right after the link failure because it takes the switch some time
to perform failover. For Sentinel, the switch quickly applies
the backup tunnel defined in its fast failover group to reroute
the victim flows. This is done purely locally in data plane
and leads to very few lost packets. In SR, as well as FFC,
there is no backup tunnel. The victim flows are rerouted by
rescaling which is activated at the ingress switch rather than
the failing switch, which takes longer to do and results in more
lost packets. SR has more lost packets than FFC as a result
of the severe congestion after rescaling, which is beyond the
1Mb buffer in our experiments.

We now look at the number of out-of-order packets as
shown in Fig. 4. When the flow rate is less than 300 Mbps,
Sentinel and FFC perform almost the same. When the flow
rate is larger, however, Sentinel has more severe reordering.

We believe it is because the backup tunnels used in Sentinel
typically lead to longer hop distance compared to the failed
tunnel, whereas in FFC the victim flows, after rescaling, are
routed via the remaining tunnels which have similar hop
distances with the failed tunnel. The out-of-order packets of
SR are significantly more than Sentinel and FFC especially
when the rate of victim flows is larger. That is because a larger
rate aggravates congestion and yields more severe reordering.
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Fig. 3. Number of lost packets com-
parison.
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Fig. 4. Number of out-of-order pack-
ets comparison.

In the second experiment, we measure packet loss rate
(PLR) for UDP flows after link failures. Packet loss rate is
the ratio between the total number of lost packets and the
total number of sent packets from ingress to egress switch.
Table VIII shows the average results with at least 20 runs when
the link 〈R5, R6〉 fails. We generate 600 3.5Mbps flows for
Sentinel and SR to maximize network utilization. For FFC we
can only generate at most 400 3.5Mbps flows, beyond which
congestion-free is not always guaranteed with the failure. Each
run of the experiment lasts for 60 seconds. When all the flows
start, we use the link down command in Mininet to simulate
link failure, and record packet drops in different schemes. We
observe that the average packet loss rate of Sentinel is around
0.1%; that is, the impact is negligible to most applications.
Sentinel adapts to network dynamics well by quickly applying
the correct set of forwarding rules defined in the group tables.
The average packet loss rates of SR and FFC are 1.118%
and 0.202%, which are larger than Sentinel. This is because
the number of congested links using SR is larger than that
using Sentinel when the link fails. In addition, SR and FFC
simply use rescaling at the ingress switches, which causes
packet drops for the victim flows and further degrade its
performance. Compared with FFC, Sentinel is able to offer
better performance without any vacant capacity reserved at
links and zero throughput loss. Finally we note that the reason
of a small extent of packet drops in Sentinel is that the hashing
based flow splitting in OpenvSwitch is imperfect due to the
probabilistic nature.

B. Simulation

We also conduct extensive simulations to thoroughly eval-
uate Sentinel at scale.

Setup. In addition to the small-scale Google topology
used in Mininet experiments, here we use a large-scale syn-
thetic scale-free topology that is randomly produced by the
scale_free_graph function in [2], referred to as ScaleFree
topology. There are 100 switches and 586 100 Gbps links



TABLE VIII
PERFORMANCE IN DIFFERENT SCHEMES WHEN ONE LINK FAILS.

Type Volume of each flow Number of flows Throughput loss Average PLR
Sentinel UDP 3.5Mbps · 60s 600 0 0.131%

SR UDP 3.5Mbps · 60s 600 0 1.118%
FFC UDP 3.5Mbps · 60s 400 700M 0.203%
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Fig. 5. The link utilization comparison.
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(b) ScaleFree topology

Fig. 6. The capacity loss comparison.
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(b) ScaleFree topology

Fig. 7. The comparison of the maximum number of rules in a switch.
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Fig. 8. Running time comparison.

in total. For each topology, we generate different numbers
of flows for unique ingress-egress switch pairs. Recall in our
model a flow is an aggregate of traffic between a unique switch
pair as discussed in Sec. IV-A. A flow’s demand is fixed at
5 Gbps in the Google topology, and 15 Gbps in the ScaleFree
topology. We use at most 15 tunnels between any switch
pair. We run the algorithms on an Amazon EC2 c4.2xlarge
instance with 8 CPUs and 15 GB memory. Each data point is
an average of three runs.

Failover Performance. We first investigate the failure re-
covery performance of different schemes, by comparing the
average link utilization of the network after a link failure.
Our simulation does not emulate the flow-level behavior and
thus we cannot measure the lost packets during the transient
stage as in the Mininet experiments. Intuitively, congestion
happens when the utilization is larger than one, and a larger
value indicates more severe congestion in the network. Fig. 5
shows the CDFs of link utilization across active links that
carry traffic for different schemes. For this simulation we
fix the number of flows at 15 for the Google topology, and
30 for ScaleFree. FFC guarantees the network congestion-
free even with failures, and we can see its link utilization is
always less than or equal to one for both topologies. Sentinel
cannot make such guarantees since it does not leave any
bandwidth headroom when the network is operating normally.
Surprisingly, we find that Sentinel performs very close to FFC
with just slightly more congestion especially in the Google

topology in Fig. 5(a). The maximum link utilization is ∼1.1.
Rescaling, i.e. SR in the figures, results in severe congestion.
This demonstrates that Sentinel in general leads to a small
degree of congestion compared to state of the art approaches,
and significantly outperforms rescaling by around 45%.

As discussed FFC requires certain portion of network ca-
pacity to be left vacant to make congestion-free guarantees. To
quantify this overhead, Fig. 6 plots the capacity loss, defined
as the difference between the theoretical maximum throughput
achievable given the flows’ ingress and egress switches, and
the actual throughput achievable in FFC. Notice that this is the
throughput when the network has no failure. We can observe
that the maximum capacity loss for FFC is about 200 Gbps
when the number of flows is larger than 15 and 10 in Google
and ScaleFree topology, respectively. Both SR and Sentinel
clearly have no capacity loss as they do not require any change
to the TE without failure. Thus, Sentinel substantially reduces
the bandwidth overhead of FFC while providing similar failure
recovery performance.

Rule Space Overhead. We now look at the rule space
overhead of Sentinel with backup tunnels. If one tunnel travels
through a switch, it occupies one physical rule in the flow
table. If an additional backup tunnel (in the group table) is
added by Sentinel, it occupies two physical rules. Fig. 7 shows
the maximum number of rules required in a switch for FFC,
SR and Sentinel in Google and ScaleFree topology. SR and
FFC do not use backup tunnels and the maximum number of



tunnels for them is the same. Sentinel needs additional backup
tunnels to reroute victim traffic and reduce congestion, and it
requires 10% more rules compared with SR and FFC.

Algorithm Running Time. Finally we evaluate the running
time of our algorithm which is illustrated in Fig. 8. Besides
FFC, we compare our algorithm against a branch and bound
method that solves the TE-BT problem (1) optimally, denoted
as OPT. For Sentinel, we set ε to be 0.5 and 1.0 respectively.
We can observe that in the Google topology, the running time
of Sentinel and FFC are both less than 1 second for up to
30 flows, while OPT takes more than 12 seconds when the
number of flows is beyond 25. In the ScaleFree topology,
OPT does not complete even after two hours and is orders of
magnitude longer than other schemes. Thus we do not include
it in Fig. 8(b). Sentinel’s running time is less than 60 seconds
even when the number of flows is 30, while FFC takes more
than 600 seconds. Moreover, we observe an intuitive tradeoff
between solution accuracy and running time for Sentinel’s
approximation algorithm: with more accurate approximation,
i.e. a smaller ε, it takes longer to compute the solution. This
can be used in practice to further speed up the algorithm.

VII. RELATED WORK

We briefly review prior art on failure recovery in SDN.
Relying on Openflow local fast failover mechanisms, Liu et
al. [16] propose new routing approaches, and Borokhovich et
al. [6] develop candidate path search algorithms to guarantee
connectivity in the data plane. Sentinel not only ensures
connectivity but also strives to minimize the failure induced
congestion. Recent work also aims to reduce congestion during
failures. Suchara et al. [17] consider pre-computing the ingress
switch splitting weights for arbitrary k faults to prevent
rescaling induced congestion. This approach does not work for
large scale production networks due to the exponentially many
failure cases. R3 [18] proposes using both proactive offline
planning and a reactive fast re-route protocol, and FFC [15]
develops a purely proactive approach to provide congestion-
free guarantees for a large number of failure scenarios. As
discussed extensively in Sec. I, this line of work introduces
substantial bandwidth overhead that outweighs the potential
benefit of eliminating transient congestion, while Sentinel does
not suffer from this drawback. Finally, though the idea of using
backup tunnels and pre-computation has surfaced (sometimes
implicitly) in the literature, our use of backup tunnels is
different. In current schemes, traffic is still routed to the
failed tunnels which results in packet drops and bandwidth
wastage before the failover is completed at the ingress switch.
We use backup tunnels that start from the failing switch and
end at the egress switches to re-direct the affected traffic, in
addition to adjusting weights, and is therefore faster and more
effective in reducing transient congestion. Our novelty also
lies in a comprehensive exploration of using backup tunnels
in a software defined WAN, which to our knowledge has not
been done before.

VIII. CONCLUSION

In this paper, we presented Sentinel, a novel failure recovery
system that uses backup tunnels to redirect victim traffic.
We developed efficient approximation TE algorithms with fast
runtime to compute the backup tunnels. We also implemented
a prototype of Sentinel based on Openflow v1.3 using its fast
failover group tables. Experiments on Mininet and numerical
simulations with real-world WAN topologies demonstrate that
Sentinel can effectively reduce traffic loss and increase capac-
ity utilization.
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