
ALFIE: NEURAL-REINFORCED ADAPTIVE PREFETCHING FOR SHORT VIDEOS

Jingzong Li∗, Hong Xu†, Ming Ma‡, Haopeng Yan‡ and Chun Jason Xue∗

∗City University of Hong Kong, †The Chinese University of Hong Kong, ‡Kuaishou
∗jingzong.li@my.cityu.edu.hk, †hongxu@cuhk.edu.hk

‡{maming, yanhaopeng03}@kuaishou.com, ∗jasonxue@cityu.edu.hk

ABSTRACT

Short videos have received extraordinary success in recent
years. To provide smooth playback and avoid rebuffering
delay, prefetching upcoming videos is commonly used in
cellular networks. Current prefetching designs fall short in
dealing with bandwidth overhead, especially the exit over-
head of downloaded but unconsumed chunks due to user exit.
Measurement from a large short video platform shows that
exit overhead accounts for up to 43.5% of bandwidth over-
head. Thus we build Alfie, a bandwidth-efficient short video
prefetching algorithm via reinforcement learning. Essentially
Alfie adjusts prefetching based upon user viewing patterns in
addition to network conditions. We demonstrate that Alfie
outperforms the state of the art by up to 26.8% in overall per-
formance while reducing the exit overhead by up to 84.9%.

Index Terms— Short video streaming, Prefetching,
Bandwidth overhead, Deep reinforcement learning

1. INTRODUCTION

Short video consumption has skyrocketed in recent years
driven by apps such as TikTok (Douyin in China), Kuaishou,
and Twitter. The number of short video users has reached 873
million in China, representing 88.3% of its total netizens [1].
To improve quality of experience (QoE) for users, prefetching
has been widely adopted by large short video companies [2].
By downloading part of the upcoming videos in the recom-
mendation queue in advance, prefetching greatly reduces the
startup delay (i.e. the lag between user swiping and video
playback) which is particularly important for short videos that
typically last no more than 20 seconds. It also reduces the re-
buffering time during playback which occurs when the buffer
becomes empty due to user’s random swiping and changing
network conditions [3].

Despite the benefits, aggressive prefetching incurs band-
width overhead when the downloaded chunks are not eventu-
ally consumed if the user swipes to the next video or simply
exits the session. This results in increased bandwidth cost

This work is supported in part by funding from the Research Grants
Council of Hong Kong (11209520) and a gift fund from Microsoft (CUHK
grant no. 6906276).

which is already one of the major components of the oper-
ation costs for the video platform [4], and also higher cel-
lular data usage at the user’s side. To better understand the
bandwidth overhead of prefetching, we carry out an empiri-
cal study using a real-wold trace collected from Kuaishou [5]
with over 400 million view sessions. We find that, simple
policies used in production that always prefetch a fixed num-
ber of videos and the first few chunks from each video lead to
over 2700TB of downloaded but unwatched content on a daily
basis. As mentioned, this is partly due to user swiping to the
next video, which some work has recently started to investi-
gate [2]. In addition, we find that bandwidth overhead due to
user exiting the app, or exit overhead in short, also takes up
to 43.5% of the total and has not been studied to our knowl-
edge. As we look closely into the culprit of exit overhead, we
identify that user watching behavior exhibits a long tail pat-
tern with nearly 52% sessions consuming no more than six
videos. This implies that prefetching just a few videos could
already incur salient bandwidth overhead relative to the total
bandwidth consumption of the session.

Motivated by these observations, we argue that prefetch-
ing should adapt to the user’s specific viewing patterns as
well as the changing network conditions. Temporally, as a
user watches more videos, prefetching for her should be more
conservative to reduce the exit overhead as the likelihood of
departure is increasing. Then spatially, if a user’s viewing be-
havior is typical based on historical data, prefetching should
be more conservative as she usually just watches a few videos
before leaving. If a user is in the long tail, however, prefetch-
ing can be more aggressive to further improve QoE without
too much exit overhead. Finally, prefetching also needs to
adapt to the network conditions as cellular networks often suf-
fer from frequent and drastic bandwidth fluctuations [3]. If
the network condition is likely to deteriorate, one may choose
to prefetch more to cope with the bandwidth shortage.

The central question we seek to address in the following
is: how to design such an adaptive prefetching policy? This
is challenging because essentially, both user behaviors and
network conditions are almost impossible to model precisely.
User behaviors are intrinsically hard to capture as the decision
to swipe (to the next video) or leave the session is influenced
by many factors including user’s interest towards the content,

her time available, perceived viewing quality, and even her
state of mind [6]. Cellular network condition is also affected
by the surrounding environment, user mobility, and even in-
terference from the neighboring cells, among others.

To tackle this challenge, we resort to deep reinforce-
ment learning (DRL) [7] which has witnessed success
in solving networking problems, including video stream-
ing [8]. Prefetching is intrinsically a sequential and far-
sighted process which considers long-term accumulative re-
ward (whether a prefetched chunk will be watched or not is
unknown at decision time); such a setting perfectly fits into
DRL. Our DRL model exploits a set of features about user be-
havior (e.g. historical session duration, viewing time of past
videos), network condition (e.g. recent network bandwidth),
and upcoming videos, as state of the environment, and learns
a good policy that optimizes the long-term benefit with QoE
gain and bandwidth overhead. To make this work, we de-
sign a novel reward mechanism for bandwidth overhead, ap-
ply domain knowledge to avoid meaningless exploration, and
develop a short video streaming simulator to train Alfie.

We make the following contributions in this work:
• We empirically demonstrate the bandwidth overhead of

static prefetching for short videos by using a large-scale
production trace from a real-world short video platform.

• Based on our findings, we propose Alfie, a novel adaptive
prefetching algorithm for short videos based on DRL.

• We implement and evaluate Alfie using production traces.
We show the effectiveness and generalization capability of
Alfie with an average improvement of 22.2% compared to
state of the art.

2. MOTIVATION

We start by motivating adaptive prefetching with an empirical
analysis of static prefetching using a real-world trace.

In current practice, prefetching commonly follows a sim-
ple static policy which always downloads the first i videos
from the top of the recommendation queue, and for each video
always downloads the first j chunks. We denote this family of
policies as S-i-j. Here we consider two instances of this static
policy, S-3-3 and S-5-6. Note downloading is performed se-
quentially in prefetching; downloading of the current video
takes priority and is controlled by the player independent of
prefetching.

We collect a production trace of over 400 million ses-
sions of short video viewing for a 24-hour period starting on
March 1st, 2021 from Kuaishou [5], one of the largest short
video platforms in China. The trace contains detailed infor-
mation about the videos (length, chunk size, etc.), users (time
on each video, session duration), and the network (average
download throughput of each video). To analyze the band-
width overhead, we build a high-fidelity simulator which is
also needed for DRL training as will be explained in §3.3.
We replay the entire trace in our simulator together with the
static prefetching policies, and obtain the bandwidth overhead

Scheme
Daily Bandwidth
Overhead (TB)

Daily Exit
Overhead (TB)

& Ratio

Annual Bandwidth
Overhead Cost

Range ($1M USD)

Annual Exit
Overhead Cost

Range ($1M USD)

S-5-6 2795 1216 (43.5%) [∼41, ∼122] [∼18, ∼53]

S-3-3 1738 365 (21.0%) [∼25, ∼76] [∼5, ∼16]

Table 1: Bandwidth overhead of two static prefetching methods us-
ing our trace. The bandwidth cost is estimated using the minimum
and maximum prices from data in [9].

as the total bandwidth consumption minus the total size of
consumed video chunks. By using the session duration infor-
mation, we also obtain the exit overhead as all the prefetched
but unwatched data due to exit.
Key Finding 1: Static prefetching results in significant band-
width overhead, including exit overhead.

Table 1 shows the bandwidth overhead stands at 2795TB
and 1738TB for S-5-6 and S-3-3, respectively. This translates
to tens of millions dollars of cost annually. In particular, exit
overhead amounts to 43.5% and 21.0% of the total, respec-
tively, for the two methods. The limited prior work on short
videos [2,10] considers swiping overhead which occurs when
the user swipes to the next video without consuming all the
prefetched data, but has not discussed exit overhead which is
also important as we have just shown.

To study the cause of exit overhead, we perform another
analysis on user’s viewing behavior. Note that a session is
defined between a user entering and leaving the app, in which
at least one video is viewed. Fig. 1 shows the distribution of
number of videos viewed in each session in our one-day trace.
Key Finding 2: User watching behavior is long-tailed.

0 20 40 60 80 100
of watched videos in a session

0.0

0.5

1.0

CD
F

(60, 89.0%)
(6, 52.0%)

(a) CDF of number of short videos
viewed in each session.

0 20 40 60 80 100
of watched videos in a session

0.0

0.5

1.0

#
 o

f s
es

si
on

s 1e8

(b) Histogram of number of videos
viewed in each session.

Fig. 1: Long-tailed user viewing behavior summarized across all
sessions in our trace.

We observe from Fig. 1(a) that the majority (89%) of the
sessions consume no more than 60 videos. Further, nearly
52% of sessions consume no more than six short videos,
meaning a large number of users leave after watching just a
few videos. From Fig. 1(b) we validate that the session distri-
bution based on the number of videos viewed follows a long-
tailed power-law distribution with an exponent α = 2.18. We
argue that the long-tailed user behavior is a major cause of
exit overhead, simply because it implies that even prefetch-
ing just a few videos could lead to non-negligible bandwidth
overhead. In the extreme case for the 29% of the sessions that
consume only one video, any prefetched data is abandoned.

The above two findings motivate us to develop bandwidth-
efficient prefetching policies that minimize the exit overhead
in particular and the bandwidth overhead in general.

Rebuffering
 time

Startup
 delay

0

160

320

480 Time (ms)
S-5-6
S-3-3

Swiping
 overhead

Exit
 overhead

0
1000
2000
3000
4000Overhead (KB)

(a) 2Mbps bandwidth

Rebuffering
 time

Startup
 delay

0

160

320

480 Time (ms)
S-5-6
S-3-3

Swiping
 overhead

Exit
 overhead

0
1000
2000
3000
4000

Overhead (KB)

(b) 10Mbps bandwidth

Rebuffering
 time

Startup
 delay

0

160

320

480 Time (ms)
S-5-6
S-3-3

Swiping
 overhead

Exit
 overhead

0
1000
2000
3000
4000Overhead (KB)

(c) Fast swiping

Rebuffering
 time

Startup
 delay

0

160

320

480 Time (ms)
S-5-6
S-3-3

Swiping
 overhead

Exit
 overhead

0
1000
2000
3000
4000

Overhead (KB)

(d) Slow swiping

Fig. 2: QoE and overheads of two static methods in different envi-
ronments. For simplicity we consider constant bandwidth networks
here. Users take 4.9s and 45s on average to swipe to the next video
in fast and slow swiping settings.

Key Finding 3: Static policies do not adapt well.
A simple idea to reduce the bandwidth overhead is to

prefetch less. The challenge is in striking a balance between
the overhead and QoE gain: when can we prefetch less with-
out sacrificing the QoE, and how much should we prefetch ex-
actly? Intuitively we need a dynamic policy here that adapts
to the changing environment in answering the above chal-
lenge, and in this section we show that static policies indeed
do not work well in different environments.

We consider different environments reflected by network
bandwidth (2Mbps and 10Mbps) and user swiping behavior
(45s and 4.9s for average swiping time). Fig. 2 illustrates the
corresponding QoE and bandwidth overhead obtained using
the simulator with our trace. Observe that when the network
bandwidth is low and/or when user tends to swipe quickly,
S-5-6 is better as it offers less rebuffering time and startup
delay. Yet in other scenarios, the more conservative S-3-3
delivers a better tradeoff as it yields less overheads with very
similar QoE. There is no one-size-fits-all solution here, and it
is necessary to dynamically adjust the prefetching strategy.
Related work. Chen et al. [11] carried out a general study
in the characteristics of Douyin videos, and Lu et al. [12]
looked into the user motivations behind using Douyin from
a HCI perspective. They lack a concrete system solution to
improve short video streaming. Recently, LiveClip [2] and
DUASVS [10] adopt learning-based methods for short video
prefetching. Yet, they do not consider exit overhead.

3. DESIGN

We now present the detailed design of Alfie that consists of a
RL module (§3.1), a slow start mechanism (§3.2) and a short
video streaming simulator (§3.3), as shown in Fig. 3.

3.1. DRL Setup and Algorithm
We start by explaining how DRL is used here to model the
prefetching problem.
Why DRL? DRL fits well in the prefetching problem for two
main reasons: (1) Long-term optimization. Prefetching is in-

Ac
tio

n
M

as
k

 Observation
User Behavior

n0 n-1 ... n1-L

Network Throughput

b0 ... bN gi

Player Information

Video Information

V0 V1 ... VN-1

f0 ... f-M e0 ... e-K

So
ftm

ax...
...

...
...

Neural Network

Virtual Player

Downloader

Trace Sampler

Streaming
Log

Metrics
Computation

Action

State

PPO Short Video Streaming Simulator

Reward

Sl
ow

 S
ta

rt

Fig. 3: Overview of Alfie’s architecture.

trinsically a sequential and far-sighted process which consid-
ers long-term accumulative rewards. In contrast, supervised
and unsupervised learning are usually one-shot and myopic
considering instant rewards only [7]. (2) Generalization and
robustness. Static schemes inherently suffer from generaliza-
tion problem as described in §2 and the optimal solution needs
to be re-computed whenever the environment changes. DRL
adapts to network conditions and user behaviors by learning
from a large corpus of real-world traces and actual interac-
tions [8]. Its output policy is robust in handling different en-
vironments.

We describe how the state and action spaces are defined in
Alfie. Like typical RL, in each step when the system finishes
prefetching one chunk of video, the agent receives rewards
from the environment, observes the current state, and takes a
prefetching action.
State Space. In Alfie, at a given step i the state space Si =
[Ui,Wi, Pi, Vi] comprises of the following:
1. User behavior. User swiping affects the prefetching range

and aggressiveness. We use Fi to represent the time
spent on each video for the past M videos, i.e. Fi =
[f0, f−1, . . . , f−M] where f0 is the time spent on the cur-
rent video so far. Besides swiping behavior, we also mine
user’s exit behavior denoted as Ei. More specifically,
Ei = [e0, e−1, ..., e−K] describe the number of videos
viewed in the latest K sessions where e0 is the number
of videos viewed in the current session. Overall, user be-
havior features are represented as Ui = [Fi, Ei].

2. Network throughput. Here Wi = [n0, . . . , n1−L] denotes
the average download throughput of the latest L chunks
that finish downloading. Note to reflect the network condi-
tion timely, the chunks here include both those of the cur-
rent video and those of prefetched videos sorted by their
download completion times.

3. Playback information. The sizes of downloaded data for
the current video plus allN upcoming videos from the rec-
ommendation queue are represented as Bi = [b0, . . . , bN],
where b0 is downloaded size of the current video, b1 is
the size of prefetched data of the first video at the top of
the queue, and so on. Besides, playback information also
includes the play progress of the current video gi, thus
Pi = [Bi, gi].

4. Chunk information. We also consider the size of candidate
chunks of all N upcoming videos, Vi = [v0, . . . , vN−1].

Action Space. The action space is represented by a scalar
Ai which takes integer value from 0 to N . When Ai = 0,
it means Alfie chooses not to prefetch anything. Otherwise,
Alfie prefetches the next chunk not in the buffer for the Ai-th
video from the recommendation queue (each video may have
different prefetching progress). Here we simplify the design
by assuming that prefetching always follows the playback or-
der in downloading the chunks, and each action only down-
loads one chunk. This makes sense since the short videos are
commonly played sequentially. Whenever Alfie finds that the
first upcoming video has not been prefetched at all, it always
chooses to prefetch it in this step, i.e. Ai = 1, which is clearly
the best action in terms of reducing the likelihood of rebuffer-
ing. This is enforced through action masking [13] as detailed
in §4.1.
Reward Function. The reward function is crucial for re-
inforcement learning. There are two issues that complicate
the reward definition: (1) QoE and bandwidth overhead are
two contrary goals when defining the reward; (2) more im-
portantly, the overhead signal is irregularly delayed because
we do not instantly know whether the downloading chunk will
be consumed or not until the video is swiped away midway or
completely consumed.

Our reward function R(Si, Ai, Si+1) is shaped from two
aspects as shown below:

R(Si, Ai, Si+1) =

{
Ridle(Si, Si+1), if Ai = 0,

Rprefetch(Si, Ai, Si+1), otherwise.
(1)

Here Ai is the action taken at step i, Ridle stands for the re-
ward if current action is idle, while Rprefetch is the reward for
prefetching a chunk.

First, when the RL agent chooses to idle, the reward is:

Ridle(Si, Si+1) =

{
−1, if Tidle > 0,

α, α > 0, otherwise,
(2)

where Tidle denotes the rebuffering time of the current video
during the idling period from Si to Si+1. Rebuffering occurs
when the next chunk to be played is not downloaded by the
playback time, and each time it happens we record its dura-
tion. Note that the goal of RL agent is to maximize the cu-
mulative discounted reward, even though sometimes the pun-
ishment for early actions are inflicted on the current action,
the delayed feedback can still be captured by the cumulative
reward [7]. Here α > 0 is a positive reward coefficient which
controls the trade-off between QoE and bandwidth overhead.
If α is large, the agent tends to idle more often because it can
still get rewards even if rebuffering events frequently occur;
if α is close to 0, the agent prefetches more aggressively.

Second, prefetching the next chunk from video Ai in the
recommendation queue leads to Rprefetch(Si, Ai, Si+1) as de-
termined by Algorithm 1. Rebuffering should be avoided and
thus punished as the top priority in line 3. Punishing rebuffer-
ing also implicitly minimizes the startup delay. Then to con-
sider overhead, we need to know whether a chunk will be

Algorithm 1 Calculation of reward Rprefetch

Input: Ai: video selected for prefetching; j: position of the chunk
to be prefetched in Ai; T (Si, Ai, Si+1): rebuffering time during
downloading chunk j

1: h← GetVideoNum(VideoId, SessionTrace) . Get
the number of remaining videos from the session trace; VideoId
is the current video’s ID

2: if T (Si, Ai, Si+1) > 0 then
3: Rprefetch ← −1 . punishment for rebuffering
4: else if Ai > h then
5: Rprefetch ← −1 . punishment for prefetching a video that

will not be watched due to user exit
6: else
7: s← GetStayingTime(Ai, SessionTrace) . Get the time user

spent on video Ai from the trace
8: if j > s then
9: Rprefetch ← −1 . punishment for downloading a chunk

that will not be viewed due to user swiping
10: else
11: Rprefetch ← β ∗ (s− j)/s
12: return Rprefetch

played or not. In Alfie’s current design we assume this in-
formation is obtained from session traces collected offline.
Line 1 gets the number of remaining videos to be played in
the current session, and line 5 punishes downloading a video
that will not be viewed due to user exit. Then in line 7 the
time user spent on Ai is obtained from the trace, and we pun-
ish the swiping overhead when the timestamp of the chunk j
is beyond the user’s lingering time in line 9. Finally, positive
reward is given to prefetching chunk that is eventually con-
sumed by the user. Intuitively the earlier in a video the chunk
is, the higher the reward needs to be. Thus, we design the
reward based on its relative position as shown in line 11.
3.2. Slow Start
We also propose a slow start mechanism to better adapt to the
long-tailed user viewing behavior, drawing inspiration from
TCP’s slow start. Prefetching range is restricted by a window
which is progressively expanded. Initially at the beginning of
a viewing session, the window size is only one which means
Alfie only prefetches one video. It grows by one with one
more consumed video until it reachesN , the recommendation
queue size. Slow start is incorporated into Alfie’s DRL model
by action masking.
3.3. Simulator
It is impractical to directly train Alfie in the real world simply
because a single short video lasts dozens of seconds. There-
fore Alfie relies on a discrete-event based short video stream-
ing simulator, similar to many prior arts [3, 8]. Simulators
in these previous systems only support video-on-demand in a
sequential loop. As shown in Fig. 3, Alfie’s simulator works
as follows: the trace sampler loads session traces and net-
work traces, and injects all user swiping and exit events into
an event queue. During streaming, the downloader executes

downloading events using network throughput received from
the trace sampler and actions from the RL model. Note this
includes both downloading current video and prefetching up-
coming videos. The virtual player controls the playback and
accounts for rebuffering and swiping events. Performance
metrics such as rebuffering time and overhead are recorded
into the log. Our simulator can simulate 244 hours of short
video streaming in only 8 minutes.

4. IMPLEMENTATION AND EVALUATION

4.1. Evaluation Setup
Implementation Alfie is implemented by using one of the
leading RL libraries, RLlib in Ray [14], and a toolkit for
developing RL environments, OpenAI Gym [15]. We adopt
PPO [16] as our default RL training algorithm; the discount
factor γ ∈ (0, 1) is set to 0.99, which implies the agent cares a
lot about rewards in the distant future relative to the immedi-
ate ones. Our RL model is composed of two fully-connected
layers with 256 units each, and the tanh activation function.
Action masking is done by setting the corresponding output
probability to 0. The reward coefficients α and β are set to
0.1 and 1 according to our experience. The number of past
videos K, past sessions M , and throughput measurements L
are all set to 8. The recommendation queue size N is 5 and
each chunk is 1-second long following industry practice. Our
prototype consists of ∼2.5K LoC in python.
Dataset. Our dataset includes network traces and session
traces. Following [8], we use 80% of the traces as the training
set while the remaining 20% as the testing set. (1) Network
traces. We collect a corpus of proprietary real-world network
traces (Kuaishou trace) covering various network conditions
(0.2-23.8 Mbps, 4G/LTE). Each data point in the trace repre-
sents 1-second throughput. Besides, we also adopt the HS-
DPA trace [17] (Public trace), collected from mobile net-
works in Norway. (2) Session traces. We take a subset of
our complete production traces from Kuaishou as introduced
in §2. Specifically, the trace used in evaluation contains de-
tails of randomly sampled ∼10000 real-world sessions with
∼1 million short video viewings. Note all short videos are
encoded by VBR with variable bitrate.
Performance Metrics. We use four performance metrics:
two for QoE and two for bandwidth overhead. (i) Rebuffering
time T , (ii) Startup delay D: the lag between the user swip-
ing event and the time for playback to begin; (iii) Swiping
overhead Ws, and (iv) Exit overhead We, which are already
defined and discussed in detail in §1 and §2. Unless otherwise
noted, the four metrics are calculated by averaging across all
sessions. Note that unlike in VoD, video bitrate does not need
to be considered in QoE for short videos because their bitrate
is determined when the recommendation queue is generated.

Taken everything above, we consider the following nega-
tive utility by combining all the above four metrics:

U = T +D + 0.1×Ws + 0.1×We (3)

A smaller U is better as the metrics all reflect negative effects.

Network Scheme
Rebuffering

time
(ms)

Startup
delay
(ms)

Swiping
overhead

(KB)

Exit
overhead

(KB)

Negative
Utility

Kuaishou
trace

Oracle 249 111 7 0 365
Next-One 444 252 2116 21149 17616

S-3-3 594 141 194 475 1222
S-5-6 464 114 224 3873 3559

S-5-12 435 118 343 7228 6061
LiveClip 488 129 1383 2965 3779

Alfie 318 121 247 543 1014

Public
trace

Oracle 119 75 4 0 197
Next-One 232 170 2353 26078 21080

S-3-3 303 90 221 506 922
S-5-6 232 81 244 3993 3395

S-5-12 217 81 371 7586 6085
LiveClip 246 86 1342 3146 3596

Alfie 156 83 271 407 733

Table 2: Overall performance.

Here T andD have the same weight since startup delay is also
crucial in short video streaming. All terms are in ms in U .
Baseline Schemes. We compare Alfie with the state-of-the-
art prefetching methods. I. Oracle: this policy downloads
chunks sequentially in the ideal case when future information
from user is known (i.e. user swiping and exit times). II.
Next-One [2]: this is adopted by Douyin. It always down-
loads the current video completely, and then starts to down-
load the next video in full. It stays idle then until a swiping
event occurs. III. Static: this is introduced in §2. In addi-
tion to S-3-3 and S-5-6, we consider S-5-12 in this section.
IV. LiveClip [2]: a learning-based prefetching algorithm for
short video streaming. It selects chunk from the current video
and next two upcoming videos to download.
4.2. Overall Performance
Table 2 summarizes the overall performance across all test
sessions. We make the following observations: (1) Alfie out-
performs existing methods by large margins mostly. It has the
lowest negative utility except Oracle, and the improvement
is up to 20.5% compared to the best non-clairvoyant method
(S-3-3). (2) Alfie reduces swiping overhead and exit over-
head without impairing QoE. In particular, the exit overhead
is reduced by up to 84.9% compared to LiveClip. In fact Al-
fie’s rebuffering time is even better than aggressive prefetch-
ing such as S-5-12. The reason is that Alfie does not rigidly
prefetch one video after another; instead, it adaptively fills the
buffer in a flexible manner to ensure fast startup by consider-
ing user behavior.
4.3. Generalization
Alfie can encounter vastly different environments in terms of
network conditions and user swiping patterns. To evaluate
the generalization ability of Alfie, we consider four scenarios
and select particular traces as our test data, and use the same
prefetching policy learned through training in §4.1.

We select two network traces that represent low (avg.
1.48Mbps) and high (avg. 20Mbps) bandwidth scenarios, re-
spectively. The same session trace is used in both scenar-
ios for fairness. Fig. 4 shows Alfie delivers 18.9%–26.8%
improvement in overall utility over existing methods. The

Low High
Network Bandwidth

102

103

Re
bu

ffe
rin

g
Ti

m
e

(m
s) Oracle

Next-One
S-3-3
S-5-6
S-5-12
Liveclip
Alfie

(a) rebuffering Time (ms)

Low High
Network Bandwidth

102

St
ar

tu
p

De
la

y
(m

s)
(b) Startup Delay (ms)

Low High
Network Bandwidth

100

101

102

103

Sw
ip

in
g

Ov
er

he
ad

 (K
B)

(c) Swiping Overhead (KB)

Low High
Network Bandwidth

103

104

Ex
it

Ov
er

he
ad

 (K
B)

(d) Exit Overhead (KB)

Low High
Network Bandwidth

102

103

104

Ne
ga

tiv
e

Ut
ilit

y

(e) Negative Utility

Fig. 4: Performance under different network conditions. Note the log scale of the y-axis.

Short Long
Swiping Interval

103

3 × 102

4 × 102

6 × 102

Re
bu

ffe
rin

g
Ti

m
e

(m
s)

(a) Rebuffering Time (ms)

Short Long
Swiping Interval

102

103

St
ar

tu
p

De
la

y
(m

s)

(b) Startup Delay (ms)

Short Long
Swiping Interval

101

102

103

Sw
ip

in
g

Ov
er

he
ad

 (K
B)

(c) Swiping Overhead (KB)

Short Long
Swiping Interval

103

104

Ex
it

Ov
er

he
ad

 (K
B)

(d) Exit Overhead (KB)

Short Long
Swiping Interval

103

104

Ne
ga

tiv
e

Ut
ilit

y

(e) Negative Utility

Fig. 5: Performance under different behavior patterns. Note the log scale of the y-axis.

improvement comes from two aspects: 1) Alfie provides a
bandwidth-efficient prefetching policy which effectively re-
duces bandwidth overhead especially exit overhead. 2) Alfie
can incorporates throughput history information into its state
space to optimize for near future network characteristics.

Conversely, we select two session traces that represent
short (avg. 4.9s) and long (avg. 45s) swiping intervals of
users, and use the same network trace for both scenarios.
Fig. 5 shows that Alfie achieves 13.3% improvement in re-
buffering time compared to best static policy S-5-12 when
user performs fast swiping; Next-One, S-3-3, and LiveClip
perform poorly in QoE metrics, because they all prefetch in
a fixed short range that does not handle fast swiping events
well. Another reason for LiveClip’s poor performance is that
it assumes constant bitrate (CBR) encoding, which makes it
unable to accommodate varying chunk sizes. When the swip-
ing interval is long, we can see Alfie is slightly worse than
Next-One in rebuffering time as Next-One prefetches aggres-
sively at the expense of bandwidth.

4.4. Analysis of Learned Policy
To understand the insights learned by Alfie, we further ana-
lyze its prefetching behaviors according to its learned policy.
We have the following findings: (1) Alfie tends to prefetch
more aggressively in lower bandwidth networks to avoid re-
buffering, and prefetch conservatively when bandwidth is
high. (2) With fast swiping, Alfie’s policy prefers the first
chunk of each video as soon as possible before later contents.
(3) It tends to become more conservative when the session is
about to end. We leave as future work a more extensive study
of Alfie’s learned policies, as well as whether those insights
can be translated into simpler prefetching mechanisms.

5. CONCLUSION

To our best knowledge, this is the first work that thoroughly
investigates the bandwidth overhead including exit overhead

of short video streaming, and proposes a neural network based
bandwidth-efficient prefetching design. Alfie adapts to vari-
able and unseen environments by learning from massive past
experiences, and delivers better overall performance.

6. REFERENCES

[1] “CNNIC.,” https://www.cnnic.com.cn/IDR/.
[2] Jianchao He, et al., “LiveClip: Towards Intelligent Mobile Short Video

Streaming with Deep Reinforcement Learning,” in Proc. ACM NOSS-
DAV, 2020.

[3] Xiaoqi Yin, et al., “A Control-theoretic Approach for Dynamic Adap-
tive Video Streaming over HTTP,” in Proc. ACM SIGCOMM, 2015.

[4] “Interim Report 2021.,” https://ir.kuaishou.com/corporate-
filings/financial-information.

[5] “Kuaishou Technology.,” https://www.kuaishou.com/.
[6] Pierre Lebreton, et al., “Study on User Quitting in the Puffer Live TV

Video Streaming Service,” in International Conference on Quality of
Multimedia Experience (QoMEX), 2021.

[7] Richard S. Sutton, et al., Reinforcement learning: An introduction,
MIT press, 2018.

[8] Hongzi Mao, et al., “Neural Adaptive Video Streaming with Pensieve,”
in Proc. ACM SIGCOMM, 2017.

[9] “CDN Pricing.,” https://cdn.reviews/cdn-pricing-comparison/.
[10] Guanghui Zhang, et al., “DUASVS: A Mobile Data Saving Strategy

in Short-form Video Streaming,” IEEE Transactions on Services Com-
puting, pp. 1–1, Feb. 2022.

[11] Zhuang Chen, et al., “A study on the characteristics of douyin short
videos and implications for edge caching,” in Proceedings of the ACM
Turing Celebration Conference-China, 2019.

[12] Xing Lu, et al., “Fifteen Seconds of Fame: A Qualitative Study of
Douyin, a Short Video Sharing Mobile Application in China,” in Inter-
national Conference on human-computer interaction, 2019.

[13] Shengyi Huang, et al., “A Closer Look at Invalid Action Masking in
Policy Gradient Algorithms,” arXiv:2006.14171, 2020.

[14] “Rllib.,” https://docs.ray.io/en/releases-1.5.0/rllib.html.
[15] “OpenAI Gym.,” https://gym.openai.com/.
[16] John Schulman, et al., “Proximal Policy Optimization Algorithms,”

arXiv:1707.06347, 2017.
[17] “HSDPA.,” https://datasets.simula.no/hsdpa-tcp-logs/.

	 Introduction
	 Motivation
	 Design
	 DRL Setup and Algorithm
	 Slow Start
	 Simulator

	 Implementation and Evaluation
	 Evaluation Setup
	 Overall Performance
	 Generalization
	 Analysis of Learned Policy

	 Conclusion
	 References

