
Automated Traffic Engineering in SDWAN:
Beyond Reinforcement Learning

Libin Liu†§ Li Chen‡ Hong Xu§ Hua Shao∗
†Tencent ‡Huawei §City University of Hong Kong ∗Tsinghua University

lesbinliu@tencent.com Chen.li7@huawei.com henry.xu@cityu.edu.hk shaoh18@mails.tsinghua.edu.cn

Abstract—Traffic engineering (TE) is a critical and difficult
problem that involves assigning traffic with various requirements
to paths with different constraints. Recently, machine learning
algorithms, especially deep neural networks (DNN), are applied
to TE, yet they all assume that the network is a black box, limiting
them to only model-free reinforcement learning (RL) algorithms.
In this paper, we introduce differentiable programming to TE, and
show that the network environment can be sufficiently modeled
for TE optimization. Specifically, we design a fully-differentiable
network environment, ∂NE, that can be directly integrated into
any DNN models. With ∂NE, we can differentiate with respect
to control parameters, and directly evaluate gradients between
actions and states to facilitate gradient descent based training of
DNN models. We show with a proof-of-concept prototype that
∂NE accelerates DNN training for TE by 228× and achieves
higher scalability compared to existing network simulators. Most
importantly, dNE opens up the possibility to apply arbitrary deep
learning models to TE beyond RL.

Index Terms—Differentiable programming, deep neural net-
works (DNN), traffic engineering (TE)

I. INTRODUCTION

For cloud service providers with global presence, the wide
area network (WAN) is one of the most important pieces of
infrastructure, connecting its global datacenters and guaran-
teeing the delivery of many planet-scale applications. WANs
are privately owned and usually centrally controlled following
the software defined networking paradigm, and are referred to
SDWANs hereafter. Traffic in SDWANs is typically of high
volume and still rapidly growing [7], [9]. Therefore despite
much prior work, traffic engineering (TE) continues to draw
attention from both academia and industry as an important
means to increase performance and reduce costs.

TE is inherently difficult as it involves mapping traffic with
different demands and priorities to network paths with varying
constraints and costs. As an offline problem, TE can be cast
as a mixed integer programming problem which is NP-hard in
general [13]. In practice, TE systems need to make decisions
online, responding to various network events such as link
down or flapping, which adds to the difficulty of the problem.
Inspired by the prominent success of reinforcement learning
(RL) with deep neural networks (DNN) in complex online
decision making tasks [26], DNN-based RL (DRL) algorithms
have also been introduced to some traffic optimization tasks in
networking, such as adaptive bitrate control in video stream-
ing [19], traffic scheduling [3], and TE [28], [34].

The work is supported in part by the Research Grants Council of the
HKSAR, China (GRF 11216317, GRF 11210818).

Specifically, for TE, Stampa et al. [28] and Xu et al. [34]
both adopt actor-critic based DRL algorithms to solve TE in
SDWAN and are our closest related work. They use model-
free algorithms and rely on simulated network environments
(ns3 [24] and OMNet++ [31], respectively) to train their
models. These simulated environments are poorly suited for
deep learning because they are not natively differentiable and
cannot be trained by classical gradient based optimization
methods. Thus the authors resort to approximating the state-
action or action-value functions using some differentiable
DNN models, which introduces a host of problems. DNN as
a non-linear function approximator is known to be unstable
or even diverge during training [8], [20], which prolongs the
training time for DRL based TE solutions. Large DRL models
also require significant tuning efforts especially with tech-
niques like experience replay and target network to improve
its robustness [16].

Why are we stuck with RL in the first place? We observe that
these DRL approaches share the same underlying assumption
that, the network as a whole cannot be explicitly modeled,
and thus must be treated as a black box with model-free DRL
algorithms. While this is valid in some cases where the envi-
ronment is stochastic (e.g. flows in datacenter networks [3])
or uncontrollable (e.g. video streaming over Internet [19]),
we believe that the SDWAN environment is well-understood
and can be adequately modeled for the purpose of TE. In
a SDWAN with a logically centralized controller, the traffic
demands and tunnel-path assignments can unambiguously de-
termine the next state of the network, i.e. available bandwidth
for different traffic classes on each link, as well as the TE
metrics, such as latency (hop count), path length, and link
utilization.

We build ∂NE, a fully-differentiable network environment,
as a constructive proof of our argument above. ∂NE takes as
input a set of matrices describing the network topology, tunnel
traffic demands, and tunnel-path assignments, computes the
resulting network state, and obtains user-defined performance
metrics such as the maximum link utilization. More interest-
ingly, leveraging the automatic differentiation capability of
many deep learning frameworks [33], ∂NE directly outputs
the gradients for the parameters of the DNN model used to
solve TE with respect to the TE performance. Essentially ∂NE
allows the DNN model for TE to be trained end-to-end with
standard gradient based methods that are widely used in deep
learning.

The key benefit of ∂NE is that, by following differentiable
programming principles [27], it enables rapid adoption of
recent and future advances in machine learning for TE in
SDWAN. We implement ∂NE as a differentiable “layer” using
popular deep learning frameworks, so that it can be easily
integrated into any deep learning models. Both model-based
and model-free DRL algorithms can directly use ∂NE as
the environment and apply actions to it, without the need to
approximate the dynamics of the network as if it is a black
box. In addition, ∂NE supports arbitrary deep learning models
beyond RL, such as recurrent neural networks (RNN) [25],
differentiable neural computers [6], etc., thereby greatly ex-
panding the solution space with many new approaches and
promising potential gains. As a concrete example, we imple-
ment a simple RNN-based TE algorithm in our PyTorch-based
∂NE prototype, and experiments show that it achieves 7.0%
higher throughput and 89.8% lower congestion loss than state-
of-the-art DRL proposal for TE [34] in §IV.

Lastly, we concede that, in practice, various random events
in the network may not be properly modeled with ∂NE, such
as random packet drops and transient congestion [18]. Yet we
believe that, even for DRL models that intend to deal with such
dynamics, ∂NE is still helpful as a pre-deployment training
platform thanks to its unique characteristics in differentiability,
training speed, and scalability in contrast to existing network
simulators [12], [24], [31].

We encourage the community to think beyond RL and
explore new design space with ∂NE in applying machine
learning techniques to TE and possibly other resource allo-
cation problems in networking.

II. BACKGROUND & MOTIVATION

We start by providing background on TE and then present-
ing the motivation for our design of ∂NE.

A. Background on SDWAN TE

SDWAN [7], [9] leverages a logically centralized controller
to make TE decisions with a global view. A SDWAN TE
algorithm produces a solution that maps tunnels to the paths
in the network, while maintaining network-wide objectives,
e.g. load balancing and high link utilization. Following the
characterization by Kumar et al. [13], a TE algorithm makes
two choices: (1) determine the paths to use between all ingress-
egress pairs, and (2) determine the rates to allocate traffic
demands on the paths. Any algorithm in TE systems can be
analyzed with respect to these choices.

Recently, due to the success of deep learning in solving
complex online control problems [3], DNN-based RL algo-
rithms are introduced to TE in WAN. These algorithms are
either model-based [2], or model-free [28], [34]. For model-
based algorithms, they are online algorithms trying to fill (and
then exploit) a table containing <state, action, reward> tuples.
Therefore, they have sample efficiency problem [8], leading to
poor performance in unseen network states. For model-free
algorithms [28], [34], they both use off-policy, actor-critic,
deterministic policy gradient algorithm [16] that interacts with

the network environment. In particular, Stampa et al. [28]
does not explore the full capability of SDN (e.g. optimizing
per-tunnel placement directly). In terms of rate allocation,
for DRL-TE [34], it is unclear if DRL has advantages over
traditional optimization approaches, e.g. linear programing [7],
[9].

B. Motivation

The above DNN-based TE approaches all assume that the
network cannot be modeled and must be treated as a black-
box. This assumption has two implications:
• It limits them to only RL algorithms, and have to rely on

the RL agents to learn and approximate the dynamics of
the system, such as state transition, action-value function,
and state-value function. Therefore, they are subjected to
limitations of RL algorithms, e.g. sample inefficiency [8]
and variance [20]. On the other hand, in many tasks, other
DNN-based methods consistently outperform RL ones, such
as trajectory optimization in robotics control [30], and
Monte Carlo Tree Search in Atari games [21]. We believe
adopting the ”black-box” assumption prevents us from other
promising DNN-based algorithms in TE.
• This assumption also forces them to rely on network

simulators (e.g. OMNet++ and ns3) or real environments,
thus limiting the training speed. DNN models require a
large amount of training samples. Thus, it is slow to train
DNN models on a traditional discrete event simulator, and
convergence for DRL models is hard to achieve. Relying
on simulators also limits the scalability. As we will show
in §IV-C, the time between applying an action to getting a
feedback is usually >200ms on a traditional simulator with
more than 100 nodes in the network.
We believe, particularly for SDWAN TE, network is not

a black box: the current network state and a set of tunnel-
path assignments can unambiguously determine the next state
of the network. TE metrics, such as latency, path length, and
link utilization, can also be directly calculated (§III). What is
lacking, however, is a mechanism to efficiently optimize the
DNN models in algorithms. We find that some topics, such
as physics engines in robotics [4] and ray tracing [14], are
in the same situation where the environment can be specified
explicitly. Differentiable programming as we notice has been
tremendously useful for them [4], [14], [15].

C. Differentiable Programming & ∂NE

Differentiable programming is a new programming
paradigm in which the software is programmed by assembling
networks of parameterized functional blocks. Due to such
construction, the software can be differentiated throughout,
usually via automatic differentiation (AD) frameworks [1],
[32], [33]. This allows direct gradient-based training and
optimization of parameters in the program, often via gradient
descent. Software following this paradigm is thus data-driven,
and can be trained end-to-end with input-output tuples, or
optimized with respect to an objective function.

Fig. 1: ∂NE Design

Following this paradigm, we design ∂NE to be a fully-
differentiable network environment, which can be used as
a “layer” embedded directly into a deep learning model. A
DNN based TE model can then be trained with accurate
gradients for current control parameters in the DNN. Both
model-based and model-free DRL algorithms can directly
use ∂NE as an environment. It is also important to clarify
that, DRL algorithms using ∂NE are not necessarily “model-
based”, because a model-based DRL agent still needs to learn
the transition dynamics of the environment on its own. With
∂NE, there is no longer a need to learn such dynamics: we
can simply run the entire simulation of current actions on
∂NE, obtain corresponding performance results, as well as the
gradients for training improvements.

Most importantly, ∂NE can readily support arbitrary deep
learning models beyond RL, such as recurrent neural net-
works [25], differentiable neural computers [6], etc. In other
words, the true value of ∂NE is that it allows rapid adoption
of recent and future advances in machine learning beyond RL
in SDWAN TE.

III. ∂NE DESIGN & IMPLEMENTATION

We now present the design of ∂NE and a preliminary
prototype based on PyTorch.

A. Design & Work Flow

∂NE is designed as a “layer” that can be readily incorpo-
rated in any deep learning models. Inside the ∂NE layer, as
shown in Fig. 1, there are two stages: network evaluation, and
network summarization. The entire work flow is as follows:

1) We provide a set of input preparation utilities for the de-
veloper of the TE model to gather the necessary inputs,
including tunnel requirements, and network description
(physical connectivity and link bandwidth).

2) The TE model provides a TE decision, which is obtained
by the Network State Evaluation stage. It computes the
network state given the input.

3) Then, in the Network Summarization stage, user-defined
performance objectives (maximum link utilization, av-
erage latency/hop-count, etc.) are calculated given the
network state.

4) Using AD, the gradient with respect to the current
control parameters of the TE model is obtained given
the current summarization of the network, and then used
for training with gradient descent methods.

B. Network Model

We proceed to describe our network model in ∂NE.
First we consider the traffic. We use T to denote the set

of tunnels in the network. A tunnel in this paper is defined
as the aggregated traffic of a particular traffic class between
an ingress-egress router pair. We note that our definition of
tunnel is usually referred as a “demand” or “flow” in some
literature [7], [13], [17], [18], wherein a tunnel actually refers
to one established path or a set of paths between the ingress
and egress routers. Thus they only perform rate allocation on
these established paths. Our choice of definition is different,
because we want to model both the path finding process and
the rate allocation process in TE.

In the current design ∂NE considers six types of require-
ments for tunnels expressed as a set of matrices:
• Source S: a |T |×1 vector where S[t] contains the index
of the source vertex of the tunnel t∈T .
• Destination D: a |T |×1 vector where D[t] contains the
index of the destination vertex of the tunnel t∈T .
• Bandwidth requirements B: a |T |×1 vector where b[t](≥
0) is the bandwidth demand of tunnel t∈T .
• Tunnel class C: a |T |×|P | matrix where P is the set of

priorities (or traffic classes) enabled in the network. Here
C[t][p] is 1 if the priority for tunnel t is p, and 0 otherwise.
Each tunnel can only have one priority (

∑
pC[t][p]=1). We

also assume strict priority queueing on all routers.
• Latency requirements L: a |T |×1 vector where L[t](≥0)

denotes the maximum total latency acceptable to tunnel t∈
T .
• Cost requirements Z: a |T |×1 vector where Z[t](≥0)

denotes the maximum total cost acceptable to tunnel t∈T .
Next we consider the network. The network is a directed

graph G=(E,V), where E={e} is the set of directed edges
and V={v} the set of vertices. The network is characterized
by the following attributes:
• Link capacity N : a |E|×1 vector where N [e] contains

the capacity of an edge e which can be either constant or
dynamic.
• Measured latency M : a |E|×1 vector where M [e] denotes

the measured latency of an edge e which can be constant
or dynamic.
• Link cost K: a |E|×1 vector where K[e] contains the IGP

metric of edge e in the network.
The TE algorithm in ∂NE aims to solve a tunnel placement

problem and produce a tunnel-path assignment decision A as
a |T |×|E| matrix, where A[t][e] is either 0 or 1, denoting
whether tunnel t takes edge e in its path(s).

The Network State Evaluation stage checks if all the input
matrices follow the above description.

C. Network Summarization

In the network summarization stage, user-defined objective
functions are computed given network descriptions (N,M,K),
tunnel requirements (S,D,B,C,L,Z), and tunnel assignment

(A). We have implemented a few frequently used objectives
and constraints in TE, as follows:

Latency functions:
• invalid_lat(A,M,L): Latency constraint validation
function tests if the sum of latencies along a tunnel’s path
exceeds the tunnel’s latency requirement. It returns 0 if all
latency constraints are met.
• max_lat(A,M) obtains the maximum latency of all

tunnels, and avg_lat(A,M) obtains the average.

Bandwidth functions:
• invalid_bw(A,B,N): Bandwidth constraint validation
function tests if the sum of bandwidth requirements on
every edge exceeds its capacity.
• max_bw(A,B,N) obtains the maximum bandwidth of all
tunnels, and avg_bw(A,B,N) obtains the average.

Cost functions:
• invalid_cost(A,Z,K): Cost constraint validation

function tests if the sum of costs along a tunnel’s path
exceeds the tunnel’s cost budget requirement.
• max_cost(A,Z) obtains the maximum cost among all

tunnels, and avg_cost(A,Z) obtains the average.
Using these functions, we can readily define common TE

objectives such as minimization of maximum link utilization,
minimization of average latency, etc. Users can also define
new objectives by combining these functions or by adding
new functions to the network summarization stage. However,
to ensure that the user-defined functions and objectives are
differentiable, we stipulate that the functions should only use
inputs and outputs from the previous two stages. With the help
of AD tools [29], we can obtain gradients with respect to the
control parameters directly.

D. Implementation

We implemented a simple prototype of ∂NE with PyTorch
[22] leveraging its AD support [23]. Following the design
above, ∂NE can also be implemented using other frame-
works [1], [33]. The current version of ∂NE is implemented
as a layer that can be embedded into any neural networks on
PyTorch. To use ∂NE, a model should initialize a ∂NE instance
as one of its layers, supply the tensors in ∂NE’s network
model (§III-B) with values, and provide (or define) objective
functions in the network summarization stage. Then it can be
trained and optimized as any other models on PyTorch.

IV. EVALUATION

In this section we evaluate ∂NE using experiments. We are
mainly interested in answering three questions: (1) Can ∂NE
easily enable DNN-based TE algorithms beyond RL? (2) Can
∂NE accelerate training of DNN-based TE algorithms? (3)
Can ∂NE scale to support large SDWAN networks?
Summary of results:
• Usability. Deep learning models using PyTorch can in-

corporate ∂NE natively. To show this, we implement the
DRL-TE [34] model, and a novel LSTM-based [5] model,
LSTM-TE, on ∂NE. We find ∂NE easy to use: it takes

Fig. 2: Long-Short-Term-Memory Network

only ∼1 day to implement the LSTM-TE, and ∼3 hours to
implement DRL-TE.
• Performance. Our implementation of LSTM-TE outper-
forms state-of-the-art DRL-TE [34] on the Abilene topology
for both throughput (7.0% higher) and congestion loss
(89.8% lower). LSTM-TE also shows comparable perfor-
mance to TE algorithms using multipath routing, such as K-
Shortest-Path + Multi-Commodity-Flow used in SWAN [7].
• Training speed. Compared to traditional network simu-

lators, e.g. OMNet++, ∂NE achieves much faster training
(>228×).
• Scalability. Traditional network simulators become slower

with larger network sizes. We show that network size does
not affect the evaluation and training speed of ∂NE.

A. Usability of ∂NE

We demonstrate ∂NE’s usability by implementing DNN-
based models for TE. First, we propose and implement a new
DNN-based model for TE called Long-Short-Term-Memeory
TE (LSTM-TE) that does not use RL methods. Although
LSTMs achieve superior performance in many problem do-
mains [10], to the best of our knowledge, they have not been
used in TE tasks. We describe the model in the following.

LSTM Cell. For each element in the input sequence, an LSTM
cell (Fig. 2) computes the following:

it=σ(Wiixt+bii+Whih(t−1)+bhi),

ft=σ(Wifxt+bif+Whfh(t−1)+bhf),

gt=tanh(Wigxt+big+Whgh(t−1)+bhg),

ot=σ(Wioxt+bio+Whoh(t−1)+bho),

ct=ft?c(t−1)+it?gt,

ht=ot?tanh(ct).

Here ht is the hidden state at time t, ct is the cell state at
time t, xt is the input at time t, h(t−1) is the hidden state
of the layer at time t−1 or the initial hidden state at time
0, and it,ft,gt,ot are the input, forget, cell, and output gates,
respectively. W··· are the weights of the respective DNNs in
the rectangle nodes in the computation graph in Fig. 2, and
b··· are their respective biases. σ is the sigmoid function, and
? is the Hadamard product.

Model Input. We concatenate the following vectors to form
an input vector Xt for tunnel t:
• Tunnel source, a |V |×1 vector with one-hot encoding.
• Tunnel destination, a |V |×1 vector with one-hot encoding.

Fig. 3: LSTM-TE’s performance on the Abilene topology over
35-hour time-series traffic demand matrices against traditional
TE schemes. For each traffic demand matrix, the average
network load is 0.8.

• Tunnel bandwidth requirement, a scalar.
• Tunnel class, a |P |×1 vector with one-hot encoding, where
P is the set of traffic classes.
• Available k shortest paths for the tunnel t which is a k×|E|
vector. In our current design, we set k=4.

The first four vectors are obtained by transforming the tunnel
requirements S,D,B,C defined in §III-B.

Objective Function. We use minimization of maximum link
utilization as the objective function. The loss function for
training is defined as the difference between the objective
function values of two consecutive epochs.

LSTM-TE Operations. In LSTM-TE, we consider the net-
work environment as a discrete-time dynamic system. An
LSTM cell is integrated with ∂NE following the steps outlined
in §III-A. Specifically, at the beginning of each training epoch,
for an input containing |T | tunnels, we feed the LSTM cell
with a vector containing information of one tunnel in one time
step. After all the tunnels are processed in |T | time steps, we
obtain the final hidden state as the output A of the current
training epoch, which is a |T |×|E| matrix (assigning tunnels
to edges). We then feed A into ∂NE to perform the network
evaluation and summarization stages. Finally, we obtain the
objective function from ∂NE, compute the loss, and perform
back-propagation to update the weights W··· in the cell. This
finishes one epoch of training.

Summary. Overall, implementing a new DNN-model is easy
on ∂NE. It takes only one day to complete the LSTM-TE. We
also implemented the DRL-TE algorithm following [34], and
replace its OMNet++ environment with ∂NE. This takes only
∼3 hours.

B. Performance of LSTM-TE

We proceed to look at the performance of LSTM-TE.

Training LSTM-TE. During the training phase, we randomly
generate traffic demands with various average link loads (0.2,
0.4, 0.6, and 0.8) for all tunnels on the Abilene topology, and
for each load level we run 1000 epochs.

Schemes Compared. To demonstrate the efficiency of LSTM-
TE, we compare it against a set of existing TE solutions,
including CSPF, ECMP, KSP+MCF, SMORE [13], and DRL-
TE which we implemented in §IV-A following [34].

Settings. Except for DRL-TE and LSTM-TE, we run all other
TE schemes on YATES [12] on the Abilene topology using the
traffic demand matrices provided in YATES’s data repository
[11] with the average network load scaled to 0.8. We run DRL-
TE and LSTM-TE on top of ∂NE with identical traffic demand
matrices and topology. For all schemes, we set the path budget
k to be 4, which is the same as in B4 [9] and SMORE [13].

Results. Fig. 3 shows throughput normalized to total demand,
maximum congestion (fractional link utilization), and conges-
tion loss (normalized traffic dropped due to congestion) over
35 hours of traffic traces. We observe that LSTM-TE performs
better than ECMP and KSP+MCF in terms of all metrics
and is essentially on par with the best non-DNN schemes,
CSPF and SMORE, in terms of throughput and congestion
loss. Compared to ECMP, LSTM-TE improves throughput by
13.1% and reduces congestion loss by 93.9% on average. For
KSP+MCF, the gains are 0.8% and 51.8%, respectively. We
can also see that it performs worse than CSPF and SMORE
in terms of maximum congestion. This is because CSPF and
SMORE select the paths and subsequently distribute the traffic
over the corresponding paths, while current ∂NE design only
selects a single path based on the tunnel demands, without
performing any rate adaptation. We consider multipath support
and rate adaptation as future work for ∂NE and LSTM-TE.
Despite the limitation of single path routing, LSTM-TE still
outperforms DRL-TE on throughput and congestion loss (7.0%
and 89.8% gains on average). This demonstrates the value of
∂NE: we can go beyond RL and readily reap the benefits of
arbitrary DNN-based algorithms.

C. Training Speed

We investigate the training speed of the TE simulator
defined as the response time between taking an TE action and
making an observation of the effect. A faster training speed
is beneficial, due to 1) faster rate of experience generation
for control tasks (e.g. state-action-reward triples for DRL
algorithms), which potentially reduces variance and acceler-
ates convergence; and 2) faster iteration time for optimiza-
tion tasks (e.g. RNN-like model above), which reduces total
training time. We compare ∂NE against a traditional network
simulator used in [28], OMNet++ (v5.1) [31]. We build a
random topology of 100 nodes and 500 1Gbps links on both
∂NE and OMNet++. We create 100 tunnels with 10Kbps
bandwidth requests, and place them in the network as evenly
as possible. We then change placement of a random tunnel,
and observe the change of bandwidth usages in corresponding
links. We repeat the procedure 1000 times and measure the
time between setting a new tunnel placement and observing the
change. We find that, for OMNet++ the average (p99) latency
is 228.3ms (1.594s). But for ∂NE, the change is effective
almost immediately (p99 latency is 0.977ms), because only
one matrix multiplication is needed. This shows that ∂NE is
much more responsive than traditional network simulators, and
can achieve >228× lower training time.

D. Scalability

Scalability is a huge concern especially for conventional dis-
crete event simulators. The simulations become much slower
as the network size increases. We repeat the above experiment
on OMNet++ with the network scaled from 100 to 1000 nodes,
and number of edges to 5000. We find that the average time
between setting a new placement and observing the change
increases from 228.3ms to 29.1s. Such a long delay implies
that, for a moderately sized SDWAN (1000 routers), each
training iteration takes almost half a minute. Considering
that many deep learning models are trained for thousands
of iterations, the total solution time using traditional network
simulator is intolerable. ∂NE, on the other hand, is insensitive
to network size (number of nodes/edges/tunnels) because it
simply needs to alter one or more dimensions of the tensors
in the network model. We observe that scaling from 500 to
5000 edges makes almost no difference on the time of a matrix
multiplication operation (<1ms for network evaluation) or AD
(<1ms for training). This indicates that ∂NE can scale to much
larger networks while maintaining the same evaluation and
training speed.

V. CONCLUDING REMARKS

Recent DNN-based TE algorithms invariably assume that
the network is a black box. Yet we believe that the network
model for TE can be clearly specified. We build ∂NE, a
fully-differentiable network environment, as a constructive
proof. Our evaluations show that ∂NE accelerates training
speed of DNN models for TE by 228× and achieves better
scalability compared to existing network simulators. More
importantly, ∂NE opens up the possibility to apply any DNN-
based models to TE in SDWAN beyond RL, as shown in
our implementation of LSTM-TE on ∂NE. We also believe
differentiable programming is also suitable for other domains,
such as resource provisioning and cluster scheduling.

REFERENCES

[1] “TensorFlow,” https://www.tensorflow.org/.
[2] J. A. Boyan and M. L. Littman, “Packet routing in dynamically changing

networks: A reinforcement learning approach,” in Advances in neural
information processing systems, 1994, pp. 671–678.

[3] L. Chen, J. Lingys, K. Chen, and F. Liu, “AuTO: scaling deep rein-
forcement learning for datacenter-scale automatic traffic optimization,”
in ACM SIGCOMM, 2018.

[4] J. Degrave, M. Hermans, J. Dambre et al., “A differentiable physics
engine for deep learning in robotics,” Frontiers in neurorobotics, vol. 13,
2019.

[5] F. A. Gers, J. Schmidhuber, and F. Cummins, “Learning to forget:
Continual prediction with LSTM,” 1999.

[6] A. Graves, G. Wayne, M. Reynolds, T. Harley, I. Danihelka, A. Grabska-
Barwińska, S. G. Colmenarejo, E. Grefenstette, T. Ramalho, J. Agapiou
et al., “Hybrid computing using a neural network with dynamic external
memory,” Nature, vol. 538, no. 7626, p. 471, 2016.

[7] C.-Y. Hong, S. Kandula, R. Mahajan, M. Zhang, V. Gill, M. Nanduri,
and R. Wattenhofer, “Achieving high utilization using software-driven
WAN,” in ACM SIGCOMM, 2013.

[8] A. Irpan, “Deep Reinforcement Learning Doesn’t Work Yet,” https://
www.alexirpan.com/2018/02/14/rl-hard.html, 2018.

[9] S. Jain, A. Kumar, S. Mandal, J. Ong, L. Poutievski, A. Singh,
S. Venkata, J. Wanderer, J. Zhou, M. Zhu, J. Zolla, U. Hölzle, S. Stuart,
and A. Vahdat, “B4: Experience with a Globally Deployed Software
Defined WAN,” in ACM SIGCOMM, 2013.

[10] A. Karpathy, “The Unreasonable Effectiveness of Recurrent Neural
Networks,” http://karpathy.github.io/2015/05/21/rnn-effectiveness/, May
2015, (Accessed on 06/28/2019).

[11] P. Kumar, C. Yu, Y. Yuan, N. Foster, R. Kleinberg, and R. Soulé,
“Yates’ Traffic Demands,” https://github.com/cornell-netlab/yates/tree/
master/data/demands.

[12] P. Kumar, C. Yu, Y. Yuan, N. Foster, R. Kleinberg, and R. Soulé,
“YATES: Rapid Prototyping for Traffic Engineering Systems,” in ACM
SOSR, 2018.

[13] P. Kumar, Y. Yuan, C. Yu, N. Foster, R. Kleinberg, P. Lapukhov,
C. Lin Lim, and R. Soulé, “Semi-Oblivious Traffic Engineering: The
Road Not Taken,” in USENIX NSDI, 2018.

[14] T.-M. Li, M. Aittala, F. Durand, and J. Lehtinen, “Differentiable monte
carlo ray tracing through edge sampling,” in SIGGRAPH Asia 2018
Technical Papers. ACM, 2018, p. 222.

[15] T.-M. Li, M. Gharbi, A. Adams, F. Durand, and J. Ragan-Kelley,
“Differentiable programming for image processing and deep learning
in Halide,” ACM Transactions on Graphics (TOG), vol. 37, no. 4, p.
139, 2018.

[16] T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa,
D. Silver, and D. Wierstra, “Continuous control with deep reinforcement
learning,” arXiv preprint arXiv:1509.02971, 2015.

[17] H. Liu, X. Wu, M. Zhang, L. Yuan, R. Wattenhofer, and D. Maltz,
“zUpdate: Updating Data Center Networks With Zero Loss,” in ACM
SIGCOMM, 2013.

[18] H. H. Liu, S. Kandula, R. Mahajan, M. Zhang, and D. Gelernter, “Traffic
Engineering with Forward Fault Correction,” in Proc. ACM SIGCOMM,
2014.

[19] H. Mao, R. Netravali, and M. Alizadeh, “Neural Adaptive Video
Streaming with Pensieve,” in SIGCOMM. ACM, 2017.

[20] H. Mao, S. B. Venkatakrishnan, M. Schwarzkopf, and M. Alizadeh,
“Variance Reduction for Reinforcement Learning in Input-Driven Envi-
ronments,” arXiv preprint arXiv:1807.02264, 2018.

[21] J. Oh, X. Guo, H. Lee, R. L. Lewis, and S. Singh, “Action-conditional
video prediction using deep networks in atari games,” in Advances in
neural information processing systems, 2015, pp. 2863–2871.

[22] A. Paszke, S. Gross, S. Chintala, and G. Chanan, “Pytorch,” 2017.
[23] A. Paszke, S. Gross, S. Chintala, G. Chanan, E. Yang, Z. DeVito, Z. Lin,

A. Desmaison, L. Antiga, and A. Lerer, “Automatic differentiation in
pytorch,” 2017.

[24] G. F. Riley and T. R. Henderson, “The ns-3 network simulator,” in
Modeling and tools for network simulation. Springer, 2010, pp. 15–34.

[25] A. Sherstinsky, “Fundamentals of Recurrent Neural Network (RNN)
and Long Short-Term Memory (LSTM) Network,” arXiv preprint
arXiv:1808.03314, 2018.

[26] D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. Van
Den Driessche, J. Schrittwieser, I. Antonoglou, V. Panneershelvam,
M. Lanctot et al., “Mastering the game of Go with deep neural networks
and tree search,” Nature, 2016.

[27] Skymind.ai, “A Beginner’s Guide to Differentiable Programming
— Skymind,” https://skymind.ai/wiki/differentiableprogramming, (Ac-
cessed on 06/28/2019).

[28] G. Stampa, M. Arias, D. Sanchez-Charles, V. Muntés-Mulero,
and A. Cabellos, “A deep-reinforcement learning approach for
software-defined networking routing optimization,” arXiv preprint
arXiv:1709.07080, 2017.

[29] TensorFlow, “Automatic differentiation and gradient tape,” https://www.
tensorflow.org/tutorials/eager/automatic differentiation, 2019, (Accessed
on 04/13/2019).

[30] E. Todorov, T. Erez, and Y. Tassa, “Mujoco: A physics engine for
model-based control,” in 2012 IEEE/RSJ International Conference on
Intelligent Robots and Systems. IEEE, 2012, pp. 5026–5033.

[31] A. Varga, “OMNeT++,” in Modeling and tools for network simulation.
Springer, 2010, pp. 35–59.

[32] F. Wang, J. Decker, X. Wu, G. Essertel, and T. Rompf, “Backpropagation
with Callbacks: Foundations for Efficient and Expressive Differentiable
Programming,” in NeurIPS, 2018.

[33] Wikipedia, “Automatic differentiation,” https://en.wikipedia.org/wiki/
Automatic differentiation, 2019, (Accessed on 04/13/2019).

[34] Z. Xu, J. Tang, J. Meng, W. Zhang, Y. Wang, C. H. Liu, and D. Yang,
“Experience-driven networking: A deep reinforcement learning based
approach,” in IEEE INFOCOM, 2018.

