
Bottleneck-Aware Coflow Scheduling
Without Prior Knowledge

Libin Liu† Hong Xu† Chengxi Gao‡ Peng Wang§
†City University of Hong Kong ‡SIAT, CAS §Huawei

libinliu-c@my.cityu.edu.hk henry.xu@cityu.edu.hk chengxi.gao@siat.ac.cn wang.peng6@huawei.com

Abstract—Coflow scheduling is critical to the communication

efficiency of data-parallel applications in data centers. While

schemes like Varys can achieve optimal performance, they require

a priori information about coflows which is hard to obtain in

practice. Existing non-clairvoyant solutions like Aalo generalize

least attained service (LAS) scheduling discipline to address this

issue. However they fail to identify the bottleneck flows in a

coflow and tend to allocate excessive bandwidth to the non-

bottleneck flows within the coflow, leading to bandwidth wastage

and inferior overall performance.

To this end, we present Fai that strives to improve the overall

coflow performance by accelerating the bottleneck flow without

prior knowledge. Fai employs bottleneck-aware scheduling for

coflows. Fai adopts loose coordination to update coflow priority

and flow rates based on total bytes sent. In addition, Fai detects

bottleneck flows based on a flow’s rate and bytes sent, and de-

allocates bandwidth for other flows to match the bottleneck rate

without affecting the coflow completion time (CCT). The saved

bandwidth is then distributed among coflows according to their

priority to improve overall performance. Both testbed deploy-

ments and trace-driven simulations show that Fai outperforms

Aalo substantially.

Index Terms—Bottleneck detection, bandwidth allocation,

coflow scheduling

I. INTRODUCTION

Today’s data centers host many data-intensive applications
(e.g. MapReduce [1], Spark [2], and Dryad [3]) to meet the
increasing demand for data processing and analytics. Studies
have shown that the intermediate data transfer during shuffling
accounts for a substantial part of job processing [4]–[7].
For example Facebook reports that transferring data between
successive stages occupies 33% of the Hadoop jobs’ running
time during the reduce phase [4].

A data analytics job is composed of many stages including
communication and computation [1]–[3], [8], [9]. Often a
communication stage cannot finish until all its flows have
completed [4], [5], [7]. Coflow is proposed as a new abstraction
that captures this unique communication pattern of data-
intensive applications [8]. Instead of considering individual
flows and their performance, coflow considers the application-
level semantics and applies to the all-or-nothing property of
data analytics jobs [10]–[12]: a coflow includes all flows of
the same communication stage and is completed only when
all its flows finish. Thus better coflow completion time (CCT)
directly leads to faster job completion time [4]–[7], [13].

The work is supported in part by the Research Grants Council of the
HKSAR, China (GRF 11216317, GRF 11210818).

Coflow scheduling emerges as an important research prob-
lem in our community. Varys [7] proposes heuristics such as
smallest-bottleneck-first and smallest-total-size-first to mini-
mize CCT, by assuming that complete information of coflows
is known in advance. However, information like the coflow
size and arrival times of its member flows is difficult to
obtain a priori in practice [6], [13]–[15]. Take multi-stage
jobs as an example: usually data are transferred as soon
as they have been generated, making it almost impossible
to obtain the flow size before the transmission ends. Aalo
[6] and CODA [13], therefore, turn to information-agnostic
scheduling. Aalo leverages the least attained service (LAS)
scheduling discipline [16] and uses a coflow’s total bytes sent
across all its flows to prioritize it periodically. Then scheduling
can be done independently at each end-host: coflows are
dispatched according to weighted fair queueing, and within
each priority simple FIFO is adopted. CODA [13] on the
other hand adopts machine learning to identify coflows without
application modifications.

Intuitively, CCT is determined solely by a coflow’s slowest
flow, i.e. the bottleneck flow; the other flows that finish earlier
does not contribute to this coflow’s CCT improvement, which
is essentially a form of bandwidth wastage. Specifically, since
existing information-agnostic schedulers deal with the member
flows of a coflow without coordination, though these flows
carry the same priority, the local resource contention they
experience at each end-host can be vastly different. As a result,
some flows may obtain more bandwidth and finish sooner as
their hosts do not have coflows with higher priorities, while
other flows may have less bandwidth and become stragglers.
This is clearly inefficient since the extra bandwidth for the fast
flows has no contributions to CCT and can be re-balanced to
improve the performance of the stragglers for other coflows,
or make the coflows with lower priorities run earlier at the
same host, and improve the overall average CCT.

To address this issue, we present a novel bottleneck-aware
non-clairvoyant coflow scheduler called Fai.1 The central chal-
lenge is, how to detect a coflow’s bottleneck flow and allocate
bandwidth to avoid wastage, without any prior information?
The flow with the smallest bandwidth in one scheduling period
may not be the bottleneck since its size is unknown, and
it may have much bandwidth in previous periods and have
few bytes left to send. Another strawman approach is to

1Fai means fast in Cantonese.

pick the flow with the smallest total bytes sent so far as the
bottleneck. This does not work well when the flows of a coflow
have rather different sizes, which are common in practice.
Fai relies on a simple and robust heuristic that combines the
two metrics: it selects the ones with the smallest total bytes
sent so far and the smallest bandwidth allocated currently as
the bottleneck flow(s). Fai then reduces the sending rates of
other flows (of the same coflow) to the bottleneck flow rate
to minimize the bandwidth wastage without degrading the
coflow’s performance. The reclaimed bandwidth is allocated
to other coflows following their priority levels, to improve the
network utilization and overall performance, e.g., minimizing
CCT and coflow makespan2. When no flow satisfies the above
criterion, Fai does nothing and continues to use the original
rates computed by existing coflow schedulers.

II. MOTIVATION

In this section, we use a toy example to illustrate the per-
formance loss of existing non-clairvoyant schedulers in §II-A,
thereby motivating the need to consider bottleneck flows. We
further demonstrate the potential gain of bottleneck-aware non-
clairvoyant scheduling using a Facebook workload in §II-B.

A. A Toy Example

(a) A non-blocking data center fabric

(b) Arrival times

P1

P2

P3

1 2 3 4 5 6
Time

(c) Aalo

P1

P2

P3

1 2 3 4 5 6
Time

(d) Bottleneck-Aware

Fig. 1: (a) A non-blocking data center fabric with 3 ingress
ports and 3 egress ports. There are 3 coflows in this example,
C1 in orange/light, C2 in blue/dark and C3 in black. The
numbers in the brackets on flows represent the units of data
on the corresponding link. Each port can transfer one unit of
data in one time unit. (b) Coflow arrival times for the three
coflows. (c) Aalo scheduling. (d) Bottleneck-Aware allocation.

We now use a toy example to demonstrate why state-of-
the-art non-clairvoyant coflow scheduler, Aalo, may not work
well due to the lack of consideration of bottleneck flows. In
the example, we abstract the network as a large non-blocking
switch with uplinks and downlinks connected to the end hosts

2Makespan is defined as the time elapsed to complete all submitted coflows.

(a) CDF of FRVD (b) CDF of Optimal NCCT

Fig. 2: CDFs of flow rate variance degree (FRVD) in Aalo
and optimal normalized CCT (NCCT) for Aalo against Fai.

as in Fig. 1(a) and bandwidth contention only occurs at the
edge (egress and ingress ports).

Suppose there are 3 coflows in the 3-machine data center
fabric. The sizes of their flows on each link are shown in
Fig. 1(a), and the arrival times are shown in Fig. 1(b). Fig. 1(c)
shows the scheduling results of Aalo. When C1 first arrives at
time 2 (C3 has already sent 4 units of data), it has the highest
priority, and its flow preempts C3 on P1 to fully occupy the
link. Similarly, when C2 arrives, its flow preempts C3 on P3

and uses the whole link. C1 and C2 share the link on P2 since
they both have the highest priority. At time 4, C1’s flow on
P1 completes and C2’s flow on P3 completes. Then C3 uses
the whole link until time slot 5 when its flows complete on
P1 and P3. C1 and C2 continue to share the link to P2 until
time slot 6. As a result, the CCTs for C1, C2 and C3 are 4,
4, and 5, respectively.

In fact, when C1 and C2 arrive, their flows get 0.5 unit
of bandwidth on P2 and 1 unit of bandwidth on P1 and P3.
Thus, the bottleneck for C1 and C2 is on P2. Though their
flows on P1 and P3 finish earlier, it does not improve their
CCT at all. Hence it is wasteful to allocate so much bandwidth
to them on P1 and P3. Instead, we can allocate bandwidth to
C1 and C2 by 0.5 on P1 and P3, so that they have the same
bandwidth as their bottleneck flows on P2. Fig. 1(d) shows
the corresponding scheduling results. C3’s CCT is improved
by 20% to 4 without hurting the other coflows at all.

B. Empirical Analysis
We now empirically quantify the degree of non-uniform

bandwidth allocation for flows within a coflow in Aalo as a
result of its local per-flow bandwidth allocation on different
hosts. We conduct a simulation run using Coflow-FB workload
and record each flow’s size and each coflow’s completion time
in Aalo. More details about the trace workload and settings
can be found in §IV-A. Based on the results, we obtain each
flow’s average rate and the flow rate variance degree (FRVD)
for each coflow, which is defined as the difference between the
largest and smallest flow rates for all flows within a coflow
normalized by its median flow rate. Fig. 2(a) shows the CDF of
FRVDs. We observe the average, median, 90%ile, and 99%ile
FRVD are 0.63, 0.33, 0.96, and 3.90, respectively. Note that
the Coflow-FB workload [6] reports that the member flows
have the same size for about 80% of its coflows. Thus the
FRVD results clearly demonstrate that it is common in Aalo

to allocate varying bandwidth to the flows of the same coflow.
Naturally, bottleneck flow always exists for each coflow and
excessive allocation for the non-bottleneck flows leads to
severe wastage.

We further quantify the performance gain that can be ob-
tained by allocating bandwidth in a bottleneck-aware manner.
To answer this, we run an ideal non-clairvoyant bottleneck-
aware scheduler as follows: Firstly Aalo is used to schedule
coflows in a non-clairvoyant way, and after all coflows finish
we identify each coflow’s true bottleneck flow and its average
rate. We then re-adjust the rates of all other flows to the
bottleneck rate of this coflow without affecting its CCT, and
allocate the reclaimed bandwidth to other coflows following
their priority levels to reduce their completion time. This repre-
sents the potential CCT gain for Fai. Fig. 2(b) shows the ideal
scheduler’s normalized CCT against Aalo (CCT in Aalo / CCT
in ideal). Compared to Aalo, ideal bottleneck-aware scheduling
can improve the average, 50%ile, 90%ile, and 99%ile CCT by
4.98⇥, 2.16⇥, 20.39⇥, and 40.25⇥, respectively. The results
indicate that there is much performance gain for Fai to realize
compared to state of the art.

III. DESIGN

In general, Fai builds upon LAS scheduling, and relies on
a bottleneck detection mechanism and bandwidth allocation
algorithms to schedule coflows in addition.

A. Overview

Fig. 3 shows the overview of Fai. There are two main
components in the system:

• Coordinator. The coordinator is a logically centralized
entity; in practice it can be an independent process on a
dedicated CPU core, or multiple processes on machines
to manage a large-scale data center. It performs coflow
scheduling every O(10) milliseconds [6], [7], [13], which
is called a scheduling epoch (or period). At each epoch,
the coordinator collects the coflow information from the
Fai daemons, updates coflow status, and assigns them
to different priority queues based on their total bytes
sent. It then computes per-flow bandwidth allocation and
dispatches the decisions to the Fai daemons on end hosts.

• End hosts. Each end host in Fai is a coflow sender and
receiver. It runs a local daemon to monitor the runtime
status of active coflows and reports the information to the
coordinator at each scheduling epoch. They also enforce
bandwidth allocation by using rate limiters on individual
flows. Scalable software rate limiters have been deployed
in production [17] and we omit the related discussion in
this paper.

The Fai coordinator has a small number of n queues in total,
from the highest priority queue Q1 to the lowest priority queue
Qn as shown in Fig. 3. We adopt the coflow size thresholds
experimentally determined based on a production workload
[6]. The threshold to demote coflows is Qi = Q1⇥10i where
i 2 [1, n� 1] and Q1 = 10MB. There are 10 priority queues.

Coflow
information

Flow
bandwidth

Q1

...

Q2

Qn

Bottleneck-Aware
Bandwidth Allocation

Fai Coordinator

End host

Rate limiter

Discretized LAS scheduling

Fai
Daemon NICCoflows

Fig. 3: Fai overview

Algorithm 1 Initial Allocation

1: for L 2 {LI}
S
{LE} do

2: Lbw = Lcapacity

3: Update total weight: W =
P

Qi.weight

4: for i = 1 to n do

5: Qi.bw = Lbw ⇤Qi.weight/W

6: for i = 1 to n do

7: for Cj 2 Qi do

8: for fk 2 Cj do

9: fk.bw = Fair-sharing Qi.bw

10: L
I
bw = L

I
bw � fk.bw

11: L
E
bw = L

E
bw � fk.bw

12: Qi.bw = Qi.bw � fk.bw

B. Bandwidth Allocation

With the coflow priority, bandwidth allocation in Fai is
performed in three steps, including (1) initial allocation, (2)
bottleneck detection and bandwidth update, and (3) remaining
bandwidth reallocation.
Step 1: Initial Allocation. Fai first allocates bandwidth
according to weighted fair sharing (WFQ) across all priority
queues. Within each queue, it uses FIFO scheduling. Algo-
rithm 1 shows the detail. Fai first sets the available bandwidth
on each sender and receiver link to the link capacity (lines
1 and 2). Then it allocates bandwidth according to WFQ
across all priority queues (lines 3 to 5). Next, starting from
the highest priority queue Q1, Fai picks a coflow according
to FIFO and on each link, fair-shares this queue’s available
bandwidth among all flows of this coflow (lines 6 to 9). It
finally updates the queue’s available bandwidth and the link’s
remaining bandwidth (lines 10 to 12).
Step 2: Bottleneck Detection and Bandwidth Update. As
quantified in §II-B, flows of a coflow can be assigned different
bandwidths on different links from the initial allocation in
Step 1. For a clairvoyant scheduler [7], it assumes that it has
complete prior information including the number of coflows,
the number of flows inside each coflow, and per-flow size. This
makes it easy to find the bottleneck flow which requires the
longest time to complete. However, for non-clairvoyant coflow
scheduling, none of the prior information is known.

An intuitive method to determine the bottleneck is to select

Algorithm 2 Bottleneck Detection and Bandwidth Update
1: for i = 1 to n do

2: for Cj 2 Qi do

3: min bytes = 1, min bw = 1, Fmin = ?
4: for fk 2 Cj do

5: if fk.bytes sent < min bytes then

6: min bytes = fk.bytes sent

7: if fk.bw < min bw then

8: min bw = fk.bw

9: for fk 2 Cj do

10: if fk.bytes sent == min bytes then

11: Fmin = Fmin
S
{fk}

12: for fk 2 Fmin do

13: if fk.bw == min bw then

14: for f 2 Cj do

15: f.bw = min bw

16: Update L
I
bw and L

E
bw

17: break

the flow(s) with the smallest total bytes sent until the current
epoch. This would work when all flows of the coflow have the
same size. This depends on the workloads. Although Coflow-
FB workload reports that about 80% coflows have their flows
with the same size, in practice it is not uncommon that flows
have varying sizes. For example, Varys [7] shows that flow
sizes in some coflows are highly skewed. In such cases, the
Min-Bytes approach does not work well. Another strawman
approach is to pick the flow(s) with the least bandwidth
after Step 1 as the bottleneck. Such a minimum bandwidth
method does not work well because the flow may have much
bandwidth in the previous epochs and have progressed a lot
with few bytes left to send.

Fai adopts a minimum-bytes-and-bandwidth (MBAB) ap-
proach that jointly considers the two metrics to identify the
bottleneck, which outperforms the two strawman approaches
significantly as we empirically show in our evaluation (§IV-B).
Effectively MBAB is less prone to false positives and false
negatives from using Min-Bytes and Min-BW. Algorithm 2
shows the logic of MBAB: Starting from the highest priority
queue Q1, Fai finds the least bytes sent and the least bandwidth
of all flows inside each coflow (lines 4–8), and updates the set
Fmin whose flows have the least bytes sent (lines 9–11). If
any flow in Fmin has the least bandwidth, it is the bottleneck
flow. We set the bandwidth of other flows in this coflow to
the bottleneck flow bandwidth, and the remaining bandwidth
of the corresponding sender and receiver links is updated as
well (lines 12–17). Otherwise, all flows’ bandwidth allocation
remains unchanged.
Step 3: Remaining Bandwidth Reallocation. From Step 2
there is extra bandwidth saved from withdrawing excessive
allocation to the non-bottleneck flows. We thus need to allocate
this saved bandwidth to coflows to improve their CCT. For this
purpose we utilize Algorithm 3 based on updated bandwidth
information from Algorithm 2. The bandwidth reallocation

Algorithm 3 Remaining Bandwidth Reallocation
1: for i = 1 to n do

2: for Cj 2 Qi do

3: for f 2 Cj do

4: for fk 2 f do

5: Lleft = min{LI
bw, L

E
bw}

6: Find the minimum L
min
left for f among all Lleft

7: for fk 2 f do

8: fk.bw = fk.bw + L
min
left

9: L
I
bw = L

I
bw � L

min
left

10: L
E
bw = L

E
bw � L

min
left

adopts strict priority scheduling. For each coflow, Fai iterates
through all its flows, checks the remaining bandwidth on each
local ingress and egress link (lines 4 and 5), and finds the
minimum remaining bandwidth L

min
left (line 6). As a result, all

member flows receive L
min
left bandwidth and the corresponding

ingress and egress links’ remaining capacities are updated
(lines 8 to 10).

IV. TRACE-DRIVEN SIMULATION

In this section, we evaluate Fai through trace-driven simu-
lation. We implement our scheduling logic in CoflowSim [18],
a coflow simulator written by authors of Aalo [6] and Varys
[7]. Our simulation addresses the following questions:

• How efficient is our MBAB heuristic for bottleneck de-
tection and bandwidth update? (§IV-B)

• How well does Fai perform compared to existing non-
clairvoyant coflow scheduler? (§IV-C)

• How far away is Fai from a clairvoyant coflow scheduler
with complete information? (§IV-C)

A. Setup

Topology. The data center fabric is modeled as a 150⇥150
non-blocking switch, where an ingress (egress) port corre-
sponds to a 1Gbps uplink (downlink) of a rack [6], [7], [13].
Methodology. To emulate realistic scenarios, we use the
production workload from Facebook, which we call Coflow-
FB [6], [7]. It has 526 coflows and is based on a one-hour
Hive/MapReduce trace collected from a 3000-machine, 150-
rack cluster. The workload contains coflow arrival information
and we directly generate coflows according to it. To simulate
various network loads, we vary the number of coflows arriving
to the network in one time slot (10ms in our simulation)
from 10, 20, 40, 80, to 160. Coflows arrive according to a
Poisson process continuously instead of only appearing at the
beginning of the time slot. Note that the original Coflow-
FB workload has coflow arrival time information, to simulate
various network loads, we modify the coflow arrival times
accordingly.
Schemes Compared. First, to demonstrate the efficiency
of the MBAB bottleneck detection heuristic, we compare it
against other design choices (Min-BW and Min-Bytes) ex-
plored in §III-B. Subsequently, we compare Fai with two

(a) Average normalized CCT (b) CDF of normalized CCT

Fig. 4: Comparison of the average normalized CCT and CDF
of the normalized CCT with network load 20 and 80.

well-known coflow schedulers: Aalo [6] and Varys [7]. As
explained, Aalo is a non-clairvoyant scheduler, and Varys is
a clairvoyant one that uses complete knowledge of a coflow’s
individual flows. Aalo, therefore, serves as the performance
baseline, while Varys the performance upper-bound.
Metrics Used. Our primary metric for comparison is the
improvement in coflow completion time (CCT). We define it
as the CCT under the compared scheme normalized by that
under Fai.

Normalized CCT =
Compared CCT
CCT under Fai

.

Clearly, if the normalized CCT of a scheme is greater than
one, Fai is faster than that scheme.

B. Effectiveness of MBAB

We first investigate the effectiveness of our key design
choice, the MBAB heuristic for bottleneck detection in §III-B.
We look at the normalized CCT, which is now defined as the
CCT under the compared heuristic normalized by that under
MBAB. Fig. 4 depicts the comparison results.

Fig. 4(a) shows MBAB’s average normalized CCT improve-
ment compared to Min-BW and Min-Bytes. We observe that
MBAB performs much better in all network loads. MBAB
reduces the average normalized CCT by up to 2.23⇥ over Min-
BW, and by up to 2.33⇥ over Min-Bytes. Across all network
loads, on average MBAB reduces normalized CCT by 37.72%
compared to Min-BW and 39.85% compared to Min-Bytes. We
also explore the distributions of normalized CCT. In Fig. 4(b),
we select the network load 20 (low load) and 80 (high load),
and plot the CDF of normalized CCT for them. We can see
that for the majority of coflows, MBAB provides improvements
over the other two bottleneck detection methods. Fai improves
performance of 52.85% and 51.33% of the coflows for network
load 20 and 80, respectively, compared to Min-BW and Min-
Bytes.

To summarize, MBAB performs more effectively than the
two strawman strategies, which justifies its effectiveness in
our design.

C. Overall Performance

We now investigate Fai’s overall performance.
We first look at the average CCT reduction provided by

Fai as shown in Fig. 5(a). Fai reduces the average normalized

(a) Average normalized CCT (b) CDF of normalized CCT

Fig. 5: Normalized CCT comparison against Aalo and Varys
and CDF of the normalized CCT with network load 20 and
80.

CCT by up to 2.23⇥, compared to Aalo. On average across
the loads, Fai reduces normalized CCT by 1.76⇥. Clearly,
Fai significantly outperforms state-of-the-art Aalo. This is ex-
pected as Fai detects the bottleneck flows and re-distribute the
abundant bandwidth that are otherwise used without improving
CCT in Aalo. We also evaluate the performance gap of Fai
with respect to clairvoyant scheduling represented by Varys.
Fig. 5(a) shows that Fai performs at most 64% and at least
18% worse than Varys. On average Fai is 40% worse.

Fig. 5(b) depicts the CDF of the normalized CCT under
different schemes for network load 20 and 80. Observe that
Fai substantially speeds up coflow completion over Aalo, and
delivers similar CCT with Varys for more than half of the
coflows. More than 84.38% and 73.39% coflows finish faster
than Aalo at the two loads, respectively. Specially, more than
7.81% and 12.81% coflows finish faster in Fai than Varys at
network load 20 and 80, respectively. This is because elephant
flows are largely delayed in presence of mice ones in Varys
compared to Fai.

V. TESTBED EXPERIMENTS

We prototype Fai in Scala and Python based on the open
source Aalo prototype [6].

A. Setup
Our testbed experiments are deployed in a cluster with 40

machines connected to a 1GbE switch. Each machine has two
2.4GHz Intel Xeon 8-Core E5-2630 v3 processors, a 64GB
DDR4 RAM, a 200GB SSD, and a quad-port Intel i350 GbE
NIC.
Workload. We generate three types of coflows as the workload
for testbed experiments. Each coflow has endpoints on all
40 machines with different communication patterns. Table I
summarizes the information of three coflows. In particular,
for coflow-A, we evenly divide its endpoints into 10 groups
and each group does an all-to-all shuffle, which performs 4⇥4
pattern communication. As a result, coflow-A consists of 160
flows. Coflow-B follows a pairwise one-to-one communica-
tion pattern between machine i and machine i + 20, where
1 i 20. Thus, it consists of 40 flows. Coflow-C also
includes 40 flows following the same communication pattern,
in which the communication happens between machine j and
machine j+10, where 1 i 10 and 21 i 30. The three

Coflows Comm. Pattern # of Flows Arrival Time (s)
Coflow-A all-to-all 160 0
Coflow-B pairwise one-to-one 40 0.5
Coflow-C pairwise one-to-one 40 1

TABLE I: Coflow information in our testbed.

Fig. 6: CCTs of three coflows in our 40-machine cluster.

coflows together have 240 flows, each of which is generated
with a random size between 50MB and 100MB. In addition,
coflow-A, coflow-B, and coflow-C arrive at 0s, 0.5s and 1s
sequentially.

B. Experiment Results
Fig. 6 depicts the CCTs of three coflows using Aalo, Varys,

and Fai. Fai is around 22.36% worse on average than Varys.
More importantly, compared to Aalo Fai reduces the CCTs of
coflow-A and coflow-B by 21.34% and 12.78%, respectively.
Besides, it reduces the makespan by 21.34%. Fai performs
worse than Aalo and Varys for coflow-C. We find that it is
because Fai’s MBAB bottleneck detection wrongly recognizes
non-bottleneck flows as bottleneck, and the true bottleneck
flow’s bandwidth is reduced in the subsequent bandwidth ad-
justment and reallocation steps. This further demonstrates that
correctly finding the real bottleneck is inherently difficult for a
non-clairvoyant coflow scheduler. Therefore, designing a more
efficient bottleneck flow detection strategy is an important
future direction.

VI. RELATED WORK

There has been much work on coflow scheduling. Here we
discuss related work other than Aalo [6] and Varys [7] which
have been discussed throughout this paper.

A series of work [5], [19] assumes that they know infor-
mation about coflows a priori. Stream [20] is a decentral-
ized scheduler, which utilizes many-to-one coflow patterns to
coordinate coflows in a distributed manner. Although recent
work has shown that it is possible to identify coflows and
their properties with reasonable accuracy for some applications
[13], in most production scenarios such prior information is
impossible to obtain as explained in §I. Like Fai, several non-
clairvoyant coflow schedulers have been developed to work
in more practical scenarios. Other than Aalo, CODA [13]
attempts to identify and schedule coflows without application
modifications and designs an error-tolerant scheduler, making
it applicable to many practical cases.

None of the above work considers adjusting the excessive
bandwidth allocation according to the bottleneck flow, which
is the focus of our work in this paper.

VII. CONCLUSION

We have presented Fai, a non-clairvoyant coflow scheduler.
Fai improves the performance of a coflow’s bottleneck without
affecting other flows. We implement Fai and evaluate it on a
40-machine cluster as well as using large scale trace-driven
simulations with production workloads. Both testbed experi-
ments and trace-driven simulations show that Fai outperforms
Aalo substantially. In the future, we will explore how well Fai
performs in more complicated scenarios.

REFERENCES

[1] J. Dean and S. Ghemawat, “MapReduce: Simplified Data Processing on
Large Clusters,” in Proc. USENIX OSDI, 2004.

[2] M. Zaharia, M. Chowdhury, T. Das, A. Dave, J. Ma, M. McCauley,
M. J. Franklin, S. Shenker, and I. Stoica, “Resilient Distributed Datasets:
A Fault-Tolerant Abstraction for In-Memory Cluster Computing,” in
Proc. USENIX NSDI, 2012.

[3] M. Isard, M. Budiu, Y. Yu, A. Birrell, and D. Fetterly, “Dryad:
Distributed Data-parallel Programs from Sequential Building Blocks,”
in Proc. ACM EuroSys, 2007.

[4] M. Chowdhury, M. Zaharia, J. Ma, M. I. Jordan, and I. Stoica, “Manag-
ing Data Transfers in Computer Clusters with Orchestra,” in Proc. ACM
SIGCOMM, 2011.

[5] F. R. Dogar, T. Karagiannis, H. Ballani, and A. Rowstron, “Decentralized
Task-aware Scheduling for Data Center Networks,” in Proc. ACM
SIGCOMM, 2014.

[6] M. Chowdhury and I. Stoica, “Efficient Coflow Scheduling Without Prior
Knowledge,” in Proc. ACM SIGCOMM, 2015.

[7] M. Chowdhury, Y. Zhong, and I. Stoica, “Efficient Coflow Scheduling
with Varys,” in Proc. ACM SIGCOMM, 2014.

[8] M. Chowdhury and I. Stoica, “Coflow: A Networking Abstraction for
Cluster Applications,” in Proc. ACM HotNets, 2012.

[9] M. Grzegorz, H. A. Matthew, J. C. B. Aart, C. D. James, H. Ilan, L. Naty,
and C. Grzegorz, “Pregel: A System for Large-Scale Graph Processing,”
in Proc. ACM SIGMOD, 2010.

[10] M. Zaharia, A. Konwinski, A. D. Joseph, R. Katz, and I. Stoica,
“Improving MapReduce Performance in Heterogeneous Environments,”
in Proc. USENIX OSDI, 2008.

[11] G. Ananthanarayanan, A. Ghodsi, A. Wang, D. Borthakur, S. Kandula,
S. Shenker, and I. Stoica, “PACMan: Coordinated Memory Caching for
Parallel Jobs,” in Proc. USENIX NSDI, 2012.

[12] G. Ananthanarayanan, S. Kandula, A. Greenberg, I. Stoica, Y. Lu,
B. Saha, and E. Harris, “Reining in the Outliers in Map-Reduce Clusters
using Mantri,” in Proc. USENIX OSDI, 2010.

[13] H. Zhang, L. Chen, B. Yi, K. Chen, M. Chowdhury, and Y. Geng,
“CODA: Toward Automatically Identifying and Scheduling COflows in
the DArk,” in Proc. ACM SIGCOMM, 2016.

[14] T. Condie, N. Conway, P. Alvaro, and J. M. Hellerstein, “MapReduce
Online,” in Proc. USENIX NSDI, 2010.

[15] C. J. Rossbach, Y. Yu, J. Currey, J.-P. Martin, and D. Fetterly,
“Dandelion: a Compiler and Runtime for Heterogeneous Systems,” in
Proc. ACM SOSP, 2013.

[16] I. A. Rai, G. Urvoy-Keller, and E. W. Biersack, “Analysis of LAS
Scheduling for Job Size Distributions with High Variance,” in Proc. ACM
SIGMETRICS, 2003.

[17] A. Saeed, N. Dukkipati, V. Valancius, V. The Lam, C. Contavalli,
and A. Vahdat, “Carousel: Scalable Traffic Shaping at End Hosts,” in
Proc. ACM SIGCOMM, 2017.

[18] “CoflowSim,” https://github.com/coflow/coflowsim.
[19] S. Agarwal, S. Rajakrishnan, A. Narayan, R. Agarwal, D. Shmoys, and

A. Vahdat, “Sincronia: Near-Optimal Network Design for Coflows,” in
Proc. ACM SIGCOMM, 2018.

[20] H. Susanto, H. Jin, and K. Chen, “Stream: Decentralized Opportunistic
Inter-Coflow Scheduling for Datacenter Networks,” in Proc. IEEE ICNP,
2016.

