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ABSTRACT
Modern data analytics systems use long-running executors to run
an application’s entire DAG. Executors exhibit salient time-varying
resource requirements. Yet, existing schedulers simply reserve re-
sources for executors statically, and use the peak resource demand
to guide executor placement. This leads to low utilization and poor
application performance.

We present Elasecutor, a novel executor scheduler for data an-
alytics systems. Elasecutor dynamically allocates and explicitly
sizes resources to executors over time according to the predicted
time-varying resource demands. Rather than placing executors us-
ing their peak demand, Elasecutor strategically assigns them to
machines based on a concept called dominant remaining resource
to minimize resource fragmentation. Elasecutor further adaptively
reprovisions resources in order to tolerate inaccurate demand pre-
diction. Testbed evaluation on a 35-node cluster with our Spark-
based prototype implementation shows that Elasecutor reduces
makespan by more than 42% on average, reduces median applica-
tion completion time by up to 40%, and improves cluster utilization
by up to 55% compared to existing work.

CCS CONCEPTS
• Computer systems organization → Distributed architec-
tures; • Software and its engineering → Scheduling; Cloud
computing; • Theory of computation → Approximation algo-
rithms analysis;
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1 INTRODUCTION
Data analytics systems are widely used to process big data [1–
3, 5, 22, 34, 37, 39, 50, 65, 77, 79]. The work�ow of an analytics
application can be expressed as a DAG (Directed Acyclic Graph),
which is composed of di�erent stages of processing. Each stage runs
a number of tasks on worker machines, and each task performs the
same computation on di�erent partitions of data [20, 22, 31, 32, 48,
52, 54, 55, 79].

Resource scheduling is critical in data analytics systems. Many
resource schedulers have been developed for various objectives,
such as fairness, cluster utilization, application completion time, etc.
[19, 24, 26, 27, 27, 31, 35, 38, 40, 46, 49, 56, 60, 66, 67, 69, 80]. Most
are developed for a task-based execution model. They assume a
task, which corresponds to one stage of the application DAG and is
an individual process, is the basic execution unit and therefore the
basic scheduling unit. This holds in general for batch processing
systems like Hadoop [2] and cluster schedulers such as Yarn [67].
In Yarn for instance, tasks run in individual “containers” where Java
virtual machines (JVMs) are spawned. A “container” runs one task
only and is shut down after the task�nishes.

However, in-memory analytics systems such as Spark [3] and
Storm [4] rely on a di�erent executor-based model [44, 71]. An ex-
ecutor is a long-running JVM process that executes an application’s
entire DAG [7, 79]. Once an executor is launched, the scheduler can
dispatch di�erent tasks to it. This enables data reuse across tasks
and signi�cantly reduces the overhead of launching tasks which
is critical for fast in-memory processing [55, 79]. Executor-based
systems usually adopt task-based resource schedulers for simplicity.
This, however, leads to various performance and e�ciency prob-
lems as a result of the un�tting assumptions.

First, since the resource usage of a task is roughly constant, most
schedulers use static allocation [19, 21, 29, 31, 35, 49, 56, 57, 60, 67].
However, executors naturally exhibit time-varying resource usages
since they run the application’s entire DAG. As we will show in §2,
an executor’s peak-to-trough resource usage can be as high as 409x
for extended periods of time. Existing schedulers then have to use
peak demands to reserve resources [21, 31, 35, 67] which leads to
cluster underutilization and degradedmakespan1. Applicationsmay
also have to wait longer for enough resources to become available,
resulting in prolonged completion times and poor user experience.
Figure 1 illustrates this using a toy example.

Recent work such as Morpheus [66] addresses this by dynami-
cally reserving resources and adjusting the number of executors
as the application progresses. Also, some work [29, 31–33, 40] tries
to increase task parallelism within an executor. That is, we keep

1Makespan measures the total time used to complete all applications.
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Figure 1: A toy example to demonstrate the drawbacks of
static allocation. The host’s capacity is 8, and applications
are submitted at time t0 and their resource demand time
series are shown. In (a), static allocation runs all three ap-
plications sequentially, since their peak demands prevent
them from running concurrently. In (b), elastic allocation
allows them to run as long as their demand time series can
be packed together, and reduces the makespan by 50%.

the executor resource allocation� xed, and increase or decrease the
number of tasks run in parallel within the executors. Both methods
are shown to improve resource utilization. However, they do not
fundamentally address the problem, because each executor is still
allocated a� xed bundle of resources during the entire time, which
still incurs underutilization or overallocation of di�erent resources
in face of time-varying multi-resource demands across di�erent
stages.

Besides resource allocation, a scheduler also needs to carefully
assign executors to machines in a cluster. Usually this is done
using the executor’s peak demands and machine’s remaining ca-
pacity [35, 67, 69]. Such an approach does not precisely capture
the time-series utilization of the worker machines and executors
and creates fragmentation, when resources are idle but cannot be
used to schedule executors that are ready. We give two examples
of fragmentation: (1) An application’s peak demand may exceed
a machine’s remaining capacity at the moment, and it cannot be
placed on this machine. Yet, it is possible that the peak demand
only happens in a later time, at which point the machine will have
enough capacity to run it (because some applications will have
�nished by then); (2) An application with a very short period of
high peak demand is selected to run� rst, preventing applications
with stable demand from being scheduled on the same machine.

To address these problems, we propose Elasecutor, a novel ex-
ecutor scheduler that exploits time-varying resource demands for
resource allocation and executor assignment. Elasecutor consid-
ers multiple resources: CPU, memory, network, and disk I/O. It
exploits the recurring nature of many applications in production
[15, 17, 31, 49, 66], and predicts the resource demands of applica-
tions over its lifetime. Elasecutor elastically allocates resources to
executors according to the predicted time series of demands in
order to reduce underutilization. It then packs executors strategi-
cally onto machines to minimize fragmentation among multiple
resources and improve makespan.

We make the following contributions in this paper.
• We make a case for elastic executor scheduling (§2). We
show through measurements with real workloads that Spark
executors exhibit signi�cant time-varying resource usage
patterns (§2.1). We further experimentally establish the pre-
dictability of executor’s demand time series (§2.2).

• We design a new scheduler called Elasecutor (§3), that allo-
cates time-varying resources to executors and assigns them
to machines based on the predicted demand time series (§3.2).
To do so, Elasecutor relies on a concept called dominant re-
maining resource to search for executors whose demand time
series best matches the time series of a machine’s available re-
sources. Elasecutor also reprovisions resource dynamically at
runtime to compensate for possible prediction errors (§3.3).
• We implement Elasecutor on Spark (§4) and present a real-
istic performance evaluation on a 35-machine cluster (§5).
Experiments with real workloads show that Elasecutor sub-
stantially improves performance. Compared to existing solu-
tions such as Tetris [31], Elasecutor reduces makespan by up
to 63%, reduces the median application completion time by
up to 40%, and improves resource utilization by up to 55%.

2 MOTIVATION
Wemotivate our work by highlighting the limitations of peak based
static executor allocation and assignment commonly used in current
systems (§2.1). We also show that the executor resource usage can
be fairly well predicted when the workloads are recurring (§2.2).

2.1 Need for an Elastic Scheduler

Workloads Terasort K-means LR PageRank
Dataset Size 32.0GB 37.4GB 37.3GB 2.8GB

Table 1: Input dataset size for pro�ling the four Spark work-
loads from the HiBench bigdata benchmark suite [10]. Each
workload runs with 20 executors, each using at most 3 cores
and 8GB memory.

Executors are the basic scheduling unit in Spark and similar
systems. Each application has dedicated executors to run its tasks
[7]. Current executor schedulers [3, 21, 35, 67] work in virtually the
sameway as task schedulers for systems like Hadoop [2]. Users need
to specify the resource demands of an executor, so the scheduler can
make resource reservations. The resources allocated to an executor
are static and released only after the application� nishes. Thus peak
resource demands have to be used for allocation.

We argue that current schedulers can lead to severe resource
underutilization because application resource usage varies greatly
in di�erent stages of data processing [31, 54, 66, 74, 75]. To demon-
strate this, we pro�le the resource usage of executor processes us-
ing several typical Spark workloads as shown in Table 1, including
Terasort, K-means, Logistic Regression (LR), and Pagerank. These
workloads are commonly used in existing work [10, 33, 36, 54, 55].
We develop a monitoring module on Spark to collect CPU, memory,
network I/O, and disk I/O usage of an executor. The measurements
are done on our 35-machine testbed described in §5.1.

From Figure 2, we observe that the executor resource usage
exhibits signi�cant temporal variations. CPU usage varies all the
way from only 4% to 100% for all applications. Similarly, memory
usage ranges from 500 MB to nearly 6.8 GB for K-means. The
network I/O varies from almost 0 Gbps to ⇠4 Gbps for LR, and disk
I/O from almost 0 MB/s to ⇠190 MB/s for Terasort, respectively.
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Applications Terasort K-means LR Pagerank
CPU Memory Net Disk CPU Memory Net Disk CPU Memory Net Disk CPU Memory Net Disk

P/A 1.8 1.7 6.2 1.5 1.7 1.2 11.5 5.6 2.1 1.4 5.5 6.1 3.9 1.3 20.2 9.1
P/T 60 3.3 237 6.1 75 6 53 100 50 12.0 409.6 42.5 50 11.5 119 50

DP/T (%) 22.4 1.5 1.5 10.7 15.4 3.9 1.9 1.9 15.0 3.7 0.6 6.8 1.5 21.8 0.2 0.8
DHP/T (%) 36.5 67 10.3 73.2 51.9 90.4 5.8 13.5 40.4 91.0 19.5 11.3 23 84 2.5 7.1

Table 2: Statistical analysis of the time-varying resource usage of executors for the four Spark workloads (P/A = Peak Us-
age/Average Usage, P/T = Peak Usage/Trough Usage, DP/T = Duration of Peak Usage/Total Runtime, DHP/T = Duration for
exceeding Half of Peak Usage/Total Runtime).

Figure 2: Heat maps of resource usages for four Spark
workloads. The resource usages are normalized to the high-
est value of the executor. For all applications, the highest
CPU usage is 3 cores; Terasort, K-means, Pagerank, and LR
have 5.9GB, 6.8GB, 6.1GB, and 6.5GB highest memory usage;
2.4Gbps, 0.53Gbps, 0.62Gbps, and 4Gbps highest network us-
age; and 181MB/s, 103MB/s, 96MB/s, 170MB/s highest disk
I/O usage.

More than half of the time an executor actually uses very little
resources. Table 2 further shows our detailed analysis for executor’s
resource usage. We can see that the peak-to-trough ratio is high,
ranging from 3.3 to 409.6. The period of peak resource usage takes
up at most 22.4% of total runtime, and more than half of the runtime
the resource usage actually falls below 50% of the peak except for
memory.

Therefore static allocation using peak demands would clearly
cause severe resource wastage and performance issues.

Some recent work [35, 66] has considered dynamically adjust-
ing the number of executors according to the workload in order
to improve utilization. Yet each executor still gets a� xed bundle
of resources (CPU and memory) during the application’s entire
runtime. As observed in Figure 2, the usages of di�erent resources
do not correlate strongly. Thus such an approach does not fun-
damentally solve the over-allocation issue. Moreover, they only
consider CPU and memory, and lack control over shared network

and disk I/O resources. This results in possibly severe contention of
shared resources which may then lead to underutilization of other
resources.

2.2 Predictability of Resource Usage Time
Series

To design an elastic executor scheduler, we need to have prior
information about the time series of resource demands for executors.
We now show that such information can be fairly easily predicted
in practice.

Recent studies report that many production analytics workloads
are recurring, such as running the same queries periodically on
new data [15, 17, 31, 49, 66]. Further, the running times of the
workloads are mostly constant given the same amount of input
data and resources [15, 26, 31, 52, 66, 76]. Hence we can predict
an executor’s future resource requirements based on pro�ling its
previous runs.

To see this, we measure eight workloads each with three input
dataset sizes shown in Table 3. We vary the number of CPU cores
from one to� ve and memory from 2GB to 10GB correspondingly
[11], creating� ve di�erent resource pro�les. Then for each appli-
cation (a workload with certain dataset size and CPU and memory
setting), we run a resource pro�le� ve times, each time with dif-
ferent datasets of the same size. Other settings are the same as in
§2.1. We collect the completion times of each stage and executor’s
peak resource usage in each stage, then calculate the coe�cient of
variation (CoV) over the� ve runs. Figure 3 shows the cumulative
distribution of CoVs for per-stage execution time and per-stage
peak resource usage. To make it clearer, we also use Table 4 to show
the corresponding statistical analysis of CoVs. We can see that CoVs
are in general smaller than 14% and each stage’s execution time is
quite stable (90%ile CoV is less than 5.5%), as a CoV value less than
1 is considered to be low variance [26].

Therefore, for most recurring workloads it is accurate enough
to use the pro�ling results from previous runs with same resource
setting to represent the resource demands. For workloads with new
settings, we can also build a prediction model [17, 23, 26, 68, 75] to
infer their time-series resource usage, which we detail in §4. Note
that for new applications, we need to collect data for several runs
before we can predict the resource demand time series. Again given
that most workloads are recurring, we believe this does not a�ect
the usability of our system.
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Workloads Sort WordCount Terasort Bayes K-means LR PageRank NWeight
Dataset 1 3.1G 3.1G 3.2G 1.8G 3.7G 7.5G 1.7M 37.5M
Dataset 2 30.6G 30.6G 32G 3.5G 18.7G 22.4G 247.9M 294.5M
Dataset 3 286.8G 305.9G 320G 70.1G 37.4G 37.3G 2.8G 2.7G

Table 3: Three types of input dataset sizes for the eight workloads of the HiBench bigdata benchmark suite [10].

Figure 3: The CDFs of coe�cient of variations (CoVs) for per-
stage execution time (SET) and resource peak usage of each
executor over� ve runs for each of the eight workloads with
di�erent settings on CPU core and input data size shown in
Table 3. Each run uses a di�erent input dataset.

CoV Statistics (%) Percentiles
10th 50th 90th 99th

SET 0.7 2.6 5.5 9.1
CPU 0 0.3 0.6 0.7

Memory 3.1 5.6 8.6 11.0
Network 2.4 4.2 7.9 13.4
Disk I/O 2.5 2.9 6.8 12.9
Table 4: Statistical analysis of CoVs.

3 DESIGN
We now present the design of Elasecutor in this section. We start by
presenting the system overview in §3.1. We then explain in detail
the elastic executor scheduling algorithm in §3.2, which is the core
contribution of the design. Lastly, we discuss in §3.3 how Elasecutor
uses dynamic reprovisioning at runtime to minimize the impact of
prediction errors in inferring the executor’s resource demand.

3.1 Overview
Elasecutor is an executor resource scheduler for data analytics
systems. It predicts executors’ time-varying resource demands (step
1 in Figure 4), collects workers’ available resources (step 2), assigns
executors to machines to minimize fragmentation (steps 3 and
4), elastically allocates resources (step 5), and leverages dynamic
reprovisioning for better application QoS (steps 6 and 7).
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Figure 4: Elasecutor overview (key components are high-
lighted).

We explain several key components here.
Monitor Surrogate. Elasecutor employs a monitor surrogate at
each worker node to continuously monitor the resource usage of
executors in real-time. It collects the process-level CPU, memory,
network I/O, and disk I/O usage, and reports the time series pro�les
to the resource usage depository (RUD) at the master node via RPC.
The information is then used to build machine learning models to
predict executor resource time series. The monitor surrogate also
reports the node’s future available resources to the RUD. Moreover,
it monitors executor progress to see whether reprovisioning should
be triggered due to signi�cant prediction errors.
Resource Usage Depository (RUD). The RUD runs as a back-
ground process at the master node communicating with monitor
surrogates and collecting information at each heartbeat of 3s. For
simplicity we use a single master node and one RUD process, which
is su�cient in our testbed evaluation. We can scale the RUD to mul-
tiple cores or multiple masters for large-scale deployment following
many similar designs in distributed control plane [43], which is
beyond the scope of this paper.
SchedulingModule.The schedulingmodule decides how resources
should be allocated to executors and which executors should be
assigned to machines. It obtains an application’s demand time se-
ries from the prediction module which we will introduce shortly. It
then packs executors to machines across multiple resource types, in
order to avoid overallocation and minimize fragmentation through-
out the executor’s lifetime. For this purpose, we design a scheduling
algorithm based on a novel metric called dominant remaining re-
source (DRR)which is detailed in §3.2. Once a scheduling decision is
made, the selected worker IDs along with the executor IDs are sent
to Spark’s resource manager [7], which instructs the corresponding
workers to launch the executors.
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Allocation Module. This module explicitly and dynamically sizes
the resource bundles to the executor process according to the
resource manager’s instructions. Through this, Elasecutor imple-
ments elastic allocation based on time-varying demands, which is
illustrated in detail in §4.
Reprovisioning Module. Dynamic reprovisioning mainly deals
with cases when the executor’s actual resource usage deviates sig-
ni�cantly from the predicted time series, which is unavoidable in
practice. When an executor’s progress is detected by the monitor
surrogate to be slower than expected, the reprovisioning module
is activated to calculate extra resources needed to make up for the
slowdown. The corresponding algorithm is discussed in §3.3.
Prediction Module. Finally, the prediction module runs as a back-
ground process at the master node. It continuously fetches executor
resource pro�les from the RUD to train a prediction model for ap-
plication’s resource demand time series. Many machine learning
and time series analysis techniques can be used for this purpose,
which is not the focus of this paper. §4 provides more information
about the prediction algorithm we currently use.

3.2 Elastic Executor Scheduling
The foremost challenge Elasecutor faces is how to elastically sched-
ule executors with their multi-resource demand time series. We
explain our solution to this challenge here.

We focus on recurring applications which are common in pro-
duction settings [17, 31, 49, 66, 68]. When an application request
is submitted, it speci�es the number of executors and their con-
�gurations. Elasecutor predicts the per-executor resource demand
time series based on such information and the past runs of this
application. Elasecutor strives to satisfy the application’s request
completely, instead of scaling up or down the number of executors
based on some fairness criteria. This is because users value perfor-
mance consistency or predictability much more than fairness in
practice [66]. In cases when resources are insu�cient applications
will simply wait.

3.2.1 An Analytic Model. We begin with an analytic model to
capture the problem.

In our model, we consider four resources: CPU, memory, network
I/O, and disk I/O. For each resource r , we denote its capacity on
machine j as Crj . The per-executor demand of application i on
resource r is Dr

i (t
0) when it is running at t 0 into its lifetime. Once

started, application i runs for Ti time slots, and the number of
executors required is Ni . All these are known to the scheduler.
Let xi (t ) be the decision variable for scheduling, i.e. xi (t ) = 1 if
application i is running at time slot t , and let ti denote the timewhen
application i starts. Let �i j be the decision variable for executor
assignment. That is, �i j indicates the number of executors assigned
on machine j for application i .
Constraints: First, we assume that applications cannot be paused
or preempted once scheduled, which is consistent with prior work
[31, 32, 66]. Thus,

xi (t ) =
8><>:
1, ti  t  ti +Ti ,

0, otherwise,
8i . (1)

Second, the cumulative resource usage on a machine at any given
time t cannot exceed its capacity. Each executor’s resource alloca-
tion is exactly equal to the predicted demand Dr

i (t �ti ) for resource
r when it has been running since ti (without interruption). Thus,

X

i
xi (t )�i jD

r
i (t � ti )  C

r
j , 8r , t , j . (2)

The scheduler always allocates exactly Ni executors for application
i as stated in the beginning of §3.2.

X

j
�i j = Ni , 8i . (3)

Objective Function and Analysis. The objective of the schedul-
ing algorithm is to minimize the makespan across all applications.
Under a schedule {ti }, application i �nishes at ti + Ti , and the
makespan is maxi (ti + Ti ). Thus the scheduling problem can be
formulated as the following:

min
ti

max
i

(ti +Ti ) (4)

s.t. (1), (2), (3).

It is also possible to use other objective functions, such as applica-
tion completion time, in our formulation.

Finding an optimal schedule to the above problem (4) is di�cult.
The objective function and constraints (2) are nonlinear, which
makes the problem computationally expensive to solve. Inspite
of ignoring the objective function and the time-varying nature of
resource demand, the problem of packing multi-dimensional balls
(executors) to minimum number of bins (machines) is APX-Hard
[64, 72]. Moreover, what we have here is an o�ine setting. The
online version where applications arrive dynamically is even more
di�cult to solve with reasonable competitive ratio. Therefore, most
prior work for the packing problems relies on heuristics.

Clearly, makespan would be minimized if all available resources
along time could be utilized by applications seamlessly. Naturally,
the basis for minimizing makespan is to avoid resource underutiliza-
tion andminimizemachine-level resource fragmentation. Therefore,
Elasecutor aims to schedule executors to the best� tted machine in
order to minimize multi-resource fragmentation.

We now introduce our heuristic scheduling algorithm.

3.2.2 Packing Executors with MinFrag. A well-known heuristic
to one-dimensional packing problem is Best Fit Decreasing (BFD).
BFD proceeds by repeatedly matching the largest ball that can�t
in the current bin until no more balls� t, then open a new bin. Intu-
itively, this approach reduces fragmentation and thus the number
of bins used. BFD requires no more than 11

9 OPT + 1 bins, where
OPT is the optimal number of bins [28].

Our heuristic MinFrag extends BFD, by transforming the multi-
dimensional (and time-varying) bin packing problem into the classic
one-dimensional problem. Such a transformation relies on a metric
called dominant remaining resource (DRR), which we illustrate�rst.
DRR.TheDRR of amachine is de�ned similar to dominant resource
of a job in [29]. For a given machine, we� nd the earliest time t at
which an executor, among those running on this machine, will�nish
according to the predicted demand time series. We then compute
machine j’s average remaining resource over time for the period
up to t , which can be denoted as R (⇤, j, t )/C (⇤, j, t ) for resource
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Figure 5: An illustration example for DRR. We just use two
kinds of resources as an example. Three executors running
on machine 1 consume CPU and memory variously over
their lifetime. They all start to run at time t0 and stop at time
t1, t2, and t3, respectively, and we assume machine 1’s CPU
andmemory capacity are 8 and 6. Elasecutor calculates DRR
at t1, which is 1/4 in this case.

Algorithm 1 MinFrag pseudo code
1: when a heartbeat received from machine j
2: update AR (j )
3: while there are pending executors and AR (j ) > 0 do
4: for each pending executor i do
5: if RD (i ) < AR (j ) then
6: compute � (i, j )
7: select i⇤ = argmini � (i, j )
8: launch executor i⇤ on j
9: update AR (j ) and � (j )

Notation Explanation
AR (j ) Time-series of future available resource at machine j
RD (i ) Time-series of resource demands of executor i
� (j ) DRR of machine j
� (i, j ) Updated DRR of machine j when executor i is placed on it

Table 5: Notations in MinFrag.

⇤. R (⇤, j, t ) is the integral of the amount of remaining resource
along the time dimension up to t , and C (⇤, j, t ) is the integral of
total capacity up to t . The machine j’s DRR is then the maximum
remaining resource among all types.

Figure 5 shows an example. We select t1 as the time point to
calculate DRR for machine 1. R (CPU,1,t1 )C (CPU,1,t1 ) = 1/4 and R (Mem,1,t1 )

C (Mem,1,t1 ) =

1/6, and its DRR is simply 1/4.
Note we use themaximum remaining resource, not theminimum,

because it better re�ects machine utilization. If a machine’s maxi-
mum remaining resource is 10%, then utilization of all resources is
at least 90%. However if a machine’s minimum remaining resource
is 10%, utilization of some resources may still be lower than 90%.
Minimum remaining resource re�ects a machine’s ability or po-
tential to run executors, which is important if our objective is to
minimize machine utilization.
MinFrag. As explained, MinFrag is based on BFD. On a high level,
MinFrag works by iteratively assigning the “largest” executor to
a machine that yields the minimum DRR in order to maximize
utilization and improve makespan. We illustrate it in detail now.

Algorithm 1 shows MinFrag, and Table 5 lists the notations used
here. When a heartbeat is received from a machine j, MinFrag
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(c) Resource demands of executor 2

Figure 6: An illustration example of MinFrag. (a) The re-
maining resources of machine j until time t0 + T , when a
running executor will complete its execution. (b) The time-
series resource usage of executor 1 which is expected to�n-
ish at time t0 + 0.875T . (c) The time-series resource usage of
executor 2 which is expected to� nish at time t0+1.125T . The
capacities ofmachines are: 16 cores for CPU, 64 GB formem-
ory, 10 Gbps for network, and 500MB/s for disk I/O.

updates its available resources AR (j ) and then repeatedly does the
following. It identi�es if there is any executors that can run with
enough resources on the machine. If yes, it computes the machine’s
DRR � (i, j ) if the executor was placed on it. Then among all eligible
executors, MinFrag chooses i⇤ that minimizes � (i, j ), i.e. the largest
executor. It updates the placement result, the machine’s DRR � (j ),
and available resource AR (j ). It then repeats the process until all
executors are scheduled or there are no more available resources
on the machine for any pending executor to run.

We use an example in Figure 6 to illustrate how MinFrag works.
Figure 6a shows the machine’s remaining capacity up to time T ,
when a running executor will complete its execution. There are
two executors to schedule, and their demand time series are shown
in Figures 6b and 6c, respectively. If executor 1 is assigned to the
machine, t0 + 0.875T is the time point for calculating DRR, and
the DRR � (1, j ) = max{ 53112 , 165448 ,

3
70 ,

6
35 } = 53

112 . If executor 2 is
assigned to the machine, t0 + T is the time point for calculating
DRR, and the DRR � (2, j ) = max{ 1332 , 43128 , 110 , 120 } = 13

32 . MinFrag
then schedules executor 2 to run which minimizes DRR and thus
maximizes utilization in this case. After taking executor 2, this
machine does not have any network bandwidth and thus cannot
take any more executors at the moment.

Some may argue that we can compute a score for each resource
based on its remaining capacity, and convert the vector into a scalar
value for comparison across candidate executors (say based on the
Euclidean norm). However, the values for di�erent resources have
di�erent units which makes such comparison irrelevant. Consid-
ering the remaining resource at its face value does not faithfully
represent the degree of fragmentation as machines may have dif-
ferent capacities. The ratio between remaining resource and its
capacity can represent actual fragmentation. Our evaluation results
in §5.5 corroborate our argument.
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3.3 Dynamic Reprovisioning
It is di�cult to perfectly predict the time-varying resource de-
mands due to many exogenous factors, such as infrastructure is-
sues (e.g., hardware replacements, driver updates, etc.) and appli-
cation issues (changes in size and skew of input data, changes in
code/functionalities, etc.). Thus we design a dynamic reprovision-
ing mechanism that adjusts resource allocation online to tolerate
prediction errors in Elasecutor.

Reprovisioning is triggeredwhen an executor’s progress is longer
than � times the expected execution time of a processing stage of
the application’s DAG. We set � to 1.1, which is experimentally de-
termined to balance application performance and resource wastage.

Given reprovisioning is required, we wish to� nd out the ac-
tual resource demand of the application now. Elasecutor does so
by temporarily allocating all remaining resource of the machine
to this executor for one monitoring period (3s), and observe the
executor’s resource usage in this period. Suppose the actual usage
of the executor i is u (i, ⇤) during this period for resource ⇤, and
the predicted demand is p (i, ⇤). Elasecutor then scales the alloca-
tion proportional to u (i, ⇤)/p (i, ⇤) across all resources for all the
remaining processing stages of the executor, and returns the re-
maining resources to the machine. This heuristic allows Elasecutor
to quickly correct resource allocation without causing many missed
scheduling opportunities at the machine.

When the machine has little remaining resources, the executor’s
actual usage observed in the reprovisioning period may be obscured
and do not re�ect its true demand. This is one limitation of our
heuristic. Nonetheless, our evaluation results in §5.5 show that
reprovisioning does improve application performance.

4 IMPLEMENTATION
We implement a prototype of Elasecutor with ⇠1K LOC in Python,
Java, and Scala based on Spark 2.1.0. We open source our proto-
type here [8]. The monitor surrogate and allocation module at each
worker machine communicate with the master node via RPC. We
use lightweight system-level tools such as psutil and jvmtop in
Linux to implement the monitor surrogate. We use resourceRef,
which is a data structure that includes worker ID, application ID,
executor ID, and corresponding resource time series. The schedul-
ing module implements the MinFrag algorithm and dispatches the
scheduling decisions to Spark’s resource manager, which launches
executors on worker machines. We modify the launchExecutor()
function at the resource manager to send the predicted resource
demand time series to the corresponding workers, along with other
information. The allocationmodule then uses the modi�ed cgroups
and OpenJDK [13] to con�gure resources of the executor process
based on the prediction results.
Allocation Module. Once a worker node receives the message for
launching executors or resizing them from the resource manager,
the allocation module adopts subsystems of cgroups to con�gure
the time period and the limits of CPU, network, and disk I/O the
executor process is entitled to. However, for Java-based systems,
the maximum heap size of a JVM stays constant during its lifetime.
Dynamically throttling memory outside the JVMs is di�cult. In-
spired by [70], we adopt a method to enable dynamic memory limits
at runtime by modifying OpenJDK [13]. As in operating systems,

the virtual address space does not have physical memory until it is
actually used, and the allocation module leverages this to reserve
and commit speci�ed address spaces of a� xed maximum heap size
dynamically at runtime. We implement an API JVMmanage() inside
a OpenJDK’s JVM which listens to instructions from the allocation
module for such dynamic memory commitment. As a result, each
JVM knows the correct maximum memory size it can use at any
time.

One may wonder that in case of prediction errors, out of memory
(OOM) error [16, 70, 73] may happen due to insu�cient memory.
In fact, we� nd that applications in Spark 2.1.0 do not just fail when
memory is less than demanded since they can spill data to disk as
a remedy. This of course slows down executors and would trigger
reprovisioning, which then would� x the problem.
Reprovisioning Module. This is implemented as a long-running
process at the master node. It continuously collects reports about
executor progress via monitor surrogates at each worker, and trig-
gers reprovisioning by invoking the resource manager with the
corresponding worker ID, application ID, executor ID, and corre-
spongding resource time series. Subsequently, allocation module is
instructed to adjust resource limits at runtime.
Prediction Module. Our current implementation simply uses the
average resource time series of the latest 3 runs as the prediction
result for recurring workloads with the same settings. Our analysis
in §2.2 demonstrates it is fairly accurate. For applications with new
settings Elasecutor has not seen, we rely on a prediction model
based on SVR to infer the demand time series. Elasecutor can also
leverage other prediction methods [17, 23, 26, 68, 75] which are
beyond the scope of this paper. Note that for new applications
which are never seen by the system before, we need to collect data
for several runs before we can predict the resource demand time
series. Until then, the applications are allowed to run with peak
demanded resources.
SVR Prediction. We cast our prediction problem as a regression
problem. We have xi , i = 1, 2, . . . ,n, where xi is the i-th multidi-
mensional input vector that represents the application type, dataset
size, and CPU and memory con�gurations, and n is the number of
training samples. We also have the ground truth �i which is the
actual resource usage time series of the i-th run. As in §2.2, the
executor’s time-series resource usage is stable for the same applica-
tion type and settings. The goal is to learn the relationship between
xi and �i so that when a application with new settings submitted,
we can predict its demand time series based on the model.

To do so, we rely on support vector regression (SVR) [25, 51, 63].
We use the radial basis function (RBF) kernel [42] which we�nd
to have better results than other kernels. We select �-SVR [59] as
the optimization model, and� nd its optimal parameters � based
on k-fold crossvalidation and grid search [18] until the prediction
reach the accuracy which we show in §5.5.

The prediction model is continuously trained online by succes-
sively collecting pro�ling results from RUD. Once an application
with new settings is submitted, the model makes prediction about
its resource usage time series and outputs the results for the sched-
uling module to consume. In our experiments, we found that our
prediction process for applications with new settings can be done
within 1s.
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5 EVALUATION
We now evaluate Elasecutor using testbed experiments. Our evalu-
ation answers the following questions:
• How much overall performance bene�t can Elasecutor pro-
vide compared to existing solutions? (§5.2, §5.3)
• How e�ciently does Elasecutor utilize resources? (§5.4)
• How well do the prediction, scheduling, and reprovisioning
modules work? (§5.5)
• How much overhead does Elasecutor add? (§5.6)

5.1 Setup
Our testbed cluster consists of 35 machines connected with a 10 GbE
switch. Each machine has two 2.4 GHz Intel Xeon E5-2630 v3 pro-
cessors, 64 GB DDR4 RAM, a quad-port Intel X710 10 GbE NIC, and
two 7200 RPM disks. All machines run Ubuntu 16.04.2 LTS with
kernel version 4.4.0, Scala 2.10.4, and HDFS 2.6.0. We deploy our
Elasecutor implementation on top of Spark 2.1.0.
Methodology. To test our prototype, we use eight workloads de-
scribed in §2.2. The workloads are from the HiBench bigdata bench-
marking suite [10], which are commonly used in existing work
[33, 36, 54, 55]. For each workload we use di�erent input data sizes
listed in Table 3 and di�erent CPU and memory upper limit con�g-
urations, ranging from one to� ve cores for CPU and 2GB to 10GB
for memory as in §2.2.

We generate 120 recurring applications with di�erent workloads,
input data sizes, and resource settings. In each experiment run, the
same 120 applications are used. They arrive according to a Poisson
process with mean inter-arrival time of 25 seconds for a period of
3200 seconds in each run. This is consistent with existing work
[31, 33, 36, 54, 55]. Elasecutor’s prediction module is fed with 3 runs
of each application as explained in §4 and is used as the prediction
results. Its SVR method has been trained o�ine with 30 runs of the
recurring applications, and the same trained model is used for each
experiment run. Besides the recurring applications, we prepare 12
applications with new input data size and new resource settings
that has not seen by Elasecutor before. The same 12 applications
are used in each run, but they arrive randomly within the period of
3200 seconds. Generally we repeat each experiment for� ve runs
unless stated otherwise.
Schemes Compared. We compare Elasecutor to three existing
resource scheduling strategies which are deployed in production
systems [31–33, 35, 67]. (1) Static: This policy statically reserves
CPU and memory for each executor according to the peak demand,
and launches a� xed number of executors according to user request.
(2) Dynamic: This uses the built-in dynamic allocation policy in
Spark to scale the number of executors dynamically based on the
workload. Each executor is allocated a multiple of <1 core, 2GB
RAM> [14]. This is similar to Morpheus [66] without preplanned
time-varying reservations. We do not compare to Morpheus as
it optimizes for SLO and load balance and is very di�erent from
Elasecutor. Both static and dynamic policies are implemented in
Spark, and they only consider CPU and memory. (3) Tetris: This
policy considers network and disk I/O in addition to CPU and
memory. Following [31], it greedily chooses an executor that has
the highest dot product value between the vectors of machine
available resources and executor peak demands, and allocates the

peak resource demands to the executor. For all three schemes, we
explicitly size related resources using cgroups.
Task Schedulingwithin anApplication. For a given application,
Elasecutor and all other schemes adopt the fair scheduler [9] for
task scheduling. Other popular task schedulers [6, 19, 29, 31–33]
can also be used by Elasecutor.

5.2 Makespan

(a) (b)

Figure 7: (a) Makespan reduction of Elasecutor; (b)
Boxwhisker plot of makespans which are normalized
to the median value of each scheme. Whiskers represent
the maximum and minimum values. Each experiment run
takes more than 5.9 hours, and we repeat 30 runs here.

We� rst investigate Elasecutor’s makespan improvement.
We look at the makespan reduction provided by Elasecutor as

shown in Figure 7a. Observe that Elasecutor reduces the average
and median makespan by over 40% compared to existing schemes
(60% over Tetris). Elastic resource allocation and scheduling in
Elasecutor ensures that resources are not over-allocated or under-
allocated during the executor’s lifetime and machines are better
utilized, thus translating to the smallest makespan performance.
Also Elasecutor takes into account network I/O and disk I/O, which
are not considered by Static and Dynamic. Tetris performs worse
than Static and Dynamic because it has to wait until all four re-
sources are available for the executor’s peak demand, while Static
and Dynamic only wait on CPU and memory. In fact, we observe
in our experiments that applications run faster after they start in
Tetris compared to Static and Dynamic, but they spend longer time
waiting on resources.

Tetris’s poor makespan performance is worth more discussion
here. Actually its task assignment algorithm optimizes makespan,
and is shown to have smaller makespan than DRF [29] and the
capacity scheduler [6] in the paper [31]. The discrepancy of the
results here is caused by two factors. First, Tetris along with DRF
and capacity scheduler all use peak demand. Second, they are all
designed for task-based systems like Hadoop, where tasks are short
in duration and using peak demand is� ne. When applying Tetris to
executor-based systems in our systems, as executors last over the
application’s lifetime, Tetris has to wait until the peak demand can
be satis�ed for all four resources, and its performance degrades.

Figure 7b further shows the stability of makespan. Here we nor-
malize the makespan to the median values under di�erent policies
over 30 runs. Recall that the same applications are submitted in
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each run with random arrival times as explained in §5.1. The result
shows that Elasecutor delivers much more stable makespan than
other policies with a much smaller box. In other words, Elasecutor is
more consistent with respect to the arrival order of the applications.
On the other hand, Static and Dynamic have� uctuating makespan
that depends heavily on the arrival order of the applications. This
is because their peak-demand based allocation results in fragmen-
tation that very much depends on application’s arrival order, and
their random executor assignment adds more inconsistency. Tetris
has more consistent makespan by using a multi-resource packing
heuristic to reduce fragmentation, but it still has similar problems
due to the use of peak demand in the heuristic.

5.3 Application Completion Time

(a) (b)

Figure 8: (a) The CDFs of reduction in application comple-
tion time of Elasecutor compared to Static, Dynamic, and
Tetris. (b) The stability of average ACT under di�erent poli-
cies. The average ACT across applications of the same run is
normalized to median value under di�erent policies.

We now look at the Elasecutor’s improvement in application
completion time (ACT), which represents user-perceived perfor-
mance. Here ACT is de�ned as the time elapsed between application
submission and completion. Figure 8a shows the CDFs of Elasecu-
tor’s ACT reduction over other policies. We can see that the median
ACT reduction is 32.3%, 31.5%, and 39.6%, respectively, compared
to Static, Dynamic, and Tetris. The top 20%ile applications are im-
proved by over 49.1%, 45.3%, and 58.7%, respectively. The reduction
over Tetris is larger compared to those over Static and Dynamic,
again because Tetris waits on four resources for the executor’s peak
demand and increases ACT [31]. This also re�ects that static peak
allocation signi�cantly hurts ACT performance.

We also investigate if Elasecutor can consistently provide better
ACT. For each policy, we normalize an application’s ACT in a run
to the median ACT of this application across 30 runs, and plot the
variability of such relative ACT across the 132 applications in Fig-
ure 8b. We observe that Elasecutor provides much more consistent
ACT compared to other schemes. These results demonstrate that
Elasecutor improves ACT and provides more consistent application
level performance for users.

5.4 Resource Utilization
Now we investigate cluster resource utilization with Elasecutor. We
show (estimated) resource usage with di�erent policies in Figure 9

(a) Static (b) Dynamic

(c) Tetris (d) Elasecutor

Figure 9: Resource utilizations under di�erent policies. Note
the time unit is 103s.

Policies CPU (%) Memory (%) Network (%) Disk I/O (%)
Static 61.3, 25.0, - 37.0, -, - 30.7, 25.1, 18.6 49.3, 37.2, 30.6

Dynamic 56.8, 26.6, - 57.7, -, - 25.3, 7.1, 5.0 51.2, 32.4, 26.9
Tetris 89.7, 70.8, - 49.1, 21.1, - 43.4, 13.3, - 37.2, 18.8, -

Elasecutor 97.0, 89.2, - 70.7, 39.4, - 68.7, 41.2, - 59.2, 37.0, -
Table 6: Frequencies that a machine’s utilization in a re-
source exceeds a threshold. We use three thresholds 70%,
90%, and 100% here.

for one example run. For resources considered by a scheduling
policy (CPU and memory for Static and Dynamic, all four for Tetris
and Elasecutor), we measure and plot the actual utilization; for
other resources, we derive the utilization based on our predicted
demand time series. The same methodology is used in prior work
[31, 33]. Observe that as in Figures 9a and 9b, Static and Dynamic
are unable to fully utilize CPU and memory which they consider for
executor allocation and placement. They also over-allocate network
and disk resources most of the time, resulting in 180% utilization
sometimes. Tetris in Figure 9c performs slightly better in that it
avoids over-allocation. Elasecutor in Figure 9d improves the utiliza-
tion of all resources with elastic resource scheduling. The cluster is
bottlenecked on di�erent resources at di�erent times.

We also note that although Dynamic utilizes CPU and memory
more, compared to Elasecutor it still loses 40% makespan perfor-
mance as observed in §5.2. In addition to the more e�cientMinFrag
heuristic, the reason is that Dynamic incurs additional CPU and
memory cost as it launches executors over time frequently. This
also con�rms our argument on the overhead of adjusting executor
numbers over time in §1.
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Utilization Improvement (%) CPU Memory Network Disk I/O
Elasecutor vs. Static 43.4 29.5 40.8 25.4

Elasecutor vs. Dynamic 27.2 22.6 33.4 40.0
Elasecutor vs. Tetris 28.6 25.2 55.6 43.9

Table 7: Elasecutor’s average utilization improvement over
other policies.

Table 6 depicts the fraction of time when a machine’s utilization
exceeds a threshold for each resource. We obtain the usage statistics
from all machines with one example run. We can see that Elasecutor
utilizes resources much more e�ciently: for example 97% of the
time CPU utilization is over 70%. On the other hand, Static and
Dynamic sometimes over-allocate network and disk I/O, and waste
CPU and memory that they statically reserved for executors.

Lastly, Table 7 shows the average utilization improvement with
Elasecutor for all four types of resources. Compared to other poli-
cies, Elasecutor improves utilization by at least 27.2% for CPU, 22.6%
for memory, 33.4% for network, and 25.4% for disk I/O. Clearly, this
demonstrates Elasecutor can utilize resources e�ciently and saves
cost for cluster operators.

5.5 Microbenchmarks

(a) (b)

Figure 10: (a) CDFs of prediction e�ectiveness with more
runs. (b) CDFs of reductions in application completion time
(ACT) and application execution time (AET) by comparing
Elasecutor with and without reprovisioning.

We now evaluate individual components of Elasecutor.
E�ectiveness of Prediction. For the predictionmodule, we de�ne
prediction e�ectiveness as the ratio between the predicted total
amount an executor is going to use and the actual total amount used
during the execution for each resource. The average e�ectiveness
across all 4 resources of each executor is then one data point. Note
here we only concern executors of the 12 new applications with new
settings. Figure 10a plots the CDFs of prediction e�ectiveness of the
15th and 30th run (with continuous training), respectively. We can
see that the SVR method in §4 provides fairly accurate estimations:
more than 80% of the time prediction is e�ective with less than
20% di�erence. Also with more training samples, the prediction
improves with less than 15% errors more than 90% of the time (the
curve for the 30th run).
E�ectiveness of Reprovisioning. Now we estimate the e�ective-
ness of the reprovisioning module. Figure 10b compares the CDF of

Design Choices Makespan ACT
Average Median Stdev. 50th 90th 99th

DRR vs. TRC 11.5% 13.4% 5.7% 2.3% 6.1% 11.0%
Table 8: Improvement of DRR over TRC as an alternative
metric for executor placement.

the reductions in application completion time (ACT) and application
execution time (AET) for Elasecutor with and without reprovision-
ing. Here AET is the time the application takes to complete after
it is scheduled to run. The setup is the same as in §5.1 with 132
applications in each run for 5 runs. We can see that by using re-
provisioning, Elasecutor’s median ACT and AET decrease by 4.6%
and 5.0%, respectively, and the 90%ile ACT and AET decreases by
6.0% and 14.5%, respectively, compared to not using it. The results
demonstrate that reprovisioning is important for prediction based
resource schedulers to improve application QoS performance.
E�ectiveness of DRR. Our scheduling heuristic MinFrag uses
DRR. We now investigate its e�ectiveness by comparing with an
alternative metric for multi-resource executor placement. Partic-
ularly, we consider to sum up the relative remaining capacity of
each resource, i.e. R (CPU,m)/C (CPU,m)+R (Mem,m)/C (Mem,m)
+R (Net,m)/C (Net,m) + R (Disk,m)/C (Disk,m) for machinem, as
the total remaining capacity (TRC). The scheduling module then
applies TRC instead of DRR as the metric in the MinFrag heuristic
in Algorithm 1. E�ectively, in each iteration it chooses an executor
that minimizes its TRC when placed on the current machine to run.

We compare DRR with TRC in Table 8 in terms of makespan and
ACT. Observe that DRR reduces the average and median makespan
by 11.5% and 13.4%, respectively, and have more stable makespan
with 5.7% smaller standard deviation. DRR also improves ACT mod-
erately in median and high percentiles. The results show that DRR
works better than other alternative metrics to minimize resource
fragmentation.

5.6 Overhead

Resource Consumption CPU Memory Total executor pro�le size
Monitor surrogate 0.3% 0.1% 12.1 KB

Table 9: Resource consumption of amonitor surrogate. CPU
and memory are averaged over all machines. Total executor
pro�le size is the size of all executor pro�les averaged across
all machines at each heartbeat.

Time to process (ms) Unmodi�ed Spark Elasecutor
Worker heartbeat ⇠0.031 ⇠0.035

Application driver heartbeat ⇠0.153 ⇠0.155
Table 10: Average time to process heartbeats from workers
and application driver with and without Elasecutor over 100
heartbeats.

We now evaluate the overhead of Elasecutor. We� rst consider
the overhead of monitor surrogate. Table 9 shows the average CPU
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and memory consumption of a monitor surrogate and the average
size of executor pro�les of all 35 machines of our cluster at each
heartbeat. We can see that the overheads are very small, and the
additional network overhead of sending pro�les is negligible. We
also� nd that the CPU and memory overhead of other modules
of Elasecutor at the master node is less than that of the monitor
surrogate.

We also evaluate Elasecutor’s latency overhead to the analytics
system, particularly the resource manager. The prediction, schedul-
ing, and reprovisioning modules are independent processes running
concurrently with the resource manager, and we wish to ensure
they do not negatively impact resource manager’s responsiveness.
We measure the time taken by the resource manager to process a
heartbeat from both a worker node and the application driver in
Elasecutor and Spark. The application driver in Spark is responsi-
ble for creating context for executing applications, and we do not
modify it in Elasecutor. Table 10 shows the results. Elasecutor takes
about the same time as Spark to process both types of heartbeat
messages.

6 DISCUSSIONS
After exhibiting the performance bene�t of Elasecutor, we brie�y
discuss what we have done and the future work on Elasecutor in
this section.
Model the resources jointly. In our current model, we do treat
the executors’ various resources (CPU, memory, network, and disk
I/O) separately. Yet, in practice, they are often correlated. For in-
stance, in Spark, the lack of available memory causes more spills
and increases CPU (due to serialization overheads) and network
or disk I/O (due to remote/local writes). Even though Elasecutor
has dynamic reprovisioning mechanism (§3.3) to compensate for
prediction errors caused by not considering such cases, we need to
add such correlations between resources intro our model to make it
work e�ciently. Thus one future work for Elasecutor is to revise its
resource demand prediction model and take correlations between
resources into account.
Scalability. Due to the small scale of our testbed, the resource
usage of the master node is very small. According to the average
�le size of an executor’s pro�le on each server, the bandwidth used
for transmitting them at each heartbeat is 32.27Kbps per server.
Assuming 10Gbps network interfaces, the master node can support
⇠309K machines. Besides, the CPU and memory costs are fairly low:
both less than 1.5% to handle the current testbed scale. Correspond-
ingly, if we fully utilize the CPU of a server, it can support 2.33K
machines, which should be able to handle the typical production
clusters [58, 62]. The scalability can be further improved in the
following ways: (1) In production data centers 40G or 100G NICs
are not uncommon [58, 62], which implies the bandwidth overhead
of our system is even smaller compared to the 10Gbps links we use
in our testbed; (2) We expect some nodes to have GPU, FPGA, or
other hardware accelerators [41, 47] that can o�oad the computa-
tion from CPU and support larger clusters; (3) We can reduce the
bandwidth requirement of updating executor resource pro�les by
adopting compression and/or sampling methods.

SLOs/SLAs. Elasecutor provides signi�cant application completion
time improvements and strives to provide better QoS via reprovi-
sioning, but does not aim at guaranteeing strict SLOs/SLAs. To do
the latter, Elasecutor would need to (1) have a dedicated component
for SLO inference, (2) make resource reservations for executors
ahead, and (3) dynamically adjusts resource allocations at runtime
so that strict deadlines can be met [26, 66]. On the other hand, Elase-
cutor may be able to provide statistical SLO/SLA guarantees as it
inherently predict applications’ execution time based on historical
data (§4). We are exploring this as future work.
Di�erences between DRR and DRF. DRR (dominant remaining
resource) used in Elasecutor is inspired by DRF [29] and share some
similarities, in particular the fact that they both use “dominant
resource” to convert multi-dimensional metrics into scalars. Their
di�erences, on the other hand, are distinct. DRR as de�ned in §3.2.2
concerns the maximum remaining resource of a machine over time
and de�nes “dominant resource” based on it. DRF represents the
maximum time-invariant resource requirement of a taskwith respect
to the machine’s capacity. Further, compared to DRF that aims to
achieving fairness between tasks, DRR is used to reduce resource
fragmentation and minimize makespan in MinFrag.
Other executor-based frameworks. Our current Elasecutor im-
plementation is based on Spark. Streaming systems like Storm
or Flink also have long running jobs, which potentially can also
use Elasecutor. In the next step, we plan to explore other systems
Elasecutor can be applied to, and make it an extension in resource
managers like Yarn [67], Mesos [35], and Kubernetes [12] to serve
all executor-based frameworks.
Workload usecase analysis. The ideal workloads for Elasecutor
to obtain high performance are ones that either have a mix of I/O-
and computing-intensive stages like Sort, Terasort, and Wordcount,
or exhibit time-varying computation and I/O usage ratios like Pager-
ank, K-means, and Bayes. The executors used to run them can be
packed together by Elasecutor to fully utilize various resources.
In addition, deep learning training also often consists of long run-
ning tasks. When many training jobs co-exist in the same cluster,
they progress in di�erent paces and stress di�erent resources (CPU,
GPU, network, etc.), which makes it a good� t for Elasecutor as
well. Another future work is then to run experiments for production
deep learning training jobs to measure their actual resource usage
patterns and investigate the potential bene�t of Elasecutor there.

7 RELATEDWORK
There has been a substantial body of work on scheduling and re-
source allocation in data analytics systems. We compare Elasecutor
to related work along several dimensions as summarized in Table 11.
Granularity. Most of prior work [6, 9, 19, 24, 26, 29, 31–33, 38, 56,
78] assumes a task based system such as Hadoop. As discussed
in §1 and §2, they do not work well for executors which run the
application’s entire DAG and have time-varying demands. Clus-
ter schedulers such as Yarn [21, 67] and Mesos [35] manage the
resource allocation for co-existing frameworks. They are also com-
monly used for task scheduling within frameworks in practice.
Yet, they do not dig deeply to explore how to schedule the long-
running executors within a computing framework and have the
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Existing Work Granularity Scheduling ObjectiveMultiple Resources Elastic Sizing Machine Assignment
Jockey [26], Quasar [24] Task CPU, memory 7 7 SLO
Sparrow [56], Apollo [19] Task CPU, memory 7 3 ACT and fairness

Tetris [31] Task 3 7 3 Makespan
Yarn [21, 67], Mesos [35], DRF [29], Omega [60] Framework / Task CPU, memory 7 7 Fairness

KOALA-F [46] Framework Servers 7 7 Utilization
Prophet [76] Executor Network, disk 7 3 Utilization
Morpheus [66] Executor CPU, memory # executors 3 SLO and load balance
Medea[27] Executor 3 7 3 Depend on objective functions
Elasecutor Executor 3 3 3 Makespan

Table 11: Summary of previous approaches compared to Elasecutor.

same problems as task schedulers when applied to executor schedul-
ing. Prophet [76], Morpheus [66], and Medea [27] consider executor
scheduling and are more related to our work.
SchedulingConsiderations. Existingwork can also di�er in terms
of their scheduling considerations. Most work focuses on CPU and
memory only. Tetris [31], like Elasecutor, considers network and
disk I/O in addition. Most task and cluster schedulers mentioned
above adopt static allocation and do not elastically size the per-task
resource allocation. Prophet [76] performs executor scheduling, but
it only considers network and disk I/O and cannot support elastic
resource sizing. Morpheus [66], another executor scheduler, dynam-
ically adjusts the number of executors to meet application’s demand,
without changing the per-executor allocation though. This does not
cope well with the multi-resource time-varying executor demand
as we explained in §1 and brings large executor launching cost
as we analyze in §5.4. Medea focuses on making good placement
decisions but does not consider variations of resource utilization of
long-running executors. As far as we know, Elasecutor is the�rst
scheduler that elastically sizes executor resource allocation.

Lastly, for machine assignment, cluster schedulers [21, 29, 35,
60, 67] usually just use random assignment. Sparrow [56] uses
randomized sampling to choose machines quickly. Other schedulers
typically use packing heuristics but in di�erent ways. Prophet [76]
favors machines with the least sum of fragmentation and over-
allocation. Morpheus [66] essentially uses the Worst Fit heuristic
for SLO, and Tetris [31] uses the BFD heuristic based on the dot
product of task’s peak demand and machine’s available resource
capacity. Elasecutor adopts BFD with DRR inspired by DRF [29]
and is shown to work more e�ectively than alternative metrics.
Medea applies a mathematical optimization approach that accounts
for constraints and global objectives. Clearly, Elasecutor’s executor
assignment problem can be formulated as Medea’s constraints. A
technical di�culty is that, as we showed in §3.2.1 our objective
function and constraints are non-linear, whileMedea employs linear
programming to formulate its placement constraints.
Objective. In this regard, cluster schedulers [21, 29, 35, 60, 67]
are the easiest to analyze: they optimize for fairness among co-
existing frameworks. Task and executor schedulers optimize for
various objectives: mostly makespan and ACT [56], and SLO or
utilization. Elasecutor focuses on makespan and also improves ACT
and utilization as experimentally shown in §5. Medea supports
various objectives for long-running executors and it provides low
placement latency for short-running executors.

Elastic VM Allocation. Finally we note that Elasecutor is also
related to work such as PRESS [30], CloudScale [61], and AGILE
[53] that predicts VM’s resource usage time series online, and dy-
namically sizes resource allocation. However, they do not consider
VM placement to proactively avoid resource con�ict, and as a re-
sult, VMs can be left with insu�cient resources at run-time and
machines can be overloaded. As discussed in §3.2.1, multi-resource
placement with time-varying demand is very challenging and re-
quires careful heuristic design.

8 CONCLUSION
We have presented a novel executor scheduler Elasecutor. Elase-
cutor builds on the following two key ideas: elastically allocating
resources to an executor to avoid over-allocation, and placing ex-
ecutors strategically to minimize multi-resource fragmentation.
We prototype Elasecutor on Spark and evaluate it on a medium-
scale testbed. Compared to existing approaches, Elasecutor reduces
makespan by more than 42% on average and the median application
completion time by up to 40%, while improving cluster resource
utilization by up to 55%. We are working with a large internet
company to test-deploy Elasecutor in one of their Spark clusters.

Going further, we are exploring some interesting directions.
Placement constraints are common in practice [33, 45] and can
be added to Elasecutor’s scheduling heuristic. Elasecutor does not
guarantee SLOs in terms of deadlines [26, 66] currently. We seek
to better understand the impact of elastic multi-resource schedul-
ing on application performance and SLO in order to support SLO
guarantees. Finally, it is possible to develop a general executor
scheduler based on Elasecutor so it can be integrated into Yarn and
other cluster schedulers and bene�t other executor-based systems.
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