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Abstract—Coflow scheduling is critical to data-parallel applications in data centers. While schemes like Varys can achieve optimal
performance, they require a priori information about coflows which is hard to obtain in practice. Existing non-clairvoyant solutions like
Aalo generalize least attained service (LAS) scheduling discipline to address this issue. However, they fail to identify the bottleneck
flows in a coflow and tend to allocate excessive bandwidth to the non-bottleneck flows, leading to bandwidth wastage and inferior overall
performance. To this end, we present Fai that strives to improve the overall coflow performance by accelerating the bottleneck flows
without priori knowledge. Fai employs bottleneck-aware scheduling. It adopts loose coordination to update coflow priority and flow rates
based on total bytes sent. In addition, Fai detects bottleneck flows based on a flow’s rate and bytes sent, and de-allocates bandwidth
for other flows to match the bottleneck rate without affecting the coflow completion time (CCT). The saved bandwidth is then distributed
among coflows according to their priority to improve overall performance. Testbed evaluation on a 40-node cluster shows that Fai
improves average (P95) CCT by 1.73x (3.43x), compared to Aalo. Large-scale trace-driven simulations also show that Fai outperforms

Aalo substantially.

Index Terms—Coflow scheduling, Coflow completion time, Bottleneck-aware, Datacenter networks.

1 INTRODUCTION

ODAY’S data centers host many data-intensive applications

(e.g., MapReduce [2], Spark [3], and Dryad [4]) to meet the
increasing demand for data analytics [3]-[7]. Many studies [7]-
[13] have shown that the intermediate data transfer during shuf-
fling accounts for a substantial part of job processing. For example
Facebook reports that data transmission between successive stages
occupies 33% of the Hadoop jobs’ running times during the reduce
phase [8].

A data analytics job is composed of many stages includ-
ing both communication and computation [2]-[4], [9], [14]. A
communication stage usually cannot finish until all its flows
have completed [8], [9], [11]. Coflow is thus proposed as an
abstraction that captures this unique communication pattern of
data-intensive applications [14]. Instead of considering individual

o  This work was supported in part by the National Natural Science Founda-
tion of China (No. 61802233), the Pilot Project for Integrated Innovation
of Science, Education and Industry of Qilu University of Technology (Shan-
dong Academy of Sciences) under Grant 2020KJC-ZD02, and a General
Research Fund from Hong Kong Research Grants Council (No. 11209520).

o Libin Liu and Wei Zhang are with Shandong Provincial Key Laboratory
of Computer Networks, Shandong Computer Science Center (National Su-
percomputer Center in Jinan), Qilu University of Technology (Shandong
Academy of Sciences). Email: liulib@sdas.org, wzhang @sdas.org.

o  Chengxi Gao is with the Institute of Advanced Computing and Digital En-
gineering Shenzhen Institutes of Advanced Technology, Chinese Acadenty
of Sciences, Shenzhen 518055, China. Email: chengxi.gao@siat.ac.cn.

o Peng Wang is with Theory Lab, Huawei Hong Kong Research Center, Hong
Kong SAR, China. Email: wang.peng6 @ huawei.com.

o Hongming Huang and Jiamin Li are with Department of Computer
Science, City University of Hong Kong, Hong Kong SAR, China. Email:
{honhuang7-c, jiaminli§-c} @my.cityu.edu.hk.

o Hong Xu is with Department of Computer Science and Engineering,
The Chinese University of Hong Kong, Hong Kong SAR, China. Email:
hongxu@ cuhk.edu.hk.

e  Part of this work was presented in the IEEE INFOCOM 2020 Workshop
on Intelligent Cloud Computing and Networking (ICCN) [1]. The corre-
sponding authors are Hong Xu and Wei Zhang.

2168-7161 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/|
Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on June 06,2022 at

flows, coflow considers the application-level semantics and applies
to the all-or-nothing property of data analytics jobs [15]-[20]: a
coflow includes all flows of the same communication stage and is
completed only when all its flows finish. This way, better coflow
completion time (CCT) directly leads to faster job completion [8]—
[11], [21].

As a result, coflow scheduling emerges as an important re-
search problem. Varys [11] proposes heuristics such as smallest-
bottleneck-first and smallest-total-size-first to minimize CCT, by
assuming that complete information of coflows is known in ad-
vance. However, information like coflow size and arrival times of
its member flows is difficult to obtain a priori in practice [10],
[21]-[26]. Take multi-stage jobs as an example: usually data are
transferred as soon as they have been generated, making it almost
impossible to obtain the flow size before the transmission ends.
Thus, Aalo [10], Saath [27], and CODA [21] turn to information-
agnostic scheduling. Aalo leverages the least attained service
(LAS) scheduling discipline [28] and uses a coflow’s total bytes
sent across all flows (discretized into several levels) to prioritize it
periodically. Then scheduling can be done independently at each
host: coflows are dispatched according to weighted fair queueing,
and within each priority simple FIFO is adopted. In addition,
Saath [27] uses the same coflow priority structure as Aalo [10],
yet takes into account the spatial dimension of coflow scheduling.
It adopts all-or-none policy to avoid out-of-sync problem of flows
within a coflow, and uses least contention first scheduling for the
same coflow priority queue instead of FIFO. CODA [21] on the
other hand adopts machine learning to identify coflows without
application modifications.

Intuitively, CCT is determined solely by a coflow’s slowest
flow, i.e. the bottleneck flow; the other flows that finish earlier
do not contribute to this coflow’s CCT improvement, which is
essentially a form of bandwidth wastage. Specifically, existing
information-agnostic schedulers deal with the member flows in-
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dependently without coordination. Though these flows carry the
same priority, the local resource contention they experience at
each host can be vastly different. As a result, some flows may
obtain more bandwidth and finish sooner as their hosts do not
have coflows with higher priorities, while others may have less
bandwidth and become stragglers. This is clearly inefficient since
the extra bandwidth for the fast flows has no contributions to
CCT and can be re-balanced to improve the performance of the
stragglers for other coflows, or make the coflows with lower
priorities run earlier at the same host, and improve the overall
average CCT.

To address this issue, we present a novel bottleneck-aware non-
clairvoyant coflow scheduler called Fai.! The central challenge
of Fai is, how can it detect a coflow’s bottleneck and allocate
bandwidth to avoid wastage without any prior information? Since
the flow size is unknown, the flow with the smallest bandwidth
in one scheduling period may not be the bottleneck since it may
have much bandwidth in previous periods and have few bytes left
to send. Another strawman approach is to pick the flow with the
smallest total bytes sent so far as the bottleneck. This does not
work well when the flows of a coflow have rather different sizes,
which are common in practice. Fai relies on a simple and robust
heuristic that combines the two metrics: it selects the ones with
the smallest total bytes sent so far and the smallest bandwidth
allocated currently as the bottleneck flow(s). Fai then reduces the
sending rates of other flows (of the same coflow) to the bottleneck
flow rate to minimize the bandwidth wastage without degrading
this coflow’s performance. The reclaimed bandwidth is allocated
to other coflows following their priority levels in order to improve
the network utilization and overall performance, e.g., CCT and
coflow makespan2. When no flow satisfies the above criterion, Fai
does nothing and continues to use the original rates computed by
existing coflow schedulers.

We make several contributions in this work.

o We identify the need to consider bottleneck flows for better
performance in non-clairvoyant scheduling and analyze
the potential gain of re-distributing bandwidth in §2.

e We design Fai algorithms in §3 to schedule coflows and
allocate bandwidth in a bottleneck-aware fashion. In each
period, a centralized coordinator first updates coflow prior-
ity and flow rate based on LAS. Then it identifies the bot-
tleneck flow of each coflow using the minimum-bytes-and-
bandwidth (MBAB) heuristic, reduces other flows’ rates to
the bottleneck rate, and allocates the saved bandwidth to
other coflows according to their priorities.

e We implement Fai and experimentally evaluate its perfor-
mance in §4 and §5. Trace-driven simulations show that
compared to state-of-the-art Aalo, Fai reduces the average
CCT by up to 1.71x and 2.23X%, respectively, for two
production workloads. Testbed experiments on a 40-node
cluster demonstrate that Fai also improves the average
CCT by up to 2.11 x over Aalo.

In the following, we first introduce the background for the non-
blocking data center fabric and coflow scheduling, and motivation
for the bottleneck-aware coflow scheduling in §2. Then, we
describe system design, as well as the algorithms in §3. We discuss
implementation of Fai in §4, and performance evaluation with

1. Fai means fast in Cantonese.
2. Makespan is the time elapsed to complete all submitted coflows.
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extensive testbed experiments and large-scale simulations in §5.
Finally, we discuss scalability in §6 and related work in §7, and
conclude in §8.

2 BACKGROUND AND MOTIVATION

In this section, we first introduce the background about data center
network, coflow, and coflow scheduling in §2.1. Then, we use a
toy example to illustrate the performance loss of existing non-
clairvoyant schedulers in §2.2, thereby motivating the need to con-
sider bottleneck flows. We further demonstrate the potential gain
of bottleneck-aware non-clairvoyant scheduling using a Facebook
trace in §2.3.

2.1 Background

Ingress Egress
— Ports | I Ports
Ci-Fi 1 1

Downlinks

Coflows

Flows

3 3 ASl.zel
| | VAo l2 2200
Time

(a) A non-blocking data center fabric

|

(b) Sizes and arrival times
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(c) Aalo

(d) Bottleneck-Aware

Fig. 1: (a) A non-blocking data center fabric with 3 ingress ports
and 3 egress ports. There are 3 coflows in this example, C in
orange/light, C'5 in blue/dark and C's in black. Each coflow has
two flows, and C,-F, represents flow F, of coflow C,. The
flows are on the corresponding links as shown, such as Ci-F}
and C3-F; on link 1 (Py), C1-F5 and C5-F; on link 2 (P),
and Cs-Fy and C3-F5 on link 3 (P3). Each port can transfer
one unit of data in one time unit. (b) The sizes and arrival
times of flows within the three coflows. (c) Aalo scheduling. (d)
Bottleneck-Aware bandwidth allocation. Noted that the priority
queue transition threshold is 4.

Data center network. Current data center network provides full
bisection bandwidth [29]-[33]. Like previous work [10], [11],
[21], we abstract the network as a large non-blocking switch with
uplinks and downlinks connected to the end hosts. Bandwidth
contention only occurs at the edge (the egress and ingress ports).
Fig. 1(a) shows an 3 X 3 non-blocking data center fabric with 3
machines. All links have the same capacity.

Coflow. A coflow refers to a collection of parallel flows across a
set of machines for one particular task [10], [11], [14], [21]. A
coflow completes only when all its flows have completed.

Coflow Scheduling. For applications like MapReduce, the amount
of data to transmit is known when a coflow starts. It is feasible
to schedule coflows optimally using a clairvoyant scheduler such
as Varys [11]. However, in most cases coflow characteristics are
unknown a priori, e.g. in cases with multi-stage jobs using pipelin-
ing [10], a single stage consisting of multiple waves [16], and task
failures resulting in redundant flows. We focus on practical non-
clairvoyant coflow scheduling.
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Fig. 2: CDFs of flow rate variance degree (FRVD) in Aalo and
optimal normalized coflow completion time (NCCT) for Aalo
against Fai using Coflow-FB workload [10], [36].

2.2 A Toy Example

We now use a toy example to demonstrate why state-of-the-art
non-clairvoyant coflow scheduler, Aalo, may not work well due to
the lack of consideration of bottleneck flows. In the example, we
abstract the network as a large non-blocking switch with uplinks
and downlinks connected to the end hosts [34], [35] as in Fig. 1(a)
and bandwidth contention only occurs at the edge (egress and
ingress ports).

Suppose there are 3 coflows in the 3-machine data center
fabric. The sizes and arrival times of their flows on each link
are shown in Fig. 1(b). Fig. 1(c) shows the scheduling results of
Aalo. When C first arrives at time 2 (C3 has sent 4 units of data
in total.), it has the highest priority, and thus flow C-F} preempts
flow C5-F; on P; to fully occupy the link. Similarly, when Co
arrives, its flow Cy-F5 preempts C'3-F5 on P3 and uses the whole
link. C7 and C5 share the link on P» since they both have the
highest priority. At time 4, Cy’s flow C1-F; on P; completes and
Cy’s flow Cy-F5 on P3 completes. Then C'3 uses the whole link
until time slot 5 when its flows C3-F; and C3-F5 complete on
Py and P3. C1-F5 and Cs-F continue to share the link to P
until time slot 6. Finally, C>-F} uses the whole link until time slot
7, and then C5 finishes. As a result, the coflow completion times
(CCTs) for C1, Cs and C'5 are 4, 5, and 5, respectively.

In fact, when C; and C'5 arrive, their flows C-F5 and Cs-F}
get 0.5 unit of bandwidth on P, and 1 unit of bandwidth on P;
and Ps. Thus, the bottleneck for Cy and C5 is on P,. Though
their flows on P} and Ps finish earlier, it does not improve their
CCT at all. Hence it is wasteful to allocate so much bandwidth to
them on P; and Ps. Instead, we can allocate bandwidth to C; and
C5 by 0.5 on P; and P4, so that they have the same bandwidth as
their bottleneck flows on Ps. Fig. 1(d) shows the corresponding
scheduling results. C'3’s CCT is improved by 20% to 4 without
hurting the other coflows at all.

2.3 Empirical Analysis

FRVD
Aalo

50th
0.33

90th
0.96

99th
3.90

Avg.
0.63

TABLE 1: Statistical analysis of flow rate variance degree (FRVD)
in Aalo using Coflow-FB workload [10], [36].

We now empirically quantify the degree of non-uniform band-
width allocation for flows within a coflow in Aalo as a result
of its local per-flow bandwidth allocation on different hosts. We
conduct a simulation run using Coflow-FB workload and record

NCCT
Aalo vs. Ideal

50th
2.16

90th
20.39

99th
40.25

Avg.
4.98

TABLE 2: Statistical analysis of normalized CCT comparison
against Aalo using Coflow-FB workload [10], [36].

each flow’s size and each coflow’s completion time in Aalo. More
details about the trace workload and settings can be found in §5.1.
Then based on the results, we obtain each flow’s average rate and
the flow rate variance degree (FRVD) for each coflow, which is
defined as the difference between the largest and smallest flow
rates for all flows within a coflow normalized by its median flow
rate. Fig. 2(a) shows the CDF of FRVDs and Table 1 summarizes
the corresponding statistical analysis. We observe the average,
median, 90%ile, and 99%ile FRVD are 0.63, 0.33, 0.96, and
3.90, respectively. Note that the Coflow-FB workload [10], [36]
reports that flows have the same size for about 80% of its coflows.
Thus the FRVD results clearly demonstrate that it is common
in Aalo to allocate varying bandwidth to the flows of the same
coflow. Naturally, bottleneck flow always exists for each coflow
and excessive allocation for the non-bottleneck flows leads to
severe wastage. Note that though our analysis here is based on
Coflow-FB workload, the results hold for other trace data as we
will show in §5.6.

We further quantify the performance gain that can be obtained
by allocating bandwidth in a bottleneck-aware manner. To answer
this we use the same Coflow-FB workload and run an ideal non-
clairvoyant bottleneck-aware scheduler as follows: First Aalo is
used to schedule coflows in a non-clairvoyant way, and after all
coflows finish we identify each coflow’s true bottleneck flow and
its average rate. We then re-adjust the rates of all other flows to
the bottleneck rate of this coflow without affecting its CCT, and
allocate the reclaimed bandwidth to other coflows following their
priority levels to reduce their completion times. This represents
the potential CCT gain for Fai.

Fig. 2(b) shows the ideal scheduler’s normalized CCT against
Aalo (CCT in Aalo / CCT in ideal), and Table 2 summarizes
the corresponding statistical analysis. Compared to Aalo, ideal
bottleneck-aware scheduling can improve the average, 50%ile,
90%ile, and 99%ile CCT by 4.98%, 2.16%, 20.39%, and 40.25 X%,
respectively. The results indicate that there is much performance
gain for Fai to realize compared to state of the art, which motivates
us to explore its design in §3 and evaluate its performance in §5.

3 DESIGN

In general, Fai builds upon LAS scheduling, and relies on a bottle-
neck detection mechanism and bandwidth reallocation algorithm
to schedule coflows in addition.

Fig. 3 shows the overview of Fai. There are two main compo-
nents in the system:

e Fai coordinator. The coordinator is the core of Fai. It
is a logically centralized entity; in practice it can be
an independent process on a dedicated CPU core, or
multiple processes on machines to manage a large-scale
data center. It performs coflow scheduling every O(10)
milliseconds similar to other production schedulers [10],
[11], [21]. We further demonstrate its efficiency in §5.2.
More details about the scheduling epoch are explained
in §4. At each epoch, the coordinator collects coflow
information from the Fai slaves, updates coflow status,
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Fig. 3: Fai overview: Fai slaves collect flow-level information, and
Fai coordinator periodically updates coflow schedules using our
scheduling mechanisms.

assigns them to different priority queues based on their
total bytes sent at initial flow bandwidth allocation stage,
and computes per-flow bandwidth allocation by adopting
weighted fair sharing. Next, it detects bottleneck flow(s)
for each coflow with MBAB and demotes other flows’
bandwidth to the bottleneck flow’s bandwidth, which will
be further explained in §3.2. Finally, the coordinator re-
allocates saved bandwidth according to coflows’ priorities
and dispatches the decisions to the Fai slaves on each end
host.

o Fai slaves. Each slave is a coflow sender and receiver.
It runs a local daemon to monitor the runtime status of
active flows, calculates total bytes sent of each coflow,
and reports it to the coordinator in each scheduling epoch.
They also receive flow bandwidth allocation messages
from the coordinator and enforce bandwidth allocation by
using rate limiters on individual flows. Scalable software
rate limiters have been deployed in production [37] and
we omit the related discussion in this paper.

3.1 LAS Scheduling

The Fai coordinator utilizes the discretized LAS as the basic
scheduling discipline. There are a small number of n queues in
total, from the highest priority queue to the lowest priority queue.
In general, a coflow experiences three types of events during its
lifetime:

e Arrival. A coflow arrives to Fai when the data analytics
application registers the coflow to the coordinator using its
API. We use the same API implementation in Aalo [10]
since we do not require any additional information from
applications. The new coflow is enqueued into the highest
priority queue as its total bytes sent is zero. Before the next
epoch starts, flows of the new coflow simply fair-share the
local remaining bandwidth on the links.

o Demotion. At a given epoch, once the coflow’s total bytes
sent exceeds the threshold of the queue, it is demoted to
the next queue with a lower priority (similar to multi-level
feedback queue), until it is enqueued to the lowest priority
queue if it is large enough. Each flow is guaranteed to be
allocated non-zero bandwidth and have progress at each
epoch as Fai uses weighted fair queuing.

o Completion. Once a coflow completes, the analytics ap-
plication de-registers it from Fai and it is removed from
the coordinator immediately.
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1

2

3: Update total weight: W = > Q;.weight
4: fori =1 to ndo

5: Q;.bw = Ly, * Q;.weight /W
6: fori =1 to ndo

7 for C; € Q; do

8 for f, € C; do

9 fx.bw = Fair-sharing @Q);.bw

10: L = Lbﬁ — fr-bw
e Fk
11: wa = Ly —fk.bw
12: Q;.bw = Q;.bw — fr.bw
Notation Explanation
L Network link
Ly Ingress network link
Lp Egress network link
Ly The bandwidth of network link L
Lcapacity The capacity of network link L
The sum of weights for all priority queues
Qi The ¢th priority queue
Qi.bw The bandwidth of priority Q;
Q;.weight The weight of priority Q;
[ Coflow j
[k Flow k
[fr-bw The allocated bandwidth of flow k&
Li{b’“ The bandwidth of ingress network link L where flow f, is on
LIZ’"C The bandwidth of egress network link L where flow f}, is on
min_bytes The minimum bytes sent of a flow
min_bw The minimum bandwidth obtained of a flow
Frin The flow set for flows with the minimum bytes sent
[fr-bytes_sent The bytes sent of flow &k
Lieft The remaining bandwidth of network link L
LZ‘}"L The minimum remaining bandwidth for all network links

TABLE 3: Notations in Fai’s algorithms

We adopt the coflow size thresholds experimentally deter-
mined based on a production workload [10]. The threshold to
demote coflows is Q; = Q1 x 10" where i € [1,n — 1] and
Q1 = 10M B. There are 10 priority queues. We follow the
setup for coflow priority queues in Aalo [10], which has been
demonstrated that works well for Coflow-FB and Coflow-320
workloads.

3.2 Scheduling Algorithm

With the coflow priority, bandwidth allocation in Fai is performed
in three steps, including (1) initial allocation, (2) bottleneck
detection and bandwidth update, and (3) remaining bandwidth
reallocation.

Step 1: Initial Allocation. Fai first allocates bandwidth according
to weighted fair sharing (WFQ) across all priority queues. Within
each queue, it uses FIFO scheduling. Algorithm 1 shows the
detail. Fai first sets the available bandwidth on each sender and
receiver link to the link capacity (lines 1 and 2). Then it allocates
bandwidth according to WFQ across all priority queues (lines 3 to
5). Next, starting from the highest priority queue ()1, Fai picks a
coflow according to FIFO and on each link, fair-shares this queue’s
available bandwidth among all flows of this coflow (lines 6 to 9).
It finally updates the queue’s available bandwidth and the link’s
remaining bandwidth (lines 10 to 12).

Step 2: Bottleneck Detection and Bandwidth Update. As
quantified in §2.3, flows of a coflow can be assigned different
bandwidths on different links from the initial allocation in Step 1.
For a clairvoyant scheduler [11], it assumes that it has complete
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Algorithm 2 Bottleneck Detection and Bandwidth Update

Algorithm 3 Remaining Bandwidth Reallocation

1: fori =1 to ndo

2 for C; € Q; do

3 min_bytes = oo, min_bw = 00, Frip = &
4 for fi, € C; do

5: if fi..bytes_sent < min_bytes then

6 man_bytes = fi.bytes_sent

7 if fr.bw < min_bw then

8 min_bw = fi.bw

9 for f, € C; do

10 if fi.bytes_sent == min_bytes then
11: szn = 'min U{fk}
12: for fr € Fin do
13: if fr.bw == min_bw then
14: for fi, € C; do
15: fr-bw = min_bw
16: Update L and Lo
bw bw
17: break

prior information including the number of coflows, the number of
flows inside each coflow, and per-flow size. This makes it easy
to find the bottleneck flow which requires the longest time to
complete. However, for non-clairvoyant coflow scheduling, none
of the prior information is known.

An intuitive method to determine the bottleneck is to select the
flow(s) with the smallest total bytes sent until the current epoch.
This would work when all flows of the coflow have the same size.
This depends on the workloads. Although Coflow-FB workload
reports that about 80% coflows have their flows with the same
size, in practice it is not uncommon that flows have varying sizes.
For example, Varys [11] shows that flow sizes in some coflows are
highly skewed. In such cases, the Min-Bytes approach does not
work well. Another strawman approach is to pick the flow(s) with
the least bandwidth after Step 1 as the bottleneck. Such a minimum
bandwidth method does not work well because the flow may have
much bandwidth in the previous epochs and have progressed a lot
with few bytes left to send.

Fai adopts a minimum-bytes-and-bandwidth (MBAB) approach
that jointly considers the two metrics to identify the bottleneck,
which outperforms the two strawman approaches significantly as
we empirically show in our evaluation (§5.3). Effectively MBAB
is less prone to false positives and false negatives from using
Min-Bytes and Min-BW. Algorithm 2 shows the logic of MBAB:
Starting from the highest priority queue ()1, Fai finds the least
bytes sent and the least bandwidth of all flows inside each coflow
(lines 4-8), and updates the set F),;, whose flows have the
least bytes sent (lines 9-11). If any flow in F},;, has the least
bandwidth, we set the bandwidth of other flows in this coflow
to the bottleneck flow bandwidth, and the remaining bandwidth
of the corresponding sender and receiver links is updated as well
(lines 12—17). Otherwise, all flows’ bandwidth allocation remains
unchanged.

Step 3: Remaining Bandwidth Reallocation. From Step 2 there
is extra bandwidth saved from withdrawing excessive allocation
to the non-bottleneck flows. We thus need to allocate this saved
bandwidth to coflows to improve their CCT. For this purpose we
utilize Algorithm 3 based on updated bandwidth information from
Algorithm 2. The bandwidth reallocation adopts strict priority
scheduling. For each coflow, Fai iterates through all its flows,

1. Lmin — T, .
left capacity
2: fort =1 to ndo
for C; € Q; do
for f, € C; do

3

4

5 Liege = min{Ly*, Ly
6: if Licpe < L{Z}’t’ then

7 test = Lieft

8 for fi, € C; do ,

9 fr-bw = fr.bw + L{'gf’?
10: Lo =l

bw bw
11: L

min
left
min

Efk Efk
_wa — Hleft

bw

checks the remaining bandwidth on each local ingress and egress
link (lines 4 and 5), and finds the minimum remaining bandwidth
L}’e’}? (lines 6 and 7). As a result, all member flows receive
LZZ}? bandwidth and the corresponding ingress and egress links’
remaining capacities are updated (lines 8 to 11).

4 IMPLEMENTATION

Our prototype adopts the master-slave structure as shown in Fig. 3
and is based on the Aalo prototype [10]. Therefore, it natively
supports Aalo’s coflow API. The coordinator runs on the master
machine with coflow information collected from slaves at the end-
hosts. Its decisions are also enforced by the slaves.

We introduce the main components of our prototype now.
Fai Coordinator on the Master. The coordinator’s main logic
includes registering coflows, collecting coflow status, updating
coflow priorities (LAS scheduling), bottleneck flow detection,
bandwidth demotion, and bandwidth reallocation. It runs as a
separate process. To implement our MBAB heuristic, we modify
the bandwidth allocation function getSchedule() inside the Dark-
Scheduler of Aalo prototype. We write three new functions, Ini-
tRates(), BottleneckDetection(), and AllocRemains(), to implement
the three steps (Agorithms 1, 2, and 3) in §3.2.
Fai Slaves on End Hosts. Fai slaves monitor flows locally
and send out flow status to the coordinator on each heartbeat.
Besides, when the local daemon receives messages for bandwidth
allocation, it enforces the specified flow rate by using Linux’s
tc and HTB gdisc tools. Specifically, we use the two-level HTB:
the leaf nodes enforce per-flow rates and the root node classifies
outgoing packets to their corresponding leaf nodes.
Choice of Scheduling Epoch. Fai slaves are more closely in sync
as the epoch interval decreases. Based on our measurement in §5.2
(Fig. 8(a)) that a 40-machine CloudLab cluster can re-synchronize
within 5.37 milliseconds on average, we recommend that the
epoch period is O(10) milliseconds, which is similar to Aalo [10].
We show Fai’s overall performance with different coordination
periods in §5.2 (Fig. 8(b)).
Implementation Overhead of Fai Slaves. To measure the CPU
and memory overheads of Fai slaves, we saturate the 1GbE NIC
of our server with two 2.4GHz Intel Xeon 8-Core E5-2630 v3
processors and 64GB DDR4 RAM. The CPU overhead is around
1% compared with the Aalo daemons. Throughput remains the
same in both cases.
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5 EVALUATION

In this section, we evaluate Fai through a series of testbed experi-
ments on a 40-machine cluster in CloudLab [38] using traces from
both production clusters and an industrial benchmark. For large-
scale evaluation, we use a trace-driven simulator that performs a
detailed replay of task logs. Our evaluation seeks to answer the
following questions:

e How well does Fai perform compared to existing non-
clairvoyant coflow schedulers, and what is its perfor-
mance gap compared to a clairvoyant scheduler with
complete information? In §5.2, using Coflow-320 and
Coflow-FB, we show that Fai’s improvements in average
and 95th percentile CCTs over Aalo are at least 1.87x
and 2.99x, respectively. Compared against clairvoyant
scheduler Varys, Fai performs 11% worse on average, and
12.50% on 95th percentile.

« How well does Fai scale in practice? In §5.2, we show
that Fai achieves reasonable scalability with slave dae-
mons. We also show that the choice of 10ms coordination
period achieves a good balance between performance and
overhead.

o How efficient is our MBAB heuristic for bottleneck
detection and bandwidth update? In §5.3, we can see
that MBAB reduces the average normalized CCT by up
to 1.66x and 2.23Xx over Min-BW, and by up to 1.71X
and 2.33x over Min-Bytes for Coflow-320 and Coflow-FB
workloads, respectively.

e How does Fai perform in large-scale simulations?
In §5.4, we observe that, on average across network loads,
Fai reduces normalized CCT by 1.58x for Coflow-320
workload and 1.76x for Coflow-FB workload.

e How does Fai perform with various flow size distribu-
tions within a coflow? In §5.6, we show that with varying
flow sizes, the normalized CCT stabilizes 1 with at most
8% difference.

5.1 Evaluation Settings

Testbed. Our testbed experiments are deployed in a cluster in
CloudLab with 40 machines connected to a 1GbE switch. Each
machine has two 2.4GHz Intel Xeon 8-Core E5-2630 v3 proces-
sors, 64GB DDR4 RAM, 200GB SSD, and a quad-port Intel 1350
GbE NIC. All machines run Ubuntu 16.04.2 LTS. We use the same
compute engine as both Aalo [10] and Varys [11].

Testbed Workloads. We use two workloads from production
environments. The first one we adopt is the same as the one
used in prior work [10], [11], [21]. It is based on a one-
hour Hive/MapReduce trace collected from a 3000-machine, 150-
rack Facebook production cluster [36] and includes 526 coflows.
Fig. 4(a) shows the distribution of the number of concurrent
coflows for this Coflow-FB workload. The original cluster had
a 10:1 core-to-rack oversubscription ratio and a total bisection
bandwidth of 300Gbps. In our experiments, we scale down jobs
accordingly to match the maximum possible 40Gbps bisection
bandwidth of our deployment while preserving their communi-
cation characteristics. Besides, the second includes 320 coflows
generated by the CustomTraceProducer in CoflowSim [39] ac-
cording to a production trace collected from Microsoft cluster.
We call it Coflow-320 in the following. Coflow-320 is based on
a hybrid trace of web search and other services collected from
6000-machine, 150-rack Microsoft production clusters. In these
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Fig. 4: Workload characteristics for both Coflow-FB and Coflow-
320 workloads.

% of Coflows SN | LN | SW | LW
Coflow-320 12 38 12 38
Coflow-FB 60 16 12 12

TABLE 4: Coflows binned by their length (Short or Long) and
width (Narrow or Wide) for both Coflow-FB and Coflow-320
workloads. SN represents short and narrow coflows, LN long and
narrow coflows, SW short and wide coflows, and LW long and
wide coflows.

clusters, each server connects to a Top of Rack switch (ToR) via
1Gbps Ethernet. Fig. 4(b) shows the distribution of the number of
concurrent coflows for this Coflow-320 workload. We also scale
Coflow-320 to match with the 40Gbps bisection bandwidth.
Simulator. For large-scale simulations, we used a trace-driven
flow-level simulator that performs a detailed task-level replay of
the traces. It preserves input-to-output ratios of tasks, locality
constraints, and inter-arrival times between jobs, and it runs at
1s decision intervals. Besides, the data center fabric is modeled
as a 150x150 non-blocking switch, where an ingress (egress)
port corresponds to a 1Gbps uplink (downlink) of a rack. This
is commonly used in existing work [10], [11], [21], [40]-[42].
Simulation Workloads. Our simulations use the same two work-
loads used in the testbed experiments. To simulate various loads,
we vary the number of coflows arriving to the network in one
time slot (10ms in our simulation). Coflows arrive according to
a Poisson process continuously instead of only appearing at the
beginning of the time slot. Rather than directly using Coflow-FB,
we manually modify the coflow arrival times to produce various
traffic loads. Coflow-FB contains the concrete coflow arrival time
for each load which we directly use for generating coflows. For
Coflow-320, we generate five traces for each load and launch
coflows accordingly. Thus for each scenario we conduct one
individual run for Coflow-FB and conduct five independent runs
and report the average results for Coflow-320. Both workloads
combine all mappers (resp. reducers) under the same rack into
one rack-level mapper (resp. reducer), as production clusters are
oversubscribed in core-rack links [43], [44] and simulating rack-
level is sufficient for them. Noted that flow sizes of 20% coflows
in Coflow-FB workload are skewed [11].

Schemes Compared. First, to demonstrate the efficiency of
the MBAB bottleneck detection heuristic, we compare it against
other design choices (Min-BW and Min-Bytes) we explored in
§3.2. Subsequently, we compare Fai with two well-known coflow
schedulers: Aalo [10] and Varys [11]. As explained Aalo is a non-
clairvoyant scheduler, and Varys is clairvoyant and uses complete
knowledge of a coflow’s individual flows. Therefore, Aalo serves
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Fig. 5: [Testbed] Average and 95th percentile improvements in
job and communication completion times using Fai over Aalo and
Varys with Coflow-320 workload. Job completion time (JCT) is the
end-to-end time including communication time and computation
time.

as the baseline while Varys the performance upper-bound. We do
not compare against Sincronia [45] either as it is a clairvoyant
scheduler and Varys can represent it.

Metrics Used. Our primary comparison metric is the improvement
in coflow completion time (CCT). We define it as the CCT under
the compared scheme normalized by that under Fai.

Baseline CCT
CCT under Fai’

Clearly, if the normalized CCT of a scheme is greater than one,
Fai is faster than that scheme.

Normalized CCT =

5.2 Testbed Experiments

Overall Performance. Figs. 5 and 6 present the results by group-
ing jobs based on their time spent in communication using both
Coflow-320 and Coflow-FB workloads. For Coflow-320, Fig. 5(a)
shows that compared to Aalo, Fai reduces the average and 95th
percentile job completion times (JCTs) by at least 1.03x and
1.04x and at most 2.33x and 2.51 X, respectively. Fai improves
average JCT by 1.54 x and 95th percentile JCT by 1.79x. Besides,
Fig. 5(b) shows Fai’s improvements in terms of average and 95th
percentile CCT over Aalo are at least 1.21x and 1.89x, and
are at most 1.87x and 2.99 X, respectively, across the jobs. For
Coflow-FB, Fig. 6(a) shows that compard to Aalo, Fai reduces the
average and 95th percentile JCT by at least 1.11x and 1.29Xx and
at most 2.17x and 1.98 X, respectively. Fai improves average JCT
by 1.59x and 95th JCT by 1.57x. In addition, Fig. 6(b) shows
Fai’s corresponding improvements in terms of average and 95th
percentile CCT over Aalo are at least 1.35% and 2.89x, and are
2.11x and 3.96 x, respectively, across the jobs. We can see that
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Fig. 6: [Testbed] Average and 95th percentile improvements in
job and communication completion times using Fai over Aalo and
Varys with Coflow-FB workload. Job completion time (JCT) is the
end-to-end time including communication time and computation
time.

for jobs with longer relative communication time Fai can deliver
higher gains.

Fig. 7 illustrates the gains by differentiating coflows according
to their lengths and widths. The coflow distinguishments (bins) are
shown in Table 4 for both Coflow-FB and Coflow-320 workloads.
SN represents short and narrow coflows, LN long and narrow ones,
SW short and wide, and LW long and wide. As Fig. 7(a) shows,
using Coflow-320 workload, across the bins, average and 95th
percentile CCTs are improved at least 1.04x and 1.31X, and at
most 3.50x and 6.17x by Fai, respectively, compared to Aalo.
Using Coflow-FB workload, across the bins, average and 95th
percentile CCTs are improved 1.43x and 2.16X, and 2.42x and
4.96x by Fai, respectively, compared to Aalo. We observe that Fai
performs best for LW coflows for Coflow-320 and SW coflows for
Coflow-FB, because Fai can quickly detect bottleneck flows and
improve performance more pertinently.

To understand the performance gap between Fai and clair-
voyant solutions, we compare Fai with Varys, which sched-
ules coflows using complete prior information. For Coflow-320,
Fig. 5(a) shows that the gap is at most 55% for average JCT
and 35% for 95th percentile JCT. And for Coflow-FB, Fig. 6(a)
shows that the gap is at most 16% for average JCT and 12%
for 95th percentile JCT. Fig 5(b) and Fig. 6(b) further show
that Fai performs worse whenever the fraction of time spent on
communication is higher. Furthermore, Fig. 7 helps explain where
Fai performs worse than Varys. For the large coflows (LN and
LW), Fai performs similarly as Varys. For coflows from LW bins,
Fai even performs better than Varys on average for Coflow-320
and at 95th percentile for Coflow-FB, since Varys schedules short
flows first to minimize CCT.
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Fig. 7: [Testbed] Improvements in the average and 95th percentile
CCTs using Fai over Aalo and Varys. Here coflows are binned by
their length and width as shown in Table 4. SN represents short
and narrow coflows, LN long and narrow coflows, SW short and
wide coflows, and LW long and wide coflows.

Scalability. To evaluate Fai’s scalability, we run different scales of
slave daemons. Fig. 8(a) shows the average coordination time for
various number of slave daemons. Here, n slaves imply that there
are 1/40 slave daemons one each machine of our testbed. We get
the coordination time by transferring information for 100 coflows
from each daemon to coordinator and send the coordination
information back. We find that Fai’s scalability is good but slightly
worse than Aalo as expected. This is because of its bottleneck flow
detection procedure.

In addition, we vary the coordination period (A) to see the
impact on performance and support our choice of its value in
our experiments. Fig. 8(b) shows the total CCT with different A
values. Fai, Aalo, and Varys all perform worse with a larger A.
When A > 100s, they all perform similarly. Thus 10ms is a
reasonable choice to achieve a good balance between performance
and overhead.

5.3 Effectiveness of MBAB

We first investigate the effectiveness of our key design choice,
the MBAB heuristic for bottleneck detection in §3.2. We look at
the normalized CCT, which is now defined as the CCT under the
compared heuristic normalized by that under MBAB. Fig. 9 and 10,
and Table 5 and 6 depict the comparison results.

Normalized CCT. Fig. 9 shows MBAB’s average normalized
CCT improvement compared to Min-BW and Min-Bytes using the
two workloads. We observe that MBAB performs much better in
all network loads. For Coflow-320, MBAB reduces the average
normalized CCT by up to 1.66x over Min-BW, and by up to
1.71x over Min-Bytes, as shown in Fig. 9(a). For Coflow-FB,
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Fig. 8: [Testbed] Fai scalability: (a) more slave daemon processes
require longer coordination periods (Y-axis is in log scale), and (b)
longer coordination period hurts overall performance (measured as
sum of CCT). Noted that we use Coflow-FB workload here.

MBAB reduces the average normalized CCT by up to 2.23x
over Min-BW, and by up to 2.33X over Min-Bytes, as shown in
Fig. 9(b). Across all network loads, on average MBAB reduces
normalized CCT by 32.02% compared to Min-BW and 32.66%
compared to Min-Bytes using Coflow-320 workload, and 37.72%
and 39.85% correspondingly using Coflow-FB workload.

Besides, we can see Fig. 9(a) and Fig. 9(b) present different
trends, where normalized CCT decreases with the increase of
network loads in Fig. 8(a) while it increases as the network load
increases in Fig. 8(b). This is because the flow size ditributions
are quite different for Coflow-320 and Coflow-FB workloads.
From Table 4, we can see that for Coflow-320, 76% of all the
coflows are long coflows, and for Coflow-FB, only 28% are
long coflows. The benefit of more accurate bottleneck detection
by MBAB for long coflows lowers, as long flows can tolerate
inaccurate bottleneck detection for some epochs with network
load increasing. However, short flows become more sensitive to
the accuracy of bottleneck detection with network load increasing.
Thus Fig. 9 shows diffetent trands for both workloads.
Normalized CCT Distribution. We also explore the distributions
of normalized CCT in the simulation. In Fig. 10, we select the
network load 20 (low load) and 80 (high load), and plot the CDFs
of normalized CCT for them. We can see that for the majority
of coflows, MBAB provides improvements over the other two
bottleneck detection methods. For the Coflow-320 workload at
network load 20, Fai outperforms Min-BW for more than 67.81%
of the coflows, and outperforms Min-Bytes for more than 71.25%
coflows. For Coflow-FB workload, Fai improves performance of
52.85% and 51.33% of the coflows, respectively, compared to
Min-BW and Min-Bytes.

Tables 5 and 6 further present the median, 90th, 95th, and
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Fig. 10: [Simulation] CDFs of the normalized CCT with network
load 20 and 80 using Coflow-320 and Coflow-FB workloads re-
spectively. We report the average results of five traces for Coflow-
320 workload.

99th percentile normalized CCT statistics for the two workloads.
We can see that, for Coflow-320 workload, MBAB consistently
outperforms Min-BW and Min-Bytes; for Coflow-FB workload,
MBAB outperforms Min-BW and Min-Bytes except at network
load 10 and 20. On average across all loads, MBAB outperforms
Min-BW and Min-Bytes by 1.20x and 1.23 X at the median, 2.05 x
and 2.11x at the 90th percentile, 2.78 X and 2.83x at the 95th
percentile, and 6.93 x and 7.07 x at the 99th percentile for Coflow-
320 workload. The corresponding improvements are 1.28x and
1.28x at the median, 3.14x and 3.28x at the 90th percentile,
4.19x and 4.14x at the 95th percentile, and 8.15x and 8.41x at
the 99th percentile in Coflow-FB workload.

To summarize, MBAB performs more effectively than the two
strawman strategies, which justifies its effectiveness in our design.

9
Stats 10 20 40 80 160
BW Byte BW Byte | BW | Byte | BW | Byte | BW | Byte
Median 1.10 1.13 1.13 1.19 | 1.21 | 129 | 1.23 | 1.25 | 1.34 | 1.31
90% 2.52 2.59 1.83 2.0 1.84 | 1.95 | 202 | 1.99 | 2.04 | 2.03
95% 4.53 4.33 2.58 283 | 2.16 | 228 | 239 | 246 | 226 | 2.24
99% 12.53 | 12.21 | 10.52 | 10.0 | 4.20 | 5.72 | 471 | 445 | 2.67 | 2.96

TABLE 5: [Simulation] Statistics of the normalized CCT using
Coflow-320 compared to Min-BW and Min-Bytes. Results are
averaged over five runs.

Stats 10 20 40 80 160
BW Byte BW | Byte | BW | Byte | BW | Byte | BW | Byte
Median 1.0 1.0 1.0 | 1.0 113 ] 1.10 | 1.42 | 140 | 1.85 | 1.90
90% 2.0 1.99 250 | 244 | 3.05 | 330 | 375 | 4.04 | 441 | 462

95% 3.16 | 2.85 350 | 3.12 | 350 | 3.75 | 524 | 5.36 | 556 | 5.67
99% 10.21 | 11.67 | 893 | 8.93 6.0 | 5.60 | 8.13 | 8.01 | 746 | 7.86

TABLE 6: [Simulation] Statistics of the normalized CCT using
Coflow-FB compared to Min-BW and Min-Bytes.

5.4 Overall Performance

We now investigate Fai’s overall performance in terms of nor-
malized CCT, average link utilization, and flow completion time
(FCT) variance within a coflow.

Normalized CCT. We first look at the average CCT reduction
provided by Fai as shown in Fig. 11. In Fig. 11(a), for Coflow-
320 workload, Fai reduces average CCT by 1.71x, 1.58 %, 1.54x,
1.47x, and 1.63x, respectively at different loads compared to
Aalo. For Coflow-FB workload, Fig. 11(b) shows that Fai reduces
the average CCT by 1.58x, 1.65x%, 1.61x, 1.73x, and 2.23 X,
respectively compared to Aalo. On average across the loads, Fai
reduces normalized CCT by 1.58x for Coflow-320 workload
and 1.76x for Coflow-FB workload. Clearly, Fai significantly
outperforms state-of-the-art Aalo. This is expected as Fai detects
the bottleneck flows and re-distribute the abundant bandwidth that
are otherwise used without improving CCT in Aalo.

We also show the performance gap of Fai with respect to
clairvoyant scheduling represented by Varys. Fig. 11(a) shows that
Fai performs at most 96% and at least 15% worse than Varys for
the Coflow-320 workload. Fig. 11(b) shows that Fai performs at
most 64% and at least 18% worse than Varys for the Coflow-FB
workload. On average Fai is 40% and 41% worse than Varys.
Normalized CCT Distribution. Fig. 12 depicts the CDF of the
normalized CCT under different schemes for network load 20 and
80. Observe that Fai substantially speeds up coflow completion
over Aalo, and delivers similar CCT with Varys for more than half
of the coflows. For Coflow-320, more than 82.50% and 74.38%
coflows performs better in Fai than Aalo at network load 20 and
80, respectively, as shown in Fig. 12(a). More than 12.81% and
7.81% coflows finish faster in Fai than Varys at network load 20
and 80, respectively. This is because elephant flows are largely
delayed in presence of mice ones in Varys compared to Fai. For
Coflow-FB, more than 84.38% and 73.39% coflows finish faster
than Aalo at the two loads, respectively, as shown in Fig. 12(b).

Tables 7 and 8 show the statistics of normalized CCT in
different network loads. Fai outperforms Aalo significantly across
all four statistical metrics. Specificially, across all loads, the
median is improved by 1.33x; the 90th percentile improvement is
2.28x, 95th percentile 3.07x, and 99th percentile 5.76 %, for the
Coflow-320 workload. For the Coflow-FB workload, the numbers
are 1.41x, 6.76x, 10.48x, and 22.88 x. In addition, we see that
Fai performs worse than Varys in terms of median normalized
CCT because Varys has the complete coflow knowledge. In terms
of 90th, 95th, and 99th percentiles, Fai actually reduces CCT by
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Fig. 11: [Simulation] Normalized CCT comparison against Aalo
and Varys.
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Fig. 12: [Simulation] CDFs of the normalized CCT with network
load 20 and 80 using Coflow-320 and Coflow-FB workloads re-
spectively. We report the average results of five traces for Coflow-
320 workload.

large margins compared to Varys. This is because Varys always
tries to minimize the average CCT while sacrificing the fairness.

Coflow Bins. To better understand the performance impact of
Fai on different coflow workloads, we categorize coflows into
four bins based on their shuffle types. Specifically, we say a
coflow is small (long) if its largest flow is less (greater) than
SMB, and narrow (wide) if it consists of less (more) than 50
flows [10], [11], [46]. Table 4 summarizes the distribution of
binned coflows. We then plot the average and 95th percentile
normalized CCT in four coflow bins as shown in Table 4 in
Fig. 13 for Coflow-320 and in Fig. 14 for Coflow-FB. We see that
Fai consistently outperforms Aalo across all bins, Fai’s average
and 95th percentile CCT is up to 1.80x and 1.94x better for
Coflow-320 and 4.27 x and 5X better for Coflow-FB, respectively.
Note that the coflows in the SW bin have the largest CCT gap
between Fai and Varys. This is because coflows with large width
and small length tend to be scheduled poorly using non-clairvoyant

10
Stats 10 20 40 80 160
Aalo | Varys | Aalo | Varys | Aalo | Varys | Aalo | Varys | Aalo | Varys
Median 122 | 073 129 | 0.69 1.32 | 0.69 1.33 | 0.58 1.52 | 053
90% 271 1.07 | 221 1.05 2.05 1.07 | 2.08 | 097 [ 233 1.03
95% 4.69 1.53 3.25 1.16 | 241 1.16 | 248 1.10 | 2.54 1.11
99% 11.0 | 1033 | 6.41 322 4.0 1.74 | 428 1.53 | 3.10 1.51

TABLE 7: [Simulation] Statistics of the normalized CCT com-
pared to Aalo and Varys in Coflow-320. All results are averaged
over five runs.

Stats 10 20 40 80 160
Aalo | Varys | Aalo | Varys | Aalo | Varys | Aalo | Varys | Aalo | Varys
Median 1.01 0.71 1.02 0.56 1.14 | 0.50 1.61 0.53 2.29 0.61
90% 2.10 1.07 3.0 1.17 3.32 1.23 13.27 1.49 12.10 | 1.55
95% 3.39 1.39 3.79 1.59 3.87 1.51 20.71 2.02 20.63 231
99% 12.60 | 2.09 11.71 241 6.10 | 229 [ 4520 | 412 [ 3877 | 646

TABLE 8: [Simulation] Statistics of the normalized CCT com-
pared to Aalo and Varys in Coflow-FB.
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Fig. 13: [Simulation] Average normalized CCT across different
coflow bins using Coflow-320 (network load 20).
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Fig. 14: [Simulation] Average normalized CCT across different
coflow bins using Coflow-FB (network load 20).

schedulers. In contrast, Varys performs worse than Fai in terms of
95th percentile normalized CCT, especially for LN and LW bins.
This is because Varys delays large coflows in presence of small
ones. The results also explain why Fai has different performance
gains in different workloads each with a unique combination of
shuffle types.

Network Utilization. We now evaluate the average link utiliza-
tions in Fai, Aalo, and Varys. Table 9 summarizes the results
across the entire simulation time. We can clearly see that all three
schemes have the same link utilization essentially: the maximum
difference is 7%, which happens with load 10 between varys and
aalo in Coflow-FB workload. This demonstrates that, Fai does
not improve the CCT performance by using more bandwidth
resources. Instead, it improves the CCT performance by better
utilizing the bandwidth resource compared to Aalo which may
allocates excessive bandwidth to non-bottleneck flows.
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Network Load (%) 10 [ 20 | 40 | 80 | 160
Fai 74 76 | 77 | 18 | 719

Coflow-320 Aalo 75176 [ 77T 78
Varys || 77 | 79 | 80 | 81 82

Fai 75|75 |75 75| 74

Coflow-FB Aalo 3747575 74
Varys 80 | 79 | 81 | 79| 719

TABLE 9: [Simulation] Average link utilization across time in Fai,
Aalo, and Varys.
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Fig. 15: [Simulation] Average normalized FCT variance using two
workloads. We report the average results of five traces for Coflow-
320 workload.

FCT Variance. We now look at the flow completion time (FCT)
variance within a coflow under different schedulers. FCT variance
is defined as the difference between the largest and smallest FCTs
of flows within a coflow. A small FCT variance indicates the
flows within a coflow finish at around the same time, which is
preferred, and a large FCT variance means some flows lag behind
significantly. We log each flow’s completion time, and use the
normalized FCT variance as the comparison metric, which is
defined for each coflow as the FCT variance under the compared
scheme divided by that under Fai. Fig. 15 shows the average
normalized FCT variance across different loads using Coflow-320
and Coflow-FB workloads. Observe that Fai always outperforms
Aalo in the two workloads, since the normalized FCT variance is
much larger than 1. Fai also outperforms Varys across all loads
excluding load 10 for Coflow-320 workload. This is interesting as
Varys also tries to reduce the FCT variance. Yet, this phenomenon
appears because of the coflow distributions of Coflow-320 (LW
bin has 38% coflows). Specifically, in Fig. 15(a), on average Fai
can improve by 14.40x for Coflow-320 and 19.74x for Coflow-
FB across all loads compared to Aalo. For Coflow-320 workload,
the maximum normalized FCT variance is 17.14; for Coflow-FB
workload, it is 47.49. In Fig. 15(b), for Coflow-320 worload, on
average Fai can improve the normalized FCT variance by 2.35X
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Fig. 16: [Simulation] Average normalized CCT using Fai over
other scheduling policies with Coflow-320 and Coflow-FB work-
loads. Noted that the network load is 80.

compared to Varys. Besides, Fai can improve the normalized FCT
by up to 4.19x. Though Fai does not always perform better than
Varys, especially in the Coflow-FB workload, it only performs
worse than Varys by 0.32X on average.

5.5 Comparing Fai against Aalo, Varys, Saath, and Sin-
cronia in One Figure

In order to investigate the performance gap between Fai and
other scheduling policies including Aalo, Varys, Saath [27], and
Sincronia [45], we evaluate the average normalized CCT. Saath is
a non-clairvoyant coflow scheduler and Sincronia is a clairvoyant
one. Fig. 16 depicts the simulation results. We observe that,
for Coflow-320, Fai improves average normalized CCT by 47%
compared to Aalo, and performs 33%, 12%, and 39% worse
compared to Varys, Saath, and Sincronia, respectively. For Coflow-
FB, Fai improves average normalized CCT by 73% compared to
Aalo, and performs 26%, 5%, and 45% worse compared to Varys,
Saath, and Sincronia, respectively.

The results further confirms Fai’s effectiveness over Aalo. Fai
performs similarly as Saath, and their designs may be integrated
to further improve coflows’ performance.

5.6 Impact of Flow Size Variance within a Coflow

1.10
1.05

1.00

Avg. Normalized CCT

0.95

Flow Size Variance Degree

Fig. 17: [Simulation] Average normalized CCT with varying flow
size variance in the Coflow-320 workload.

In the previous experiments, flows within a coflow have the
same size. One may wonder if Fai is still able to provide benefits
when flows within a coflow have different sizes. To evaluate this,
we vary the flow sizes while keeping the total shuffle bytes of
the coflow unchanged in each trace. Specifically, we vary the
degree of flow size variance which is the average size difference
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between the largest and smallest flows within a coflow normalized
by its median flow size. Normalized CCT is now defined as CCT
in Fai with the varying flow sizes normalized by CCT when all
flows have identical size. We show the results using Coflow-320
workload with loads of 20 and 80 in Fig. 17, when the degree of
flow size variance changes from 0.05 to 0.6 (that is, on average
the largest/smallest flow is 30% larger/smaller than the median
flow of the coflow). Results using the Coflow-FB workload are
quantitatively the same and omitted for brevity. We see that flow
size variance hardly impacts Fai’s CCT performance: the normal-
ized CCT stabilizes at 1 with at most 8% difference. Thus, it
demonstrates that Fai consistently delivers favorable performance
gains even when flows within a coflow have fairly different sizes.

The reason for Fai’s robustness to flow size distribution is its
ability to identify bottleneck flows. As we analyzed before in §3.2,
our MBAB algorithm is designed to deal with non-uniform flow
sizes within a coflow by jointly considering flows’ total bytes
sent until current epoch and the allocated bandwidth. In §5.3,
the simulation results also demonstrate MBAB’s effectiveness in
identifying bottleneck flows.

6 DiscuUsSION

Scalability. Fig. 8 shows Fai’s scalability running as a central-
ized system with 25000 machines, whose coordination time is
7005.28ms (< 10s). To cope with even larger scale, one can deploy
Fai in a distributed manner. As topologies of data center networks
are based on multi-rooted trees [47], we can partition a large
network into multiple smaller autonomous regions [48], each of
which is handled by one Fai coordinator. Besides, we can also
simplify it by using sampling based methods to estimate coflow
and flow size, and infer the global bottleneck flow(s) of a coflow
using SJF scheduling like Philae [49], in order to further improve
scalability.

7 RELATED WORK

There has been much work on coflow scheduling. We present Fai
first in the conference paper [1]. Here we revise the design to
make each component modular (§3), re-implement it to make it
run in our testbed (§4), and evaluate it using testbed experiments
and large-scale simulations (§5).

We discuss related work other than Aalo [10] and Varys [11]
which have been discussed throughout this paper.
Clairvoyant Scheduling. A series of work [9], [45], [50] assumes
that they know information about coflows a priori. Some work
such as [51]-[53] proposes approximation algorithms to improve
the performance of schedulers. Utopia [40] focuses on isolation
and providing fairness guarantee in coflow scheduling. Stream
[41] is a decentralized scheduler, which utilizes many-to-one
coflow patterns to coordinate coflows in a distributed manner.
Sunflow [54] adopts both intra-coflow and inter-coflow scheduling
to approach the optimal for optical circuit switched network.

Although recent work has shown that it is possible to identify
coflows and their properties with reasonable accuracy for some
applications [21], in most production scenarios such prior infor-
mation is impossible to obtain as explained in §1.
Non-Clairvoyant Scheduling. Like Fai, several non-clairvoyant
coflow schedulers have been developed to work in more practical
scenarios. Other than Aalo, CODA [21] attempts to identify and
schedule coflows without application modifications and designs

12

an error-tolerant scheduler, making it applicable to many practical
cases. Besides, Saath [27] and Fai both adopt the same coflow
priority structure as Aalo [10], and take into account the spatial
dimension of coflow scheduling as well. Fai differs from Saath in
the following aspects. Firstly, Saath uses all-or-nothing policy to
avoid the out-of-sync problem of flows. In contrast, Fai utilizes
weighted fair sharing across queues and fair sharing for the
same queue, which guarantees flows of a coflow at different
ports can get scheduled at the same time. Second, Saath adopts
least contention first scheduling for the same priority queue and
decides the coflows to be scheduled first, while Fai schedules all
the coflows and tries to reallocate bandwidth based on coflow
priorities and explicitly restricts the allocated bandwidth of each
flow to solve the contention at each port. Graviton [55] aims to
improve the coflow performance by adopting different scheduling
policies in different queues. NC-DRF [42] and Coflex [56] try to
provide isolation guarantees between contending coflows. While
the above work has to modify applications for coflow schedulers.
Necessity of Centralized Solutions. Similar to [10], [11], [45],
Fai requires a centralized coordinator to implement LAS schedul-
ing. In contrast, Baraat [9] is a FIFO-based decentralized coflow
scheduler focusing on small coflows. It uses fair sharing to avoid
head-of-line blocking and does not support deadlines. Philae [49]
proposes to explicitly learn coflow sizes online by sampling and
reports to the SJF scheduler using the estimated coflow sizes. Fai
can use its design philosophy to improve the scalability. While the
amount of computation required by Fai’s centralized coordinator is
much lower according to practical experiments. It is still an open
problem to understand how well a centralized scheduler performs
in the large-scale production clusters.
Coflows with Routing. Fai, similar to [9], [11], [45], assumes
the routing of flows within and across coflows are decided by the
network layer (e.g., specific per-flow routing scheme or packet
spraying). Yet, it is a priori conceivable that better performance
can be achieved by co-designing coflow scheduling with routing.
This problem has been studied in much recent work [50], [57]-
[59]. DBA [60] proposes a distributed bottleneck-aware algorithm
to schedule coflows to deal with in-network bottlenecks and ap-
proximate the minimum remaining time first. Fai can also extend
to cope with in-network bottlenecks.
Other Performance Metrics. Finally, Fai is designed to improve
the average coflow completion time, which is similar to the most
of existing work on coflow scheduling [10], [11], [21], [45], [61].
There are many other interesting questions to explore other coflow
metrics, such as considering the case of deadline-sensitive coflows
with minimizing tail coflow completion time and fairness for
coflows.

None of the above work considers adjusting the excessive
bandwidth allocation according to the bottleneck flow, which is
the focus of our work in this paper.

8 CONCLUSION

We have presented Fai, a non-clairvoyant coflow scheduler. Fai is
based on the LAS scheduling discipline and improves the perfor-
mance of a coflow’s bottleneck without affecting other flows. We
implemented and evaluated Fai on a 40-machine cluster and using
large scale trace-driven simulations with production workloads.
Both testbed experiments and trace-driven simulations showed that
Fai outperforms Aalo substantially.
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This work takes a new step towards finding the local bottleneck

flow within each coflow for distributed coflow scheduling. Al-
though MBAB in Fai works well, it also opens up exciting research
challenges on the theoretical underpinning, such as analysis about
bottleneck flow detection and on characterizing the performance
gap between non-clairvoyant and clairvoyant schedulers.
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