
IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 29, NO. 2, APRIL 2021 681

Elasecutor: Elastic Executor Scheduling
in Data Analytics Systems

Libin Liu , Member, IEEE, ACM, and Hong Xu , Senior Member, IEEE, Member, ACM

Abstract— Modern data analytics systems use long-running
executors to run an application’s entire DAG. Executors exhibit
salient time-varying resource requirements. Yet, existing sched-
ulers simply reserve resources for executors statically, and
use the peak resource demand to guide executor placement.
This leads to low utilization and poor application performance.
We present Elasecutor, a novel executor scheduler for data
analytics systems. Elasecutor dynamically allocates and explicitly
sizes resources to executors over time according to the predicted
time/̄varying resource demands. Rather than placing executors
using their peak demand, Elasecutor strategically assigns them
to machines based on a concept called dominant remaining
resource to minimize resource fragmentation. Elasecutor further
adaptively reprovisions resources in order to tolerate inaccurate
demand prediction and reschedules tasks to deal with inadequate
reprovisioning resources on one machine. Testbed evaluation on a
35-node cluster with our Spark-based prototype implementation
shows that Elasecutor reduces makespan by more than 36% on
average, and improves cluster utilization by up to 55% compared
to existing work.

Index Terms— Data analytics systems, elastic scheduling,
executor, distributed systems.

I. INTRODUCTION

DATA analytics systems are widely used to process big
data [1]–[3], [5], [25], [36], [39], [41], [53], [66],

[78], [80]. The workflow of an analytics application can
be expressed as a directed acyclic graph (DAG), which is
composed of different stages of processing. Each stage runs a
number of tasks on worker machines, and each task performs
the same computation on different partitions of data [23], [25],
[33], [34], [51], [55]–[57], [80].

Resource scheduling is critical in data analytics systems.
Many resource schedulers have been developed for various
objectives, such as fairness, cluster utilization, application
completion time, etc. [22], [27], [29], [30], [33], [37], [40],
[42], [48], [52], [58], [62], [67], [68], [70], [81]. Most are
developed for a task-based execution model. They assume

Manuscript received January 25, 2019; revised May 28, 2020; accepted
December 10, 2020; approved by IEEE/ACM TRANSACTIONS ON NET-
WORKING Editor Y. Guan. Date of publication January 22, 2021; date of
current version April 16, 2021. This work was supported in part by the
Hong Kong Research Grants Council under Award C7036-15G and Award
11216317, and in part by The Chinese University of Hong Kong under
Grant 4937007, Grant 4937008, Grant 5501329, and Grant 5501517. This
article was presented at ACM SoCC’18. (Corresponding author: Hong Xu.)

Libin Liu is with the Theory Lab, Huawei Hong Kong Research Center,
Hong Kong, China (e-mail: liulibinsdu@gmail.com).

Hong Xu is with the Department of Computer Science and Engineer-
ing, The Chinese University of Hong Kong, Hong Kong, China (e-mail:
hongxu@cuhk.edu.hk).

Digital Object Identifier 10.1109/TNET.2021.3050927

Fig. 1. A toy example to demonstrate the drawbacks of static allocation.
The host’s capacity is 8, and applications are submitted at time t0 and their
resource demand time series are shown. In (a), static allocation runs all
three applications sequentially, since their peak demands prevent them from
running concurrently. In (b), elastic allocation allows them to run as long as
their demand time series can be packed together, and reduces the makespan
by 50%.

a task, which corresponds to one stage of the application
DAG and is an individual process, is the basic execution unit
and therefore the basic scheduling unit. This holds in general
for batch processing systems like Hadoop [2] and cluster
schedulers such as Yarn [68]. In Yarn for instance, tasks run in
individual “containers” where Java virtual machines (JVMs)
are spawned. A “container” runs one task only and is shut
down after the task finishes.

However, in-memory analytics systems such as Spark [3]
and Storm [4] rely on a different executor-based model [46],
[72]. An executor is a long-running JVM process that executes
an application’s entire DAG [7], [80]. Once an executor is
launched, the scheduler can dispatch different tasks to it.
This enables data reuse across tasks and significantly reduces
the overhead of launching tasks which is critical for fast
in-memory processing [57], [80]. Executor-based systems usu-
ally adopt task-based resource schedulers for simplicity. This,
however, leads to various performance and efficiency problems
as a result of the unfitting assumptions.

First, since the resource usage of a task is roughly con-
stant, most schedulers use static allocation [22], [24], [32],
[33], [37], [52], [58], [59], [62], [68]. However, executors
naturally exhibit time-varying resource usages since they
run the application’s entire DAG. As we will show in §II,
an executor’s peak-to-trough resource usage can be as high as
409x for extended periods of time. Existing schedulers then
have to use peak demands to reserve resources [24], [33],
[37], [68] which leads to cluster underutilization and degraded
makespan.1 Applications may also have to wait longer for
enough resources to become available, resulting in prolonged
completion times and poor user experience. Figure 1 illustrates
this using a toy example.

Recent work such as Morpheus [67] addresses this by
dynamically reserving resources and adjusting the number

1Makespan measures the total time used to complete all applications.

1558-2566 © 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

https://orcid.org/0000-0002-2718-8483
https://orcid.org/0000-0002-9359-9571

682 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 29, NO. 2, APRIL 2021

of executors as the application progresses. Also, some
work [32]–[35], [42] tries to increase task parallelism within
an executor. That is, we keep the executor resource allocation
fixed, and increase or decrease the number of tasks run in
parallel within the executors. Both methods are shown to
improve resource utilization. However, they do not funda-
mentally address the problem, because each executor is still
allocated a fixed bundle of resources during the entire time,
which still incurs underutilization or overallocation of different
resources in face of time-varying multi-resource demands
across different stages.

Besides resource allocation, a scheduler also needs to care-
fully assign executors to machines in a cluster. Usually this
is done using the executor’s peak demands and machine’s
remaining capacity [37], [68], [70]. Such an approach does
not precisely capture the time-series utilization of the worker
machines and executors and creates fragmentation, when
resources are idle but cannot be used to schedule executors
that are ready. We give two examples of fragmentation:
(1) An application’s peak demand may exceed a machine’s
remaining capacity at the moment, and it cannot be placed
on this machine. Yet, it is possible that the peak demand
only happens in a later time, at which point the machine will
have enough capacity to run it (because some applications will
have finished by then); (2) An application with a very short
period of high peak demand is selected to run first, preventing
applications with stable demand from being scheduled on the
same machine.

To address these problems, we propose Elasecutor,
a novel executor scheduler that exploits time-varying resource
demands for resource allocation and executor assignment.
Elasecutor considers multiple resources: CPU, memory, net-
work, and disk I/O. It exploits the recurring nature of many
applications in production [17], [19], [33], [52], [67], and
predicts the resource demands of applications over its life-
time. Elasecutor elastically allocates resources to executors
according to the predicted time series of demands in order to
reduce underutilization. It then packs executors strategically
onto machines to minimize fragmentation among multiple
resources and improve makespan.

We make the following contributions in this article.
• We make a case for elastic executor scheduling (§II).

We show through measurements with real workloads that
Spark executors exhibit significant time-varying resource
usage patterns (§II-A). We further experimentally estab-
lish the predictability of executor’s demand time
series (§II-B).

• We design a new scheduler called Elasecutor (§III), that
allocates time-varying resources to executors and assigns
them to machines based on the predicted demand time
series (§III-B). To do so, Elasecutor relies on a con-
cept called dominant remaining resource to search for
executors whose demand time series best matches the
time series of a machine’s available resources. Elasecutor
also reprovisions resource dynamically at runtime to
compensate for possible prediction errors (§III-C) and
timely reschedules tasks when machine’s resources are
unavailable for reprovisioning (§III-D).

• We implement Elasecutor on Spark (§IV) and present
a realistic performance evaluation on a 35-machine
cluster (§V). Experiments with real workloads show that
Elasecutor substantially improves performance. Com-
pared to existing solutions such as Tetris [33], Elasecutor

TABLE I

INPUT DATASET SIZE FOR PROFILING THE FOUR SPARK WORKLOADS
FROM THE HIBENCH BIGDATA BENCHMARK SUITE [10]. EACH

WORKLOAD RUNS WITH 20 EXECUTORS, EACH

USING AT MOST 3 CORES AND 8GB MEMORY

reduces makespan by up to 63%, and improves resource
utilization by up to 55%.

II. MOTIVATION

We motivate our work by highlighting the limitations of
peak based static executor allocation and assignment com-
monly used in current systems (§II-A). We also show that
the executor resource usage can be fairly well predicted when
the workloads are recurring (§II-B).

A. Need for an Elastic Scheduler

Executors are the basic scheduling unit in Spark and similar
systems. Each application has dedicated executors to run its
tasks [7]. Current executor schedulers [3], [24], [37], [68] work
in virtually the same way as task schedulers for systems like
Hadoop [2]. Users need to specify the resource demands of an
executor, so the scheduler can make resource reservations. The
resources allocated to an executor are static and released only
after the application finishes. Thus peak resource demands
have to be used for allocation.

We argue that current schedulers can lead to severe resource
underutilization because application resource usage varies
greatly in different stages of data processing [33], [56], [67],
[75], [76]. To demonstrate this, we profile the resource usage
of executor processes using several typical Spark workloads
as shown in Table I, including Terasort, K-means, Logistic
Regression (LR), and Pagerank. These workloads are com-
monly used in existing work [10], [35], [38], [56], [57].
We develop a monitoring module on Spark to collect CPU,
memory, network I/O, and disk I/O usage of an executor. The
measurements are done on our 35-machine testbed described
in §V-A.

From Figure 2, we observe that the executor resource usage
exhibits significant temporal variations. CPU usage varies all
the way from only 4% to 100% for all applications. Similarly,
memory usage ranges from 500MB to nearly 6.8GB for K-
means. The network I/O varies from almost 0Gbps to ∼4Gbps
for LR, and disk I/O from almost 0MB/s to ∼190MB/s for
Terasort, respectively. More than half of the time an executor
actually uses very little resources. Table II further shows our
detailed analysis for executor’s resource usage. We can see that
the peak-to-trough ratio is high, ranging from 3.3 to 409.6. The
period of peak resource usage takes up at most 22.4% of total
runtime, and more than half of the runtime the resource usage
actually falls below 50% of the peak except for memory.

Therefore static allocation using peak demands would
clearly cause severe resource wastage and performance issues.

Some recent work [37], [67] has considered dynamically
adjusting the number of executors according to the workload
in order to improve utilization. Yet each executor still gets a
fixed bundle of resources (CPU and memory) during the appli-
cation’s entire runtime. As observed in Figure 2, the usages

LIU AND XU: ELASECUTOR: ELASTIC EXECUTOR SCHEDULING IN DATA ANALYTICS SYSTEMS 683

TABLE II

STATISTICAL ANALYSIS OF THE TIME-VARYING RESOURCE USAGE OF EXECUTORS FOR THE FOUR SPARK WORKLOADS (P/A = PEAK
USAGE/AVERAGE USAGE, P/T = PEAK USAGE/TROUGH USAGE, DP/T = DURATION OF PEAK USAGE/TOTAL RUNTIME,

DHP/T = DURATION FOR EXCEEDING HALF OF PEAK USAGE/TOTAL RUNTIME)

Fig. 2. Heat maps of resource usages for four Spark workloads. The
resource usages are normalized to the highest value of the executor. For
all applications, the highest CPU usage is 3 cores; Terasort, K-means,
Pagerank, and LR have 5.9GB, 6.8GB, 6.1GB, and 6.5GB highest memory
usage; 2.4Gbps, 0.53Gbps, 0.62Gbps, and 4Gbps highest network usage; and
181MB/s, 103MB/s, 96MB/s, 170MB/s highest disk I/O usage.

of different resources do not correlate strongly. Thus such
an approach does not fundamentally solve the over-allocation
issue. Moreover, they only consider CPU and memory, and
lack control over shared network and disk I/O resources. This
results in possibly severe contention of shared resources which
may then lead to underutilization of other resources.

B. Predictability of Resource Usage Time Series

To design an elastic executor scheduler, we need to have
prior information about the time series of resource demands
for executors. We now show that such information can be fairly
easily predicted in practice.

Recent studies report that many production analytics work-
loads are recurring, such as running the same queries peri-
odically on new data [17], [19], [33], [52], [67]. Further,
the running times of the workloads are mostly constant given
the same amount of input data and resources [17], [29], [33],
[55], [67], [77]. Hence we can predict an executor’s future
resource requirements based on profiling its previous runs.

To see this, we measure eight workloads each with three
input dataset sizes shown in Table III. We vary the number of
CPU cores from one to five and memory from 2GB to 10GB
correspondingly [11], creating five different resource profiles.
Then for each application (a workload with certain dataset
size and CPU and memory setting), we run a resource profile
five times, each time with different datasets of the same size.

Fig. 3. The CDFs of coefficient of variations (CoVs) for per-stage execution
time (SET) and resource peak usage of each executor over five runs for each
of the eight workloads with different settings on CPU core and input data
size shown in Table III. Each run uses a different input dataset.

Other settings are the same as in §II-A. We collect the com-
pletion times of each stage and executor’s peak resource usage
in each stage, then calculate the coefficient of variation (CoV)
over the five runs. Figure 3 shows the cumulative distribution
of CoVs for per-stage execution time and per-stage peak
resource usage. To make it clearer, we also use Table IV to
show the corresponding statistical analysis of CoVs. We can
see that CoVs are in general smaller than 14% and each stage’s
execution time is quite stable (90%ile CoV is less than 5.5%),
as a CoV value less than 1 is considered to be low
variance [29].

Therefore, for most recurring workloads it is accurate
enough to use the profiling results from previous runs with
same resource setting to represent the resource demands. For
workloads with new settings, we can also build a prediction
model [19], [26], [29], [69], [76] to infer their time-series
resource usage, which we detail in §IV. Note that for new
applications, we need to collect data for several runs before
we can predict the resource demand time series. Again given
that most workloads are recurring, we believe this does not
affect the usability of our system.

III. DESIGN

We now present the design of Elasecutor in this section.
We start by presenting the system overview in §III-A. We then
explain in detail the elastic executor scheduling algorithm
in §III-B, which is the core contribution of the design. Lastly,
we discuss in §III-C how Elasecutor uses dynamic reprovi-
sioning at runtime to minimize the impact of prediction errors
in inferring the executor’s resource demand.

684 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 29, NO. 2, APRIL 2021

TABLE III

THREE TYPES OF INPUT DATASET SIZES FOR THE EIGHT WORKLOADS OF THE HIBENCH BIGDATA BENCHMARK SUITE [10]

TABLE IV

STATISTICAL ANALYSIS OF COVS

Fig. 4. Elasecutor overview (key components are highlighted).

A. Overview

Elasecutor is an executor resource scheduler for data ana-
lytics systems. It predicts executors’ time-varying resource
demands (step 1 in Figure 4), collects workers’ available
resources (step 2), assigns executors to machines to minimize
fragmentation (steps 3 and 4), elastically allocates resources
(step 5), and leverages dynamic reprovisioning for better
application QoS (steps 6 and 7).

We explain several key components here.
1) Monitor Surrogate: Elasecutor employs a monitor surro-

gate at each worker node to continuously monitor the resource
usage of executors in real-time. It collects the process-level
CPU, memory, network I/O, and disk I/O usage, and reports
the time series profiles to the resource usage depository (RUD)
at the master node via RPC. The information is then used to
build machine learning models to predict executor resource
time series. The monitor surrogate also reports the node’s
future available resources to the RUD. Moreover, it monitors
executor progress to see whether reprovisioning should be
triggered due to significant prediction errors.

2) Resource Usage Depository (RUD): The RUD runs as
a background process at the master node communicating
with monitor surrogates and collecting information at each
heartbeat of 3s. For simplicity we use a single master node and
one RUD process, which is sufficient in our testbed evaluation.

We can scale the RUD to multiple cores or multiple masters
for large-scale deployment following many similar designs in
distributed control plane [45], which is beyond the scope of
this article.

3) Scheduling Module: The scheduling module decides how
resources should be allocated to executors and which executors
should be assigned to machines. It obtains an application’s
demand time series from the prediction module which we
will introduce shortly. It then packs executors to machines
across multiple resource types, in order to avoid overallo-
cation and minimize fragmentation throughout the executor’s
lifetime. For this purpose, we design a scheduling algorithm
based on a novel metric called dominant remaining resource
(DRR) which is detailed in §III-B. Once a scheduling decision
is made, the selected worker IDs along with the executor
IDs are sent to Spark’s resource manager [7], which instructs
the corresponding workers to launch the executors.

4) Allocation Module: This module explicitly and dynam-
ically sizes the resource bundles to the executor process
according to the resource manager’s instructions. Through this,
Elasecutor implements elastic allocation based on time-varying
demands, which is illustrated in detail in §IV.

5) Reprovisioning Module: Dynamic reprovisioning mainly
deals with cases when the executor’s actual resource usage
deviates significantly from the predicted time series, which
is unavoidable in practice. When an executor’s progress is
detected by the monitor surrogate to be slower than expected,
the reprovisioning module is activated to calculate extra
resources needed to make up for the slowdown. The corre-
sponding algorithm is discussed in §III-C.

6) Prediction Module: Finally, the prediction module runs
as a background process at the master node. It continuously
fetches executor resource profiles from the RUD to train a pre-
diction model for application’s resource demand time series.
Many machine learning and time series analysis techniques
can be used for this purpose, which is not the focus of this
article. §IV provides more information about the prediction
algorithm we currently use.

B. Elastic Executor Scheduling

The foremost challenge Elasecutor faces is how to elas-
tically schedule executors with their multi-resource demand
time series. We explain our solution to this challenge here.

We focus on recurring applications which are common in
production settings [19], [33], [52], [67], [69]. When an appli-
cation request is submitted, it specifies the number of executors
and their configurations. Elasecutor predicts the per-executor
resource demand time series based on such information and
the past runs of this application. Elasecutor strives to satisfy
the application’s request completely, instead of scaling up
or down the number of executors based on some fairness
criteria. This is because users value performance consistency
or predictability much more than fairness in practice [67].

LIU AND XU: ELASECUTOR: ELASTIC EXECUTOR SCHEDULING IN DATA ANALYTICS SYSTEMS 685

In cases when resources are insufficient applications will
simply wait.

1) An Analytic Model: We begin with an analytic model to
capture the problem.

In our model, we consider four resources: CPU, memory,
network I/O, and disk I/O. For each resource r, we denote
its capacity on machine j as Cr

j . The per-executor demand of
application i on resource r is Dr

i (t
′) when it is running at t′

into its lifetime. Once started, application i runs for Ti time
slots, and the number of executors required is Ni. All these
are known to the scheduler. Let xi(t) be the decision variable
for scheduling, i.e. xi(t) = 1 if application i is running at time
slot t, and let ti denote the time when application i starts. Let
yij be the decision variable for executor assignment. That is,
yij indicates the number of executors assigned on machine j
for application i.

a) Constraints: First, we assume that applications cannot
be paused or preempted once scheduled, which is consistent
with prior work [33], [34], [67]. Thus,

xi(t) =
{

1, ti ≤ t ≤ ti + Ti,

0, otherwise,
∀i. (1)

Second, the cumulative resource usage on a machine at any
given time t cannot exceed its capacity. Each executor’s
resource allocation is exactly equal to the predicted demand
Dr

i (t − ti) for resource r when it has been running since ti
(without interruption). Thus,∑

i

xi(t)yijD
r
i (t − ti) ≤ Cr

j , ∀r, t, j. (2)

The scheduler always allocates exactly Ni executors for appli-
cation i as stated in the beginning of §III-B.∑

j

yij = Ni, ∀i. (3)

b) Objective function and analysis: The objective of the
scheduling algorithm is to minimize the makespan across all
applications. Under a schedule {ti}, application i finishes at
ti+Ti, and the makespan is maxi(ti+Ti). Thus the scheduling
problem can be formulated as the following:

min
ti

max
i

(ti + Ti)

s.t. (1), (2), (3). (4)

It is also possible to use other objective functions, such as
application completion time, in our formulation.

Finding an optimal schedule to the above problem (4)
is difficult. The objective function and constraints (2) are
nonlinear, which makes the problem computationally expen-
sive to solve. Inspite of ignoring the objective function and
the time-varying nature of resource demand, the problem
of packing multi-dimensional balls (executors) to minimum
number of bins (machines) is APX-Hard [65], [73]. Moreover,
what we have here is an offline setting. The online version
where applications arrive dynamically is even more difficult
to solve with reasonable competitive ratio. Therefore, most
prior work for the packing problems relies on heuristics.

Clearly, makespan would be minimized if all available
resources along time could be utilized by applications seam-
lessly. Naturally, the basis for minimizing makespan is to
avoid resource underutilization and minimize machine-level

Fig. 5. An illustration example for DRR. We just use two kinds of resources
as an example. Three executors running on machine 1 consume CPU and
memory variously over their lifetime. They all start to run at time t0 and stop
at time t1, t2, and t3, respectively, and we assume machine 1’s CPU and
memory capacity are 8 and 6. Elasecutor calculates DRR at t1, which is 1/4
in this case.

resource fragmentation. Therefore, Elasecutor aims to sched-
ule executors to the best fitted machine in order to minimize
multi-resource fragmentation.

We now introduce our heuristic scheduling algorithm.
2) Packing Executors With MinFrag: A well-known heuris-

tic to one-dimensional packing problem is Best Fit Decreasing
(BFD). BFD proceeds by repeatedly matching the largest ball
that can fit in the current bin until no more balls fit, then open
a new bin. Intuitively, this approach reduces fragmentation
and thus the number of bins used. BFD requires no more
than 11

9 OPT + 1 bins, where OPT is the optimal number
of bins [31].

Our heuristic MinFrag extends BFD, by transforming the
multi-dimensional (and time-varying) bin packing problem
into the classic one-dimensional problem. Such a transforma-
tion relies on a metric called dominant remaining resource
(DRR), which we illustrate first.

a) DRR: The DRR of a machine is defined similar to
dominant resource of a job in [32]. For a given machine,
we find the earliest time t at which an executor, among those
running on this machine, will finish according to the predicted
demand time series. We then compute machine j’s average
remaining resource over time for the period up to t, which can
be denoted as R(∗, j, t)/C(∗, j, t) for resource ∗. R(∗, j, t) is
the integral of the amount of remaining resource along the
time dimension up to t, and C(∗, j, t) is the integral of total
capacity up to t. The machine j’s DRR is then the maximum
remaining resource among all types.

Figure 5 shows an example. We select t1 as the time point
to calculate DRR for machine 1. R(CPU,1,t1)

C(CPU,1,t1)
= 1/4 and

R(Mem,1,t1)
C(Mem,1,t1)

= 1/6, and its DRR is simply 1/4.
Note we use the maximum remaining resource, not the

minimum, because it better reflects machine utilization. If a
machine’s maximum remaining resource is 10%, then utiliza-
tion of all resources is at least 90%. However if a machine’s
minimum remaining resource is 10%, utilization of some
resources may still be lower than 90%. Minimum remain-
ing resource reflects a machine’s ability or potential to run
executors, which is important if our objective is to minimize
machine utilization.

b) MinFrag: As explained, MinFrag is based on BFD.
On a high level, MinFrag works by iteratively assigning the
“largest” executor to a machine that yields the minimum
DRR in order to maximize utilization and improve makespan.
We illustrate it in detail now.

Algorithm 1 shows MinFrag, and Table V lists the notations
used here. When a heartbeat is received from a machine j,
MinFrag updates its available resources AR(j) and then
repeatedly does the following. It identifies if there is any

686 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 29, NO. 2, APRIL 2021

Algorithm 1 MinFrag Pseudo Code
1: when a heartbeat received from machine j
2: update AR(j)
3: while there are pending executors and AR(j) > 0 do
4: for each pending executor i do
5: if RD(i) < AR(j) then
6: compute θ(i, j)
7: select i∗ = arg mini θ(i, j)
8: launch executor i∗ on j
9: update AR(j) and θ(j)

TABLE V

NOTATIONS IN MinFrag

executors that can run with enough resources on the machine.
If yes, it computes the machine’s DRR θ(i, j) if the executor
was placed on it. Then among all eligible executors, MinFrag
chooses i∗ that minimizes θ(i, j), i.e. the largest executor.
It updates the placement result, the machine’s DRR θ(j), and
available resource AR(j). It then repeats the process until
all executors are scheduled or there are no more available
resources on the machine for any pending executor to run.

We use an example in Figure 6 to illustrate how MinFrag
works. Figure 6a shows the machine’s remaining capacity up
to time T , when a running executor will complete its execu-
tion. There are two executors to schedule, and their demand
time series are shown in Figures 6b and 6c, respectively.
If executor 1 is assigned to the machine, t0 + 0.875T is
the time point for calculating DRR, and the DRR θ(1, j) =
max{ 53

112 , 165
448 , 3

70 , 6
35} = 53

112 . If executor 2 is assigned to the

machine, t0 + T is the time point for calculating DRR, and
the DRR θ(2, j) = max{ 13

32 , 43
128 , 1

10 , 1
20} = 13

32 . MinFrag then
schedules executor 2 to run which minimizes DRR and thus
maximizes utilization in this case. After taking executor 2,
this machine does not have any network bandwidth and thus
cannot take any more executors at the moment.

Some may argue that we can compute a score for each
resource based on its remaining capacity, and convert the vec-
tor into a scalar value for comparison across candidate execu-
tors (say based on the Euclidean norm). However, the values
for different resources have different units which makes such
comparison irrelevant. Considering the remaining resource
at its face value does not faithfully represent the degree
of fragmentation as machines may have different capacities.
The ratio between remaining resource and its capacity can
represent actual fragmentation. Our evaluation results in §V-F
corroborate our argument.

C. Dynamic Reprovisioning

It is difficult to perfectly predict the time-varying resource
demands due to many exogenous factors, such as infrastruc-
ture issues (e.g., hardware replacements, driver updates, etc.)
and application issues (changes in size and skew of input
data, changes in code/functionalities, etc.). Thus we design

Fig. 6. An illustration example of MinFrag. (a) The remaining resources
of machine j until time t0 + T , when a running executor will complete its
execution. (b) The time-series resource usage of executor 1 which is expected
to finish at time t0+0.875T . (c) The time-series resource usage of executor 2
which is expected to finish at time t0 + 1.125T . The capacities of machines
are: 16 cores for CPU, 64 GB for memory, 10 Gbps for network, and 500MB/s
for disk I/O.

a dynamic reprovisioning mechanism that adjusts resource
allocation online to tolerate prediction errors in Elasecutor.

Reprovisioning is triggered when an executor’s progress
is longer than ρ times the expected execution time of a
processing stage of the application’s DAG. We set ρ to 1.1,
which is experimentally determined to balance application
performance and resource wastage.

Given reprovisioning is required, we wish to find out the
actual resource demand of the application now. Elasecutor
does so by temporarily allocating all remaining resource of the
machine to this executor for one monitoring period (3s), and
observe the executor’s resource usage in this period. Suppose
the actual usage of the executor i is u(i, ∗) during this period
for resource ∗, and the predicted demand is p(i, ∗). Elasecu-
tor then scales the allocation proportional to u(i, ∗)/p(i, ∗)
across all resources for all the remaining processing stages
of the executor, and returns the remaining resources to the
machine. This heuristic allows Elasecutor to quickly correct
resource allocation without causing many missed scheduling
opportunities at the machine.

When the machine has little remaining resources, the execu-
tor’s actual usage observed in the reprovisioning period may
be obscured and do not reflect its true demand. This is one
limitation of our heuristic. We propose a task rescheduling
mechanism to address the issue in the following.

D. Task Rescheduling

When a machine does not have enough resources for
reprovisioning of an executor, the corresponding DAG stage
cannot be fully accelerated to compensate for the predicted
completion time. To deal with this we leverage the speculative
execution mechanism built into Spark’s task scheduler [15].
Since the tasks of the executor would be delayed (tasks
are put in the pending queue or running slowly), Spark’s
speculative execution would detect their slower progress and
launch duplicates of these tasks on other executors. Our
rescheduling mechanism picks the executors that have the most
available resources for speculative execution. This would then
trigger reprovisioning on the chosen executors to obtain more
resources to run the newly arrived tasks.

IV. IMPLEMENTATION

We implement a prototype of Elasecutor with ∼1K LOC
in Python, Java, and Scala based on Spark 2.1.0. We open

LIU AND XU: ELASECUTOR: ELASTIC EXECUTOR SCHEDULING IN DATA ANALYTICS SYSTEMS 687

source our prototype here [8]. The monitor surrogate and
allocation module at each worker machine communicate with
the master node via RPC. We use lightweight system-level
tools such as psutil and jvmtop in Linux to implement
the monitor surrogate. We use resourceRef, which is
a data structure that includes worker ID, application ID,
executor ID, and corresponding resource time series. The
scheduling module implements the MinFrag algorithm and dis-
patches the scheduling decisions to Spark’s resource manager,
which launches executors on worker machines. We modify
the launchExecutor() function at the resource manager
to send the predicted resource demand time series to the
corresponding workers, along with other information. The
allocation module then uses the modified cgroups and
OpenJDK [13] to configure resources of the executor process
based on the prediction results.

A. Allocation Module

Once a worker node receives the message for launch-
ing executors or resizing them from the resource manager,
the allocation module adopts subsystems of cgroups to
configure the time period and the limits of CPU, network,
and disk I/O the executor process is entitled to. However, for
Java-based systems, the maximum heap size of a JVM stays
constant during its lifetime. Dynamically throttling memory
outside the JVMs is difficult. Inspired by [71], we adopt
a method to enable dynamic memory limits at runtime by
modifying OpenJDK [13]. As in operating systems, the vir-
tual address space does not have physical memory until it
is actually used, and the allocation module leverages this
to reserve and commit specified address spaces of a fixed
maximum heap size dynamically at runtime. We implement an
API JVMmanage() inside a OpenJDK’s JVM which listens
to instructions from the allocation module for such dynamic
memory commitment. As a result, each JVM knows the correct
maximum memory size it can use at any time.

One may wonder that in case of prediction errors, out
of memory (OOM) error [18], [71], [74] may happen due
to insufficient memory. In fact, we find that applications
in Spark 2.1.0 do not just fail when memory is less than
demanded since they can spill data to disk as a remedy. This of
course slows down executors and would trigger reprovisioning,
which then would fix the problem.

B. Reprovisioning Module

This is implemented as a long-running process at the
master node. It continuously collects reports about executor
progress via monitor surrogates at each worker, and triggers
reprovisioning by invoking the resource manager with the
corresponding worker ID, application ID, executor ID, and
correspongding resource time series. Subsequently, allocation
module is instructed to adjust resource limits at runtime.

C. Prediction Module

Our current implementation simply uses the average
resource time series of the latest 3 runs as the prediction
result for recurring workloads with the same settings. Our
analysis in §II-B demonstrates it is fairly accurate. For appli-
cations with new settings Elasecutor has not seen, we rely
on a prediction model based on SVR to infer the demand
time series. Elasecutor can also leverage other prediction

methods [19], [26], [29], [69], [76] which are beyond the
scope of this article. Note that for new applications which
are never seen by the system before, we need to collect data
for several runs before we can predict the resource demand
time series. Until then, the applications are allowed to run
with peak demanded resources.

SVR Prediction: We cast our prediction problem as a regres-
sion problem. We have xi, i = 1, 2, . . . , n, where xi is the
i-th multidimensional input vector that represents the applica-
tion type, dataset size, and CPU and memory configurations,
and n is the number of training samples. We also have the
ground truth yi which is the actual resource usage time series
of the i-th run. As in §II-B, the executor’s time-series resource
usage is stable for the same application type and settings. The
goal is to learn the relationship between xi and yi so that when
a application with new settings submitted, we can predict its
demand time series based on the model.

To do so, we rely on support vector regression (SVR) [28],
[54], [64]. We use the radial basis function (RBF) kernel [44]
which we find to have better results than other kernels.
We select ε-SVR [61] as the optimization model, and find
its optimal parameters ε based on k-fold crossvalidation and
grid search [21] until the prediction reach the accuracy which
we show in §V-F.

The prediction model is continuously trained online by
successively collecting profiling results from RUD. Once an
application with new settings is submitted, the model makes
prediction about its resource usage time series and outputs the
results for the scheduling module to consume. In our experi-
ments, we found that our prediction process for applications
with new settings can be done within 1s.

V. EVALUATION

We now evaluate Elasecutor using testbed experiments. Our
evaluation answers the following questions:

• How much overall performance benefit can Elasecutor
provide compared to existing solutions? (§V-B)

• How efficiently does Elasecutor utilize resources? (§V-C)
• How well does Elasecutor perform with TPC-H work-

load and changing mixes of recurring applications?
(§V-D, §V-E)

• How well do the prediction, scheduling, reprovisioning,
and task rescheduling modules work? (§V-F)

• How much overhead does Elasecutor add? (§V-G)

A. Setup

Our testbed cluster consists of 35 machines connected with
a 10 GbE switch. Each machine has two 2.4 GHz Intel
Xeon E5-2630 v3 processors, 64 GB DDR4 RAM, a quad-
port Intel X710 10 GbE NIC, and two 7200 RPM disks. All
machines run Ubuntu 16.04.2 LTS with kernel version 4.4.0,
Scala 2.10.4, and HDFS 2.6.0. We deploy our Elasecutor
implementation on top of Spark 2.1.0.

1) Methodology: To test our prototype, we use eight work-
loads described in §II-B. The workloads are from the HiBench
bigdata benchmarking suite [10], which are commonly used in
existing work [35], [38], [56], [57]. For each workload we use
different input data sizes listed in Table III and different CPU
and memory upper limit configurations, ranging from one to
five cores for CPU and 2GB to 10GB for memory as in §II-B.
Besides, to make the evaluation more general, in §V-D

688 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 29, NO. 2, APRIL 2021

and §V-E, we further evaluate Elasecutor’s performance using
TPC-H [16] workloads.

We generate 120 recurring applications with different work-
loads, input data sizes, and resource settings. In each exper-
iment run, the same 120 applications are used. They arrive
according to a Poisson process with mean inter-arrival time
of 25 seconds for a period of 3200 seconds in each run.
This is consistent with existing work [33], [35], [38], [56],
[57]. Elasecutor’s prediction module is fed with 3 runs of
each application as explained in §IV and is used as the
prediction results. Its SVR method has been trained offline
with 30 runs of the recurring applications, and the same trained
model is used for each experiment run. Besides the recurring
applications, we prepare 12 applications with new input data
size and new resource settings that has not seen by Elasecutor
before. The same 12 applications are used in each run, but
they arrive randomly within the period of 3200 seconds
(§V-B and §V-C). In §V-E, we change the mix of recurring
applications and re-train our prediction model with each
unique application mix. Generally we repeat each experiment
for five runs unless stated otherwise.

2) Schemes Compared: We compare Elasecutor to three
existing resource scheduling strategies which are deployed
in production systems [33]–[35], [37], [68]. (1) Static: This
policy statically reserves CPU and memory for each executor
according to the peak demand, and launches a fixed num-
ber of executors according to user request. (2) Dynamic:
This uses the built-in dynamic allocation policy in Spark
to scale the number of executors dynamically based on the
workload. Each executor is allocated a multiple of <1 core,
2GB RAM> [14]. This is similar to Morpheus [67] without
preplanned time-varying reservations. We do not compare to
Morpheus as it optimizes for SLO and load balance and
is very different from Elasecutor. Both static and dynamic
policies are implemented in Spark, and they only consider
CPU and memory. (3) Tetris: This policy considers network
and disk I/O in addition to CPU and memory. Following [33],
it greedily chooses an executor that has the highest dot product
value between the vectors of machine available resources
and executor peak demands, and allocates the peak resource
demands to the executor. For all three schemes, we explicitly
size related resources using cgroups.

3) Task Scheduling Within an Application: For a given
application, Elasecutor and all other schemes adopt the fair
scheduler [9] for task scheduling. Other popular task sched-
ulers [6], [22], [32]–[35] can also be used by Elasecutor.

B. Makespan

We first investigate Elasecutor’s makespan improvement.
We look at the makespan reduction provided by Elasecutor

as shown in Figure 7a. Observe that Elasecutor reduces the
average and median makespan by over 40% compared to
existing schemes (60% over Tetris). Elastic resource allocation
and scheduling in Elasecutor ensures that resources are not
over-allocated or under-allocated during the executor’s life-
time and machines are better utilized, thus translating to the
smallest makespan performance. Also Elasecutor takes into
account network I/O and disk I/O, which are not considered
by Static and Dynamic. Tetris performs worse than Static and
Dynamic because it has to wait until all four resources are
available for the executor’s peak demand, while Static and
Dynamic only wait on CPU and memory. In fact, we observe in

Fig. 7. (a) Makespan reduction of Elasecutor; (b) Boxwhisker plot of
makespans which are normalized to the median value of each scheme.
Whiskers represent the maximum and minimum values. Each experiment run
takes more than 5.9 hours, and we repeat 30 runs here.

our experiments that applications run faster after they start in
Tetris compared to Static and Dynamic, but they spend longer
time waiting on resources.

Tetris’s poor makespan performance is worth more discus-
sion here. Actually its task assignment algorithm optimizes
makespan, and is shown to have smaller makespan than
DRF [32] and the capacity scheduler [6] in the article [33]. The
discrepancy of the results here is caused by two factors. First,
Tetris along with DRF and capacity scheduler all use peak
demand. Second, they are all designed for task-based systems
like Hadoop, where tasks are short in duration and using
peak demand is fine. When applying Tetris to executor-based
systems in our systems, as executors last over the application’s
lifetime, Tetris has to wait until the peak demand can be
satisfied for all four resources, and its performance degrades.

Figure 7b further shows the stability of makespan. Here we
normalize the makespan to the median values under different
policies over 30 runs. Recall that the same applications are
submitted in each run with random arrival times as explained
in §V-A. The result shows that Elasecutor delivers much more
stable makespan than other policies with a much smaller box.
In other words, Elasecutor is more consistent with respect
to the arrival order of the applications. On the other hand,
Static and Dynamic have fluctuating makespan that depends
heavily on the arrival order of the applications. This is because
their peak-demand based allocation results in fragmentation
that very much depends on application’s arrival order, and
their random executor assignment adds more inconsistency.
Tetris has more consistent makespan by using a multi-resource
packing heuristic to reduce fragmentation, but it still has
similar problems due to the use of peak demand in the
heuristic.

C. Resource Utilization

Now we investigate cluster resource utilization with Elase-
cutor. We show (estimated) resource usage with different
policies in Figure 8 for one example run. For resources
considered by a scheduling policy (CPU and memory for Static
and Dynamic, all four for Tetris and Elasecutor), we measure
and plot the actual utilization; for other resources, we derive
the utilization based on our predicted demand time series. The
same methodology is used in prior work [33], [35]. Observe
that as in Figures 8a and 8b, Static and Dynamic are unable
to fully utilize CPU and memory which they consider for
executor allocation and placement. They also over-allocate

LIU AND XU: ELASECUTOR: ELASTIC EXECUTOR SCHEDULING IN DATA ANALYTICS SYSTEMS 689

Fig. 8. Resource utilizations under different policies. Note the time unit
is 103s.

TABLE VI

FREQUENCIES THAT A MACHINE’S UTILIZATION IN A RESOURCE
EXCEEDS A THRESHOLD. WE USE THREE

THRESHOLDS 70%, 90%, AND 100% HERE

network and disk resources most of the time, resulting in 180%
utilization sometimes. Tetris in Figure 8c performs slightly
better in that it avoids over-allocation. Elasecutor in Figure 8d
improves the utilization of all resources with elastic resource
scheduling. The cluster is bottlenecked on different resources
at different times.

We also note that although Dynamic utilizes CPU and mem-
ory more, compared to Elasecutor it still loses 40% makespan
performance as observed in §V-B. In addition to the more
efficient MinFrag heuristic, the reason is that Dynamic incurs
additional CPU and memory cost as it launches executors
over time frequently. This also confirms our argument on the
overhead of adjusting executor numbers over time in §I.

Table VI depicts the fraction of time when a machine’s
utilization exceeds a threshold for each resource. We obtain
the usage statistics from all machines with one example run.
We can see that Elasecutor utilizes resources much more
efficiently: for example 97% of the time CPU utilization is
over 70%. On the other hand, Static and Dynamic sometimes
over-allocate network and disk I/O, and waste CPU and
memory that they statically reserved for executors.

Lastly, Table VII shows the average utilization improvement
with Elasecutor for all four types of resources. Compared
to other policies, Elasecutor improves utilization by at least
27.2% for CPU, 22.6% for memory, 33.4% for network, and
25.4% for disk I/O. Clearly, this demonstrates Elasecutor can
utilize resources efficiently and saves cost for cluster operators.

TABLE VII

ELASECUTOR’S AVERAGE UTILIZATION IMPROVEMENT
OVER OTHER POLICIES

TABLE VIII

IMPROVEMENT OF ELASECUTOR OVER Static, Dynamic, AND Tetris WITH

HIBENCH AND TPC-H WORKLOADS AND UNDER CHANGING

MIXTURES OF RECURRING APPLICATIONS

TABLE IX

ELASECUTOR’S AVERAGE RESOURCE UTILIZATION IMPROVEMENTS

WITH DIFFERENT MIXES OF RECURRING APPLICATIONS

D. Makespan Using HiBench and TPC-H

In addition, we investigate how well Elasecutor performs
with the TPC-H benchmark [16] introduced as recurring
workloads. We use 22 TPC-H query applications together with
the 120 recurring applications from HiBench and train the pre-
diction model to drive the experiments. These applications also
arrive according to a Poisson process with mean inter-arrival
time of 25 seconds for a period of 3500 seconds in each
run. Table VIII shows the makespan improvements. We see
Elasecutor improves average and median makespan by 47.3%
and 44.4% against Static, 41.6% and 35.9% against Dynamic,
and 54.2% and 62.7% against Tetris. This demonstrates that
Elasecutor obtains consistent performance improvements in
makespan using HiBench and TPC-H workload.

E. Changing Mixtures of Recurring Applications

We now study how Elasecutor performs under changing
mixtures of recurring applications. We generate ten differ-
ent mixes of the 142 recurring applications from HiBench
and TPC-H workloads. For each run, we change the arrival
orders of recurring applications and randomly increase or
decrease their input dataset size between 0 to 1%. Table VIII
shows Elasecutor’s makespan reduction against other policies.
Clearly, Elasecutor reduces average and median makespan
over varying application mixtures by at least 38.5% and
31.4%, respectively.

Next, we look at resource utilization with different appli-
cation mixtures. Table IX summarizes the results. Observe
that Elasecutor improves utilization by at least 18.7% for
CPU, 15.9% for memory, 29.8% for network, and 19.0%
for disk I/O. The results here demonstrate that Elasecutor
produces consistent performance improvement with respect to
application mixtures.

690 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 29, NO. 2, APRIL 2021

Fig. 9. (a) CDFs of prediction effectiveness with more runs. (b) CDFs of
reductions in application completion time (ACT) and application execution
time (AET) by comparing Elasecutor with and without reprovisioning.

TABLE X

IMPROVEMENT OF ELASECUTOR WITH TASK RESCHEDULING (TR)
OVER WITHOUT TASK RESCHEDULING

F. Microbenchmarks

We now evaluate individual components of Elasecutor.
1) Effectiveness of Prediction: For the prediction module,

we define prediction effectiveness as the ratio between the pre-
dicted total amount an executor is going to use and the actual
total amount used during the execution for each resource. The
average effectiveness across all 4 resources of each executor
is then one data point. Note here we only concern executors
of the 12 new applications with new settings. Figure 9a plots
the CDFs of prediction effectiveness of the 15th and 30th run
(with continuous training), respectively. We can see that the
SVR method in §IV provides fairly accurate estimations: more
than 80% of the time prediction is effective with less than 20%
difference. Also with more training samples, the prediction
improves with less than 15% errors more than 90% of the
time (the curve for the 30th run).

2) Effectiveness of Reprovisioning: Now we estimate the
effectiveness of the reprovisioning module. Figure 9b com-
pares the CDF of the reductions in application completion
time (ACT) and application execution time (AET) for Elase-
cutor with and without reprovisioning. Here AET is the time
the application takes to complete after it is scheduled to run.
The setup is the same as in §V-A with 132 applications in
each run for 5 runs. We can see that by using reprovisioning,
Elasecutor’s median ACT and AET decrease by 4.6% and
5.0%, respectively, and the 90%ile ACT and AET decrease
by 6.0% and 14.5%, respectively, compared to not using it.
The results demonstrate that reprovisioning is important for
prediction based resource schedulers to improve application
QoS performance.

3) Effectiveness of Task Rescheduling: We then investigate
the effectiveness of task rescheduling. Table X shows the
comparison in makespan and ACT for Elasecutor with and
without task rescheduling. The setup is the same as in §V-A.
We observe that Elasecutor’s average and median makespan
decrease by 2.7% and 2.2%, respectively, and top 90%ile and
99%ile ACT decrease by 0.9% and 4.7%, respectively, with

TABLE XI

IMPROVEMENT OF DRR OVER TRC AS AN ALTERNATIVE
METRIC FOR EXECUTOR PLACEMENT

TABLE XII

RESOURCE CONSUMPTION OF A MONITOR SURROGATE. CPU AND
MEMORY ARE AVERAGED OVER ALL MACHINES. TOTAL EXECUTOR

PROFILE SIZE IS THE SIZE OF ALL EXECUTOR PROFILES

AVERAGED ACROSS ALL MACHINES AT EACH HEARTBEAT

task rescheduling. As task rescheduling takes effect only at
certain scenarios, the performance benefit is limited.

4) Effectiveness of DRR: Our scheduling heuristic
MinFrag uses DRR. We now investigate its effectiveness
by comparing with an alternative metric for multi-resource
executor placement. Particularly, we consider to sum
up the relative remaining capacity of each resource,
i.e. R(CPU, m)/C(CPU, m) + R(Mem, m)/C(Mem, m)
+R(Net, m)/C(Net, m) + R(Disk, m)/C(Disk, m) for
machine m, as the total remaining capacity (TRC). The
scheduling module then applies TRC instead of DRR as the
metric in the MinFrag heuristic in Algorithm 1. Effectively,
in each iteration it chooses an executor that minimizes its
TRC when placed on the current machine to run.

We compare DRR with TRC in Table XI in terms of
makespan and ACT. Observe that DRR reduces the average
and median makespan by 11.5% and 13.4%, respectively,
and have more stable makespan with 5.7% smaller standard
deviation. DRR also improves ACT moderately in median and
high percentiles. The results show that DRR works better than
other alternative metrics to minimize resource fragmentation.

G. Overhead

We now evaluate the overhead of Elasecutor. We first con-
sider the overhead of monitor surrogate. Table XII shows the
average CPU and memory consumption of a monitor surrogate
and the average size of executor profiles of all 35 machines of
our cluster at each heartbeat. We can see that the overheads
are very small, and the additional network overhead of sending
profiles is negligible. We also find that the CPU and memory
overhead of other modules of Elasecutor at the master node
is less than that of the monitor surrogate.

We also evaluate Elasecutor’s latency overhead to the ana-
lytics system, particularly the resource manager. The predic-
tion, scheduling, and reprovisioning modules are independent
processes running concurrently with the resource manager, and
we wish to ensure they do not negatively impact resource
manager’s responsiveness. We measure the time taken by the
resource manager to process a heartbeat from both a worker
node and the application driver in Elasecutor and Spark.
The application driver in Spark is responsible for creating
context for executing applications, and we do not modify it
in Elasecutor. Table XIII shows the results. Elasecutor takes
about the same time as Spark to process both types of heartbeat
messages.

LIU AND XU: ELASECUTOR: ELASTIC EXECUTOR SCHEDULING IN DATA ANALYTICS SYSTEMS 691

TABLE XIII

AVERAGE TIME TO PROCESS HEARTBEATS FROM WORKERS AND
APPLICATION DRIVER WITH AND WITHOUT ELASECUTOR

OVER 100 HEARTBEATS

VI. DISCUSSIONS

After exhibiting the performance benefit of Elasecutor,
we briefly discuss what we have done and the future work
on Elasecutor in this section.

A. Model the Resources Jointly

In our current model, we do treat the executors’ various
resources (CPU, memory, network, and disk I/O) separately.
Yet, in practice, they are often correlated. For instance,
in Spark, the lack of available memory causes more spills and
increases CPU (due to serialization overheads) and network or
disk I/O (due to remote/local writes). Even though Elasecutor
has dynamic reprovisioning mechanism (§III-C) to compensate
for prediction errors caused by not considering such cases,
we need to add such correlations between resources intro our
model to make it work efficiently. Thus one future work for
Elasecutor is to revise its resource demand prediction model
and take correlations between resources into account.

B. Scalability

Due to the small scale of our testbed, the resource usage of
the master node is very small. According to the average file
size of an executor’s profile on each server, the bandwidth
used for transmitting them at each heartbeat is 32.27Kbps
per server. Assuming 10Gbps network interfaces, the master
node can support ∼309K machines. Besides, the CPU and
memory costs are fairly low: both less than 1.5% to handle
the current testbed scale. Correspondingly, if we fully utilize
the CPU of a server, it can support 2.33K machines, which
should be able to handle the typical production clusters [60],
[63]. The scalability can be further improved in the following
ways: (1) In production data centers 40G or 100G NICs are not
uncommon [60], [63], which implies the bandwidth overhead
of our system is even smaller compared to the 10Gbps links
we use in our testbed; (2) We expect some nodes to have
GPU, FPGA, or other hardware accelerators [43], [49] that
can offload the computation from CPU and support larger
clusters; (3) We can reduce the bandwidth requirement of
updating executor resource profiles by adopting compression
and/or sampling methods.

C. SLOs/SLAs

Elasecutor provides significant application completion time
improvements and strives to provide better QoS via reprovi-
sioning, but does not aim at guaranteeing strict SLOs/SLAs.
To do the latter, Elasecutor would need to (1) have a dedicated
component for SLO inference, (2) make resource reservations
for executors ahead, and (3) dynamically adjusts resource
allocations at runtime so that strict deadlines can be met [29],
[67]. On the other hand, Elasecutor may be able to provide
statistical SLO/SLA guarantees as it inherently predict appli-
cations’ execution time based on historical data (§IV). We are
exploring this as future work.

D. Differences Between DRR and DRF

DRR (dominant remaining resource) used in Elasecutor is
inspired by DRF [32] and share some similarities, in particular
the fact that they both use “dominant resource” to con-
vert multi-dimensional metrics into scalars. Their differences,
on the other hand, are distinct. DRR as defined in §III-B2
concerns the maximum remaining resource of a machine
over time and defines “dominant resource” based on it.
DRF represents the maximum time-invariant resource require-
ment of a task with respect to the machine’s capacity. Further,
compared to DRF that aims to achieving fairness between
tasks, DRR is used to reduce resource fragmentation and
minimize makespan in MinFrag.

E. Other Executor-Based Frameworks

Our current Elasecutor implementation is based on Spark.
Streaming systems like Storm or Flink also have long running
jobs, which potentially can also use Elasecutor. In the next
step, we plan to explore other systems Elasecutor can be
applied to, and make it an extension in resource managers
like Yarn [68], Mesos [37], and Kubernetes [12] to serve all
executor-based frameworks.

F. Workload Usecase Analysis

The ideal workloads for Elasecutor to obtain high per-
formance are ones that either have a mix of I/O- and
computing-intensive stages like Sort, Terasort, and Wordcount,
or exhibit time-varying computation and I/O usage ratios like
Pagerank, K-means, and Bayes. The executors used to run
them can be packed together by Elasecutor to fully utilize
various resources. In addition, deep learning training also
often consists of long running tasks. When many training
jobs co-exist in the same cluster, they progress in different
paces and stress different resources (CPU, GPU, network,
etc.), which makes it a good fit for Elasecutor as well. Another
future work is then to run experiments for production deep
learning training jobs to measure their actual resource usage
patterns and investigate the potential benefit of Elasecutor
there.

G. Differences Between Tetris, Carbyne, Graphene, and
Elasecutor

Tetris [33] is a task scheduler, and Carbyne [34] and
Graphene [35] are job schedulers, rather than executor sched-
uler like Elasecutor. We compare Elasecutor with the vari-
ant of Tetris (called Tetris in §V), because Tetris is the
first cluster scheduler to explicitly consider multi-resource
packing with a best fit decreasing (BFD) algorithm [20]
like Elasecutor and the BFD packing algorithm in Tetris is
natively designed to optimize makespan as Elasecutor. Thus,
we modify Tetris to schedule executors with considering peak
demands as executors’ resource demands and adopting its
built-in BFD algorithm. However, Carbyne and Graphene
are designed to optimize job completion time, rather than
makespan. Thus, comparing them against Elasecutor does
not make sense. In addition, Elasecutor may cooperate with
Carbyne and Graphene to make adjust executors’ time-series
resource demands, as executors’ time-series demands depend
on how DAG jobs and tasks are scheduled.

692 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 29, NO. 2, APRIL 2021

TABLE XIV

SUMMARY OF PREVIOUS APPROACHES COMPARED TO ELASECUTOR

H. Avoiding OOM When Resizing Executors

Theoretically, Elasecutor cannot completely avoid predic-
tion errors. Therefore, Elasecutor needs to deal with cases
where predicted memory usages are less than the executors’
actual demand. Yet, as we stated in Elasecutor’s allocation
module implementation part in §IV, applications do not fail
when memory is less than demanded since the framework can
spill data to disk as a remedy. As a result, this slows down
executors and would trigger reprovisioning, which then would
fix the problem.

I. Static and Dynamic Executor Scheduler in §V

Static and Dynamic randomly pack executors to worker
machines whose available resources can meet the executors’
resource requirements. Dynamic performs worse compared to
Elasecutor. The reasons mainly are three-fold: (1) It only con-
siders CPU and Memory; (2) Each executor is allocated fixed
resources, which is still inflexible compared to Elasecutor; (3)
It lacks an efficient executor placement algorithm.

J. How About Changing the Number of Tasks per Executor
Dynamically?

Dynamic scales the number of executors dynamically over
time and each executor is allocated a multiple of (1 core,
2GB RAM). Besides, each executor can only run one task
and the executor is withdrawn once the task is finished.
Therefore, Dynamic compared to Elasecutor is similar with
dynamically changing the number of tasks per executor across
stages of the application. Besides, dynamically changing the
number of tasks within one executor can change the executor’s
time-series demands. Thus Elasecutor may cooperate with
dynamically changing number of tasks per executor to improve
the flexibility of executor placement and improve the executor
packing efficiency, which may be explored as future work.

VII. RELATED WORK

There has been a substantial body of work on scheduling
and resource allocation in data analytics systems. We present
Elasecutor first in the conference paper [50]. Here we extend
the design with task rescheduling, and evaluate it with chang-
ing mixtures of recurring applications. We compare Elasecutor
to related work along several dimensions as summarized
in Table XIV.

A. Granularity

Most of prior work [6], [9], [22], [27], [29], [32]–[35],
[40], [58], [79] assumes a task based system such as Hadoop.
As discussed in §I and §II, they do not work well for executors
which run the application’s entire DAG and have time-varying
demands. Cluster schedulers such as Yarn [24], [68] and

Mesos [37] manage the resource allocation for co-existing
frameworks. They are also commonly used for task scheduling
within frameworks in practice. Yet, they do not dig deeply to
explore how to schedule the long-running executors within a
computing framework and have the same problems as task
schedulers when applied to executor scheduling. Prophet [77],
Morpheus [67], and Medea [30] consider executor scheduling
and are more related to our work.

B. Scheduling Considerations

Existing work can also differ in terms of their scheduling
considerations. Most work focuses on CPU and memory
only. Tetris [33], like Elasecutor, considers network and disk
I/O in addition. Most task and cluster schedulers mentioned
above adopt static allocation and do not elastically size the
per-task resource allocation. Prophet [77] performs execu-
tor scheduling, but it only considers network and disk I/O
and cannot support elastic resource sizing. Morpheus [67],
another executor scheduler, dynamically adjusts the number
of executors to meet application’s demand, without changing
the per-executor allocation though. This does not cope well
with the multi-resource time-varying executor demand as we
explained in §I and brings large executor launching cost as we
analyze in §V-C. Medea focuses on making good placement
decisions but does not consider variations of resource utiliza-
tion of long-running executors. As far as we know, Elasecutor
is the first scheduler that elastically sizes executor resource
allocation.

Lastly, for machine assignment, cluster schedulers [24],
[32], [37], [62], [68] usually just use random assignment.
Sparrow [58] uses randomized sampling to choose machines
quickly. Other schedulers typically use packing heuristics but
in different ways. Prophet [77] favors machines with the
least sum of fragmentation and over-allocation. Morpheus [67]
essentially uses the Worst Fit heuristic for SLO, and Tetris [33]
uses the BFD heuristic based on the dot product of task’s peak
demand and machine’s available resource capacity. Elasecutor
adopts BFD with DRR inspired by DRF [32] and is shown
to work more effectively than alternative metrics. Medea
applies a mathematical optimization approach that accounts
for constraints and global objectives. Clearly, Elasecutor’s
executor assignment problem can be formulated as Medea’s
constraints. A technical difficulty is that, as we showed
in §III-B1 our objective function and constraints are non-
linear, while Medea employs linear programming to formulate
its placement constraints.

C. Objective

In this regard, cluster schedulers [24], [32], [37], [62], [68]
are the easiest to analyze: they optimize for fairness among

LIU AND XU: ELASECUTOR: ELASTIC EXECUTOR SCHEDULING IN DATA ANALYTICS SYSTEMS 693

co-existing frameworks. Task and executor schedulers opti-
mize for various objectives: mostly makespan and ACT [58],
and SLO or utilization. Elasecutor focuses on makespan and
also improves ACT and utilization as experimentally shown in
§V. Medea supports various objectives for long-running execu-
tors and it provides low placement latency for short-running
executors.

VIII. CONCLUSION

We have presented a novel executor scheduler Elasecutor.
Elasecutor builds on the following two key ideas: elastically
allocating resources to an executor to avoid over-allocation,
and placing executors strategically to minimize multi-resource
fragmentation. We prototype Elasecutor on Spark and eval-
uate it on a medium-scale testbed. Compared to existing
approaches, Elasecutor reduces makespan by more than 36%
on average, while improving cluster resource utilization by up
to 55%.

Going further, we are exploring some interesting directions.
Placement constraints are common in practice [35], [47] and
can be added to Elasecutor’s scheduling heuristic. Elasecutor
does not guarantee SLOs in terms of deadlines [29], [67]
currently. We seek to better understand the impact of elastic
multi-resource scheduling on application performance and
SLO in order to support SLO guarantees. Finally, it is possible
to develop a general executor scheduler based on Elasecutor
so it can be integrated into Yarn and other cluster schedulers
and benefit other executor-based systems.

REFERENCES

[1] Apache Flink. Accessed: May 16, 2018. [Online]. Available: http://
flink.apache.org

[2] Apache Hadoop. Accessed: May 16, 2018. [Online]. Available: http://
hadoop.apache.org

[3] Apache Spark. Accessed: May 16, 2018. [Online]. Available: https://
spark.apache.org

[4] Apache Storm. Accessed: May 16, 2018. [Online]. Available: http://
storm.apache.org

[5] Apache Tez. Accessed: May 16, 2018. [Online]. Available: http://
tez.apache.org

[6] Capacity Scheduler. Accessed: May 16, 2018. [Online]. Available: http://
bit.ly/1tGpbDN

[7] Cluster Mode Overview. Accessed: May 16, 2018. [Online]. Available:
https://spark.apache.org/docs/2.1.0/cluster-overview.html

[8] Elasecutor. Accessed: May 16, 2018. [Online]. Available: https://
github.com/NetX-lab/Elasecutor

[9] Fair Scheduler. Accessed: May 16, 2018. [Online]. Available:
https://spark.apache.org/docs/2.1.0/job-scheduling.html#fair-scheduler-
pools

[10] HiBench. Accessed: May 16, 2018. [Online]. Available: https://
github.com/intel-hadoop/HiBench

[11] How-to: Tune Your Apache Spark Jobs. Accessed: May 16, 2018.
[Online]. Available: http://blog.cloudera.com/blog/2015/03/how-to-tune-
your-apache-spark-jobs-part-2

[12] Kubernetes. Accessed: May 16, 2018. [Online]. Available: https://
kubernetes.io/

[13] OpenJDK. Accessed: May 16, 2018. [Online]. Available: http://
openjdk.java.net

[14] Resource Allocation Policy in Spark 2.1.0. Accessed: May 16, 2018.
[Online]. Available: https://spark.apache.org/docs/2.1.0/job-scheduling.
html#resource-allocation-policy

[15] Spark Configuration. Accessed: May 16, 2018. [Online]. Available:
https://spark.apache.org/docs/2.1.0/configuration.html

[16] TPC-H Benchmark. Accessed: May 28, 2020. [Online]. Available:
https://github.com/cartershanklin/hive-testbench/tree/master/sample-
queries-tpch

[17] S. Agarwal, S. Kandula, N. Bruno, M.-C. Wu, I. Stoica, and J. Zhou,
“Re-optimizing data parallel computing,” in Proc. USENIX Symp. Netw.
Syst. Design Implement. (NSDI), 2012, pp. 281–294.

[18] M. K. Aguilera et al., “Remote memory in the age of fast networks,”
in Proc. ACM Symp. Cloud Comput. (SoCC), 2017, pp. 121–127.

[19] O. Alipourfard, H. H. Liu, J. Chen, S. Venkataraman, M. Yu, and
M. Zhang, “CherryPick: Adaptively unearthing the best cloud config-
urations for big data analytics,” in Proc. USENIX Symp. Netw. Syst.
Design Implement. (NSDI), 2017, pp. 469–482.

[20] N. Bansal and A. Khan, “Improved approximation algorithm for two-
dimensional bin packing,” in Proc. 25th Annu. ACM-SIAM Symp.
Discrete Algorithms, Jan. 2014, pp. 13–25.

[21] J. Bergstra, R. Bardenet, Y. Bengio, and B. Kegl, “Algorithms for hyper-
parameter optimization,” in Proc. Adv. Neural Inf. Process. Syst. (NIPS),
2011, pp. 2546–2554.

[22] E. Boutin et al., “Apollo: Scalable and coordinated scheduling for
cloud-scale computing,” in Proc. USENIX Symp. Operating Syst. Design
Implement. (OSDI), 2014, pp. 285–300.

[23] M. Chowdhury and I. Stoica, “Efficient coflow scheduling without prior
knowledge,” in Proc. ACM Conf. Special Interest Group Data Commun.,
Aug. 2015, pp. 393–406.

[24] C. Curino, D. E. Difallah, C. Douglas, S. Krishnan, R. Ramakrishnan,
and S. Rao, “Reservation-based Scheduling: If you’re late don’t blame
us!” in Proc. ACM Symp. Cloud Comput. (SoCC), 2014, pp. 1–14.

[25] J. Dean and S. Ghemawat, “MapReduce: Simplified data processing
on large clusters,” in Proc. Symp. Operating Syst. Design Implement.
(OSDI), 2004, pp. 1–13.

[26] C. Delimitrou and C. Kozyrakis, “Paragon: QoS-aware scheduling for
heterogeneous datacenters,” in Proc. ACM ASPLOS, 2013, pp. 1–25.

[27] C. Delimitrou and C. Kozyrakis, “Quasar: Resource-efficient and QoS-
aware cluster management,” in Proc. ACM ASPLOS, 2014, pp. 1–17.

[28] H. Drucker, C. J. C. Burges, L. Kaufman, A. Smola, and V. Vapnik,
“Support vector regression machines,” in Proc. Adv. Neural Inf. Process.
Syst. (NIPS), 1996, pp. 155–161.

[29] A. D. Ferguson, P. Bodik, S. Kandula, E. Boutin, and R. Fonseca,
“Jockey: Guaranteed job latency in data parallel clusters,” in Proc. 7th
ACM Eur. Conf. Comput. Syst. (EuroSys), 2012, pp. 99–112.

[30] P. Garefalakis, K. Karanasos, P. Pietzuch, A. Suresh, and S. Rao,
“MEDEA: Scheduling of long running applications in shared production
clusters,” in Proc. 13th EuroSys Conf., Apr. 2018, pp. 1–13.

[31] M. R. Garey, R. L. Graham, and J. D. Ullman, “Worst-case analysis of
memory allocation algorithms,” in Proc. 4th Annu. ACM Symp. Theory
Comput. (STOC), 1972, pp. 143–150.

[32] A. Ghodsi, M. Zaharia, B. Hindman, A. Konwinski, S. Shenker, and
I. Stoica, “Dominant resource fairness: Fair allocation of multiple
resource types,” in Proc. USENIX Symp. Netw. Syst. Design Implement.
(NSDI), 2011, p. 24.

[33] R. Grandl, G. Ananthanarayanan, S. Kandula, S. Rao, and A. Akella,
“Multi-resource packing for cluster schedulers,” in Proc. ACM Conf.
SIGCOMM, Aug. 2014, pp. 455–466.

[34] R. Grandl, M. Chowdhury, A. Akella, and G. Ananthanarayanan, “Altru-
istic scheduling in multi-resource clusters,” in Proc. USENIX Symp.
Operating Syst. Design Implement. (OSDI), 2016, pp. 65–80.

[35] R. Grandl, S. Kandula, S. Rao, A. Akella, and J. Kulkarni, “Graphene:
Packing and dependency-aware scheduling for data-parallel clusters,” in
Proc. USENIX Symp. Operating Syst. Design Implement. (OSDI), 2016,
pp. 81–97.

[36] M. Grzegorz et al., “Pregel: A system for large-scale graph processing,”
in Proc. ACM SIGMOD Int. Conf. Manage. Data, 2010, pp. 135–146.

[37] B. Hindman et al., “Mesos: A platform for fine-grained resource
sharing in the data center,” in Proc. USENIX Symp. Netw. Syst. Design
Implement. (NSDI), 2011, p. 22.

[38] C. Iorgulescu, F. Dinu, A. Raza, W. U. Hassan, and W. Zwaenepoel,
“Don’t cry over spilled records: Memory elasticity of data-parallel
applications and its application to cluster scheduling,” in Proc. USENIX
Annu. Tech. Conf. (ATC), 2017, pp. 97–109.

[39] M. Isard, M. Budiu, Y. Yu, A. Birrell, and D. Fetterly, “Dryad:
Distributed data-parallel programs from sequential building blocks,” in
Proc. ACM SIGOPS/EuroSys Eur. Conf. Comput. Syst. (EuroSys), 2007,
pp. 59–72.

[40] M. Isard, V. Prabhakaran, J. Currey, U. Wieder, K. Talwar, and
A. Goldberg, “Quincy: Fair scheduling for distributed computing clus-
ters,” in Proc. ACM SIGOPS 22nd Symp. Operating Syst. Princ. (SOSP),
2009, pp. 261–276.

[41] E. G. Joseph, S. X. Reynold, D. Ankur, C. Daniel, J. F. Michael, and
S. Ion, “GraphX: Graph processing in a distributed dataflow framework,”
in Proc. USENIX Symp. Operating Syst. Design Implement. (OSDI),
2014, pp. 599–613.

694 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 29, NO. 2, APRIL 2021

[42] K. Karanasos et al., “Mercury: Hybrid centralized and distributed
scheduling in large shared clusters,” in Proc. USENIX Annu. Tech. Conf.
(ATC), 2015, pp. 485–497.

[43] S. Kim et al., “GPUnet: Networking abstractions for GPU programs,” in
Proc. USENIX Symp. Operating Syst. Design Implement. (OSDI), 2014,
pp. 201–216.

[44] R. Kondor and T. Jebara, “A kernel between sets of vectors,” in Proc.
Int. Conf. Mach. Learn. (ICML), 2003, pp. 361–368.

[45] T. Koponen et al., “Onix: A distributed control platform for large-scale
production networks,” in Proc. OSDI, 2010, pp. 1–6.

[46] M. Kornacker et al., “Impala: A modern, open-source SQL engine for
Hadoop,” in Proc. CIDR, 2015, p. 9.

[47] M. Korupolu, A. Singh, and B. Bamba, “Coupled placement in modern
data centers,” in Proc. IEEE Int. Symp. Parallel Distrib. Process.
(IPTPS), May 2009, pp. 1–12.

[48] A. Kuzmanovska, R. H. Mak, and D. Epema, “KOALA-F:
A resource manager for scheduling frameworks in clusters,” in Proc.
16th IEEE/ACM Int. Symp. Cluster, Cloud Grid Comput. (CCGrid),
May 2016, pp. 80–89.

[49] B. Li et al., “ClickNP: Highly flexible and high performance network
processing with reconfigurable hardware,” in Proc. ACM SIGCOMM
Conf., Aug. 2016, pp. 1–14.

[50] L. Liu and H. Xu, “Elasecutor: Elastic executor scheduling in data
analytics systems,” in Proc. ACM Symp. Cloud Comput., Oct. 2018,
pp. 107–120.

[51] Y. Lu, A. Chowdhery, and S. Kandula, “Optasia: A relational platform
for efficient large-scale video analytics,” in Proc. 7th ACM Symp. Cloud
Comput., Oct. 2016, pp. 57–70.

[52] H. Mao, M. Alizadeh, I. Menache, and S. Kandula, “Resource manage-
ment with deep reinforcement learning,” in Proc. 15th ACM Workshop
Hot Topics Netw., Nov. 2016, pp. 50–56.

[53] M. Zaharia, T. Das, H. Li, T. Hunter, S. Shenker, and I. Stoica,
“Discretized streams: Fault-tolerant streaming computation at scale,” in
Proc. 24th ACM Symp. Operating Syst. Princ., Nov. 2013, pp. 423–438.

[54] C. Michele, R. Yan, and L. Zheng, “Adaptive kernel approximation for
large-scale non-linear SVM prediction,” in Proc. Int. Conf. Mach. Learn.
(ICML), 2011, pp. 409–416.

[55] K. Morton, M. Balazinska, and D. Grossman, “ParaTimer: A progress
indicator for MapReduce DAGs,” in Proc. Int. Conf. Manage. Data
(SIGMOD), 2010, pp. 507–518.

[56] K. Ousterhout, C. Canel, S. Ratnasamy, and S. Shenker, “Monotasks:
Architecting for performance clarity in data analytics frameworks,” in
Proc. 26th Symp. Operating Syst. Princ., Oct. 2017, pp. 184–200.

[57] K. Ousterhout, R. Rasti, S. Ratnasamy, S. Shenker, and B.-G. Chun,
“Making sense of performance in data analytics frameworks,” in
Proc. USENIX Symp. Netw. Syst. Design Implement. (NSDI), 2015,
pp. 293–307.

[58] K. Ousterhout, P. Wendell, M. Zaharia, and I. Stoica, “Sparrow: Dis-
tributed, low latency scheduling,” in Proc. 24th ACM Symp. Operating
Syst. Princ., Nov. 2013, pp. 69–84.

[59] J. Rasley, K. Karanasos, S. Kandula, R. Fonseca, M. Vojnovic, and S.
Rao, “Efficient queue management for cluster scheduling,” in Proc. ACM
Eur. Conf. Comput. Syst. (EuroSys), 2016, pp. 1–15.

[60] A. Roy, H. Zeng, J. Bagga, G. Porter, and A. C. Snoeren, “Inside the
social network’s (datacenter) network,” in Proc. ACM Conf. Special
Interest Group Data Commun., Aug. 2015, pp. 123–137.

[61] B. SchOikopr, P. Bartlett, A. Smola, and R. Williamson, “Shrinking the
tube: A new support vector regression algorithm,” in Proc. Adv. Neural
Inf. Process. Syst. (NIPS), 1999, pp. 330–336.

[62] M. Schwarzkopf, A. Konwinski, M. Abd-El-Malek, and J. Wilkes,
“Omega: Flexible, scalable schedulers for large compute clusters,” in
Proc. 8th ACM Eur. Conf. Comput. Syst. (EuroSys), 2013, pp. 351–364.

[63] A. Singh et al., “Jupiter rising: A decade of Clos topologies and
centralized control in Google’s datacenter network,” in Proc. ACM
SIGCOMM, 2015, pp. 1–15.

[64] A. J. Smola and B. Schölkopf, “A tutorial on support vector regression,”
Statist. Comput., vol. 14, no. 3, pp. 199–222, 2004.

[65] J. Son, Y. Xiong, K. Tan, P. Wang, Z. Gan, and S. Moon, “Protego:
Cloud-scale multitenant IPsec gateway,” in Proc. USENIX Annu. Tech.
Conf. (ATC), 2017, pp. 473–485.

[66] A. Toshniwal et al., “Storm@Twitter,” in Proc. ACM SIGMOD Int. Conf.
Manage. Data, 2014, pp. 147–156.

[67] A. Toshniwal et al., “Morpheus: Towards automated SLOs for enterprise
clusters,” in Proc. USENIX Symp. Operating Syst. Design Implement.
(OSDI), 2016, pp. 117–134.

[68] V. K. Vavilapalli et al., “Apache Hadoop YARN: Yet another resource
negotiator,” in Proc. ACM Symp. Cloud Comput. (SoCC), 2013,
pp. 1–16.

[69] S. Venkataraman, Z. Yang, M. Franklin, B. Recht, and I. Stoica, “Ernest:
Efficient performance prediction for large-scale advanced analytics,”
in Proc. USENIX Symp. Netw. Syst. Design Implement. (NSDI), 2016,
pp. 363–378.

[70] A. Verma, L. Pedrosa, M. Korupolu, D. Oppenheimer, E. Tune, and
J. Wilkes, “Large-scale cluster Management at Google with Borg,” in
Proc. ACM Eur. Conf. Comput. Syst. (EuroSys), 2015, pp. 1–17.

[71] J. Wang and M. Balazinska, “Elastic memory management for cloud
data analytics,” in Proc. USENIX Annu. Tech. Conf. (ATC), 2017,
pp. 745–758.

[72] M. Weimer et al., “REEF: Retainable evaluator execution frame-
work,” in Proc. ACM SIGMOD Int. Conf. Manage. Data, May 2015,
pp. 1343–1355.

[73] G. J. Woeginger, “There is no asymptotic PTAS for two-dimensional
vector packing,” Inf. Process. Lett., vol. 64, no. 6, pp. 293–297,
Dec. 1997.

[74] W. Xia, H. Jiang, D. Feng, and Y. Hua, “SiLo: A similarity-locality
based near-exact deduplication scheme with low RAM overhead and
high throughput,” in Proc. USENIX Annu. Tech. Conf. (ATC), 2011,
pp. 26–30.

[75] D. Xie, N. Ding, Y. C. Hu, and R. Kompella, “The only constant
is change: Incorporating time-varying network reservations in data
centers,” in Proc. ACM SIGCOMM, 2012, pp. 199–210.

[76] G. Xu and C.-Z. Xu, “Prometheus: Online estimation of optimal
memory demands for workers in in-memory distributed computation,”
in Proc. ACM Symp. Cloud Comput. (SoCC), 2017, p. 655.

[77] G. Xu, C.-Z. Xu, and S. Jiang, “Prophet: Scheduling executors with time-
varying resource demands on data-parallel computation frameworks,” in
Proc. IEEE Int. Conf. Autonomic Comput. (ICAC), Jul. 2016, pp. 45–54.

[78] Y. Yan, Y. Gao, Y. Chen, Z. Guo, B. Chen, and T. Moscibroda, “TR-
spark: Transient computing for big data analytics,” in Proc. 7th ACM
Symp. Cloud Comput., Oct. 2016, pp. 484–496.

[79] M. Zaharia, D. Borthakur, J. S. Sarma, K. Elmeleegy, S. Shenker, and
I. Stoica, “Delay scheduling: A simple technique for achieving locality
and fairness in cluster scheduling,” in Proc. ACM Eur. Conf. Comput.
Syst. (EuroSys), 2010, pp. 265–278.

[80] M. Zaharia et al., “Resilient distributed datasets: A fault-tolerant abstrac-
tion for in-memory cluster computing,” in Proc. USENIX Symp. Netw.
Syst. Design Implement. (NSDI), 2012, pp. 15–28.

[81] H. Zhang, L. Stafman, A. Or, and M. J. Freedman, “SLAQ: Quality-
driven scheduling for distributed machine learning,” in Proc. Symp.
Cloud Comput., Sep. 2017, pp. 390–404.

Libin Liu (Member, IEEE) received the B.E. degree
in software engineering from Shandong Univer-
sity and the Ph.D. degree from the Department of
Computer Science, City University of Hong Kong.
He is currently a Researcher with the Theory Lab,
Huawei Hong Kong Research Center, Hong Kong.
His current research interests include data analytics
systems and machine learning for networking. He is
a member of the ACM.

Hong Xu (Senior Member, IEEE) received the
B.Eng. degree from The Chinese University of
Hong Kong in 2007, and the M.A.Sc. and Ph.D.
degrees from the University of Toronto in 2009 and
2013, respectively. From 2013 to 2020, he was with
City University of Hong Kong. He is currently an
Associate Professor with the Department of Com-
puter Science and Engineering, The Chinese Univer-
sity of Hong Kong. His research interests include
computer networking and systems, particularly big
data systems and data center networks. He is a mem-

ber of the ACM. He was a recipient of an Early Career Scheme Grant from the
Hong Kong Research Grants Council in 2014. He received three best paper
awards, including the IEEE ICNP 2015 Best Paper Award.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Black & White)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /AdobeArabic-Bold
 /AdobeArabic-BoldItalic
 /AdobeArabic-Italic
 /AdobeArabic-Regular
 /AdobeHebrew-Bold
 /AdobeHebrew-BoldItalic
 /AdobeHebrew-Italic
 /AdobeHebrew-Regular
 /AdobeHeitiStd-Regular
 /AdobeMingStd-Light
 /AdobeMyungjoStd-Medium
 /AdobePiStd
 /AdobeSansMM
 /AdobeSerifMM
 /AdobeSongStd-Light
 /AdobeThai-Bold
 /AdobeThai-BoldItalic
 /AdobeThai-Italic
 /AdobeThai-Regular
 /ArborText
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /BellGothicStd-Black
 /BellGothicStd-Bold
 /BellGothicStd-Light
 /ComicSansMS
 /ComicSansMS-Bold
 /Courier
 /Courier-Bold
 /Courier-BoldOblique
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /Courier-Oblique
 /CourierStd
 /CourierStd-Bold
 /CourierStd-BoldOblique
 /CourierStd-Oblique
 /EstrangeloEdessa
 /EuroSig
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Helvetica
 /Helvetica-Bold
 /Helvetica-BoldOblique
 /Helvetica-Oblique
 /Impact
 /KozGoPr6N-Medium
 /KozGoProVI-Medium
 /KozMinPr6N-Regular
 /KozMinProVI-Regular
 /Latha
 /LetterGothicStd
 /LetterGothicStd-Bold
 /LetterGothicStd-BoldSlanted
 /LetterGothicStd-Slanted
 /LucidaConsole
 /LucidaSans-Typewriter
 /LucidaSans-TypewriterBold
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MinionPro-Bold
 /MinionPro-BoldIt
 /MinionPro-It
 /MinionPro-Regular
 /MinionPro-Semibold
 /MinionPro-SemiboldIt
 /MVBoli
 /MyriadPro-Black
 /MyriadPro-BlackIt
 /MyriadPro-Bold
 /MyriadPro-BoldIt
 /MyriadPro-It
 /MyriadPro-Light
 /MyriadPro-LightIt
 /MyriadPro-Regular
 /MyriadPro-Semibold
 /MyriadPro-SemiboldIt
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /Symbol
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Webdings
 /Wingdings-Regular
 /ZapfDingbats
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 300
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 900
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.33333
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /Unknown

 /CreateJDFFile false
 /Description <<
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

