IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 33, NO. 12, DECEMBER 2022

4801

ScaleFlux: Efficient Stateful Scaling in NFV

Libin Liu™, Member, IEEE, Hong Xu
, Student Member, IEEE, Wei Zhang
Jason Chun Xue

Jingzong Li

, Member, IEEE, and Cong Wang

Senior Member, IEEE, Zhixiong Niu,
Peng Wang ™, Jiamin Li*”, Student Member, IEEE,
, Fellow, IEEE

Abstract—Network function virtualization (NFV) enables elastic scaling to middlebox deployment and management. Therefore,
efficient stateful scaling is an important task because operators often need to shift traffic and the associated flow states across VNF
instances to deal with time-varying loads. Existing NFV scaling methods, however, typically focus on one aspect of the scaling pipeline
and does not offer an end-to-end scaling framework. This article presents ScaleFlux, a complete stateful scaling system that efficiently
reduces flow-level latency and achieves near-optimal resource usage. ScaleFlux (1) monitors traffic load for each VNF instance and
adopts a queue-based mechanism to detect load burstiness timely, (2) deploys a flow bandwidth predictor to predict flow bandwidth
time-series with the ABCNN-LSTM model, and (3) schedules the necessary flow and state migration using the simulated annealing
algorithm to achieve both flow-level latency guarantee and resource usage minimization. Testbed evaluation with a five-machine cluster
shows that ScaleFlux reduces flow completion time by at least 8.7 x for all the workloads and achieves near-optimal CPU usage during

scaling.

Index Terms—Network function virtualization, network load detection, flow bandwidth prediction, stateful scaling, service level agreements

1 INTRODUCTION

ETWORK function virtualization (NFV) [2], [3] aims to
N replace hardware middleboxes with virtual software
instances running on commodity servers. NFV enables flexi-
ble scaling of the virtual instances to better handle time-var-
ious network loads. Besides, unlike layer 3 forwarding,
many middleboxes such as firewall, proxy, and VPN per-
form stateful packet processing. Consider a load balancing
scenario where a firewall instance is overloaded with traffic,
and an additional instance needs to be spawned. Operators

Libin Liu is with Zhongguancun Laboratory, Beijing 100190, China.
E-mail: liulb@zgclab.edu.cn.

Hong Xu is with the Department of Computer Science and Engineering,
The Chinese University of Hong Kong, Hong Kong SAR, China.

E-mail: hongxu@cuhk.edu.hk.

Zhixiong Niu is with Microsoft Research Asia, Beijing 100080, China.
E-mail: zhixiong.niu@microsoft.com.

Jingzong Li, Jiamin Li, Jason Chun Xue, and Cong Wang are with the
Department of Computer Science, City University of Hong Kong, Hong
Kong SAR, China. E-mail: {jiaminli8-c, jingzong.lij@my.cityu.edu.hk,
{jasonxue, congwang}@cityu.edu.hk.

Wei Zhang is with the Shandong Provincial Key Laboratory of Computer
Networks, Shandong Computer Science Center (NationalSupercomputer
Center in Jinan), Qilu University of Technology (Shandong Academy of
Sciences), Jinan, Shandong 250316, China. E-mail: wzhang@sdas.org.
Peng Wang is with Theory Lab, Huawei Hong Kong Research Center,
Hong Kong SAR, China. E-mail: wang.peng6@huawei.com.

Manuscript received 11 January 2022; revised 2 August 2022; accepted 31
August 2022. Date of publication 5 September 2022, date of current version
19 September 2022.

This work was supported in part by the National Natural Science Foundation of
China under Grant 61802233, in part by the Pilot Project for Integrated Inno-
vation of Science, Education and Industry of Qilu University of Technology
(Shandong Academy of Sciences) under Grant 2020K]C-ZD02, in part by the
General Research Fund from Hong Kong Research Grants Council under Grant
11209520, in part by CUHK under Grants 5501329, 5501517, 4937007, and
4937008.

(Corresponding author: Hong Xu.)

Recommended for acceptance by D. Mohaisen.

Digital Object Identifier no. 10.1109/TPDS.2022.3204209

<+

need to adjust the flow routing tables to dynamically redis-
tribute packet processing across multiple virtual network
function (VNF) instances. They must also move the internal
states associated the flows to the new instance so that it can
continue processing the traffic without disruption to users.

In addition, many large enterprises and cloud providers
report that their networks contain many VNFs performing a
wide range of advanced packet processing and their traffic
loads change variously over time [4], [5], [6], [7]. These
VNFs need dynamic scaling in three aspects. First, VNFs
need to scale up to deal with traffic load spikes in order to
meet the service level agreements (SLAs) [5], [6], [8]. Sec-
ond, VNFs need to scale down when load decreases to
avoid resource wastage [6], [9], [10]. Third, burstiness is
common in data center networks and WANs [4], [6], [7].
VNFs need to timely and efficiently scale to avoid flow-level
SLA violation.

As a result, dynamic scaling emerges as an important
research issue in NFV. Frameworks such as E2 [10], S6 [11],
Metron [12], and FlexNFV [9] dynamically scale VNF ser-
vice chains to improve their performance. E2 [10] manages
VNF placement, service interconnection, and dynamic auto-
matic scaling without operator intervention. To maintain
flow affinity, E2 adopts a migration avoidance strategy that
only moves flows without states to the new instance. In con-
trast, S6 [11] performs elastic scaling of stateful network
functions. It separates packet processing and their corre-
sponding states by designing a distributed shared state
abstraction. By this, S6 simplifies the state migration during
scaling. Yet, it requires operators to re-implement VNFs
based on its new abstraction. Split/Merge [13] and OpenNF
[14] support stateful VNF scaling without the need to re-
implement VNFs. They automatically transfer states across
VNFs with or without guarantees on packet loss, reorder-
ing, and state inconsistency. These work, however, migrates
states without latency guarantees, which takes hundreds of

1045-9219 © 2022 |IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on December 19,2022 at 06:35:40 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0002-2718-8483
https://orcid.org/0000-0002-2718-8483
https://orcid.org/0000-0002-2718-8483
https://orcid.org/0000-0002-2718-8483
https://orcid.org/0000-0002-2718-8483
https://orcid.org/0000-0002-9359-9571
https://orcid.org/0000-0002-9359-9571
https://orcid.org/0000-0002-9359-9571
https://orcid.org/0000-0002-9359-9571
https://orcid.org/0000-0002-9359-9571
https://orcid.org/0000-0002-2519-2550
https://orcid.org/0000-0002-2519-2550
https://orcid.org/0000-0002-2519-2550
https://orcid.org/0000-0002-2519-2550
https://orcid.org/0000-0002-2519-2550
https://orcid.org/0000-0002-8947-9067
https://orcid.org/0000-0002-8947-9067
https://orcid.org/0000-0002-8947-9067
https://orcid.org/0000-0002-8947-9067
https://orcid.org/0000-0002-8947-9067
https://orcid.org/0000-0002-4008-1963
https://orcid.org/0000-0002-4008-1963
https://orcid.org/0000-0002-4008-1963
https://orcid.org/0000-0002-4008-1963
https://orcid.org/0000-0002-4008-1963
https://orcid.org/0000-0001-8110-2436
https://orcid.org/0000-0001-8110-2436
https://orcid.org/0000-0001-8110-2436
https://orcid.org/0000-0001-8110-2436
https://orcid.org/0000-0001-8110-2436
https://orcid.org/0000-0002-6431-9868
https://orcid.org/0000-0002-6431-9868
https://orcid.org/0000-0002-6431-9868
https://orcid.org/0000-0002-6431-9868
https://orcid.org/0000-0002-6431-9868
https://orcid.org/0000-0003-0547-315X
https://orcid.org/0000-0003-0547-315X
https://orcid.org/0000-0003-0547-315X
https://orcid.org/0000-0003-0547-315X
https://orcid.org/0000-0003-0547-315X
mailto:liulb@zgclab.edu.cn
mailto:hongxu@cuhk.edu.hk
mailto:zhixiong.niu@microsoft.com
mailto:jiaminli8-c@my.cityu.edu.hk
mailto:jingzong.li@my.cityu.edu.hk
mailto:jasonxue@cityu.edu.hk
mailto:congwang@cityu.edu.hk
mailto:wzhang@sdas.org
mailto:wang.peng6@huawei.com

4802

milliseconds to complete, generates much overhead in the
control plane, and degrades application performance. We
find that OpenNF [14] takes more than 100ms to move per-
flow states for 1,000 flows.

However, existing work does not migrate the network
load exactly at flow level, while guaranteeing per-flow SLA
during scaling. Handling network load subtly and achiev-
ing per-flow SLA are critical to resource utilization [15], [16]
and the quality of user experience [17], [18]. According to
our observation on the real traffic from a cloud gateway
in Section 2.1, the flow burstiness ratio is high but the num-
ber of concurrent bursty flows is limited. This indicates the
network load burstiness is commonly caused by a small
number of bursty flows. Therefore, this inspires us to design
a NFV scaling system that can exactly detect such flows and
migrate them, while achieving per-flow SLA.

Thus, in this paper, we propose a dynamic scaling sys-
tem for NFV, called ScaleFlux. ScaleFlux just needs to main-
tain a suitable quantity of VNF instances to process the
stable network load with high resource utilization. Once it
detects the network load exceeds the processing capacity of
the instances, it launches scaling at once and predicts the
bandwidth for each flow. Then, ScaleFlux can accurately
select the flows which lead to the overload issue to migrate,
as the flow bandwidth reflects the contribution of each flow
to the network load and migrating the “right” flows does
solve the overload issue and also reduce the effect to the
other flows. Meanwhile, when scheduling the flows to
migrate, ScaleFlux provides per-flow SLA guarantee, since
flow migration incurs extra latency and flows contributing
more to the load burstiness may also be extremely sensitive
to the latency, such as short videos [19].

Besides, in order to verify the idea, we build a complete
end-to-end scaling system to support the whole NFV scal-
ing process including network load monitoring, scaling
scheduling, and flow and state migration. First, to perform
scaling timely, a load monitor surrogate proactively monitors
traffic load of each VNF instance and adopts a queue-
based mechanism to detect load changes. Then, in order to
migrate the network loads at flow level, ScaleFlux needs to
know the future arrival rates of active flows and estimate
which ones are likely to contribute more to the future
load. We design a flow bandwidth predictor that relies on an
attention-based CNN-LSTM model to predict flow time-
series bandwidth with the historical time-series, which is
calculated using the information, such as packet size, num-
ber of packets of a flow, and packet timestamps, that we
collect in real-time for each flow traversing the VNF. The
attention mechanism is used to extract important features
from the flow bandwidth time-series and LSTM module is
used for time-series prediction. Such a model can avoid
the interference of unimportant data and gradient disper-
sion problems [20].

Once scaling process is triggered, ScaleFlux’s scaling
scheduler runs the simulated annealing algorithm (SAA) to
decide which flows should be migrated and where to
migrate, in order to minimize VNFs’ resource usage while
satisfying flow-level latency guarantees. Specially, since
existing work separating state management and packet
processing [11], [21], [22] does not have open and standard
interfaces that are widely used in practice, they are not

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 33, NO. 12, DECEMBER 2022

ready for wide deployment in production to implement var-
ious VNFs [23]. Thus, ScaleFlux considers state migration
during scaling and SAA takes the state migration overhead
into consideration when scheduling. In Section 2.2, we also
analyze the overhead of state migration cannot be ignored.
Finally, ScaleFlux implements a flow and state manager to
migrate flows and states. During migration, their packets
have to be buffered at the controller to avoid packet loss or
reordering at the new instance. ScaleFlux relies on an under-
lying state management framework such as OpenNF to
provide basic state migration services. It adds two new com-
ponents: a per-flow state migration API for the state man-
ager to enable dedicated flow migration and a filter API that
updates flow routing table to redistribute traffic. After fin-
ishing migration, ScaleFlux deletes the states of migrated
flows from the original instance and completes the scaling
process.
We make several contributions in this work.

e We identify the need to consider dynamic scaling in
NFV to meet SLA and analyze the overhead of state
migration (Section 2).

e We design a VNF scaling framework called Scale-
Flux (Section 3) that elastically scales VNF instances
to guarantee flow-level latency and minimize
resource usage.

e We implement ScaleFlux (Section 4) and present
extensive evaluations on a five-machine cluster (Sec-
tion 5). Experiments with the real workloads show
that ScaleFlux substantially minimizes resource costs
and provides flow-level latency guarantee, and its
components perform efficiently with little overhead.
Compared to existing solutions such as OpenNF [14],
ScaleFlux reduces flow completion time by at least
8.7x for all the workloads and achieves near-optimal
CPU usage.

The rest of the paper is structured as follows. We first
introduce the motivation for scaling in NFV to meet SLAs
and the overhead of state migration in Section 2. Then, we
describe the overall system architecture, detailed component
design, as well as the algorithms in Section 3. We discuss the
implementation of ScaleFlux in Section 4, and performance
evaluation with testbed experiments in Section 5. Finally, we
discuss related work in Section 6, and conclude in Section 7.

2 BACKGROUND AND MOTIVATION

In this section, we first introduce the traffic characteristics to
motivate the dynamic scaling need to meet the per-flow
SLA in Section 2.1. We then introduce the overhead of state
migration when VNF scales, to inspire us not only consider-
ing flows themselves, but also their states in Section 2.2.

2.1 Need Scaling to Meet SLAs

We collect the traffic from three production cloud gateways
of an Internet content provider. The cloud gateways run on
commodity servers or programmable switches, and manip-
ulate packet headers and forward them with tunnels using
flow tables, e.g., ACL, NAT, and GRE or VXLAN [24], [25],
[26]. For each gateway, we collect packet-level traces at dif-
ferent time periods of a typical work day. In the following,

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on December 19,2022 at 06:35:40 UTC from IEEE Xplore. Restrictions apply.

LIU ETAL.: SCALEFLUX: EFFICIENT STATEFUL SCALING IN NFV

=l
g 30
-
£20
Z
=
g
=10
£
=}
“
8:00 10:00 12:00 14:00 16:00 18:00 20:00
Time

Fig. 1. The time-series for the normalized network load of one cloud
gateway. We calculate the overall average from 8:00am to 8:00pm and
obtain the normalized network load with respect to the overall average.

we describe our key findings from the traces. We only pres-
ent results of one gateway, since traffic characteristics of the
other two demonstrate the same properties.

Network Load Constantly Changes Over Time. We collect the
network load every 1ms from 8:00am to 8:00pm of a day
and show its time-series in Fig. 1. We summarize the data
for each 10-minute period as a data point and calculate the
overall average, and Fig. 1 depicts the normalized network
load with respect to the overall average. We observe the net-
work load of the gateway changes over time, and the nor-
malized load ranges from 0.16 to 38.43. Besides, we also
explore the characteristics of individual flows. We observe
that most flows are bursty: the sending rates of bursty flows
surge quickly and last for a short period. We use the ratio
between a flow’s peak rate and its average, named burstiness
ratio, to describe the level of burstiness. We depict the CDFs
of burstiness ratio in Fig. 2a. We can see ~80% flows have a
ratio larger than 20 and the maximum reaches 80. Moreover,
we make a statistical analysis about the distribution of the
number of concurrent bursty flows whose burstiness ratio is
larger than 10, as shown in Fig. 2b. We find that the number
of concurrent bursty flows is limited. The maximum is 49
from the trace of the cloud gateway workload compared to
the total number of 500K flows. This also demonstrates that
the overall load burstiness is usually because of a small
number of bursty flows.

Burstiness Degrades SLAs. We further conduct experiments
to show that bursty flows should be handled separately to
guarantee their SLAs. Most previous work migrates flows
during NFV scaling without considering SLAs [14] or only
considering the overall SLAs [1], [9]. They pay little attention
to per-flow SLA. Per-flow SLA determines the overall SLA
guarantee, but not vice versa. To see this, we quantitatively
compare the queue size and processing latency for processing

1.0 1.0
0.8 0.8
0.6 i 0.6
a a
©o4 o4
0.2 0.2
0.0 0.0
0 20 40 60 80 0 10 20 30 40 50

No. of Concurrent Bursty Flows

(b) CDFs of CBF’s numbers

Burstiness Ratio

(a) CDFs of burstiness ratios

Fig. 2. Traffic characteristics of the cloud gateway. The burstiness ratio is
calculated by a flow’s peak sending rate regarding to its average and the
full name of CBF is concurrent bursty flow.

4803

Controller

1.0 T
0.8
0.6
OpenFlow|Switch =
@) 0.4 ' Gateway
: mm Web Search
PRADS; PRADS, 0.2 ol s EB

Y = =1 Azure WAN

0.0 = =
10 10" 10" 10° 107 10* 10° 10° 107
Traffic Generator Flow Size (KBytes)

(a) (b)

Fig. 3. (a) Testbed topology; (b) Flow size distributions in a cloud gate-
way, a web search cluster [27], a Facebook cache cluster (FB) [28], and
Azure WAN [29]. The network trace for gateway belongs to a cloud gate-
way cluster from a large cloud service provider.

bursty and stable flows by a VINF, respectively. Our testbed
servers are connected as shown in Fig. 3a. We use one server
as the sender, another as the receiver, and a third one
with one CPU core running PRADS [30] as a VNF. We gener-
ate stable and bursty flows at the sender. Note that the aver-
age rate of the stable flows is 5 times higher than that of
bursty flows.

Fig. 4 shows that, for stable flows and the stable period of
bursty flows, queue size and packet latency are both very
small. Yet, at the peak period of the bursty flows, they are
much higher than the normal. This is because CPU resour-
ces are reserved for a VNF instance to provide fixed proc-
essing capacity and the instantaneous arrival rate exceeds
the VNF's processing capacity and unprocessed packets are
buffered at the queue.

Scaling Counteracts Burstiness. Continuing with the same
setup, we vary the number of PRADS instances for process-
ing the bursty flows, and measure the effect on packet loss
rates and latency. Besides, to balance the load, flows are ran-
domly hashed to the instances. As shown in Fig. 5, as the
number of instances increases, packet loss rate and latency
are reduced. We observe that four instances are needed for
bursty flows to avoid packet loss and achieve the same aver-
age latency with stable flows, which only entails one
instance. The results indicate that bursty flows need more
instances in parallel to ensure satisfactory SLAs. Clearly, we
should scale the VNF instances dynamically according to

Stable Flows Bursty Flows

—
(=}

Sending Rate
(Mpps)

—_
S o

Queue Size
(10* Packets)
W

—_
S o

Latency
(ms)
W

0
0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30
Time (s)

Fig. 4. Sending rate, queue size, and latency for stable flows and bursty
flows.

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on December 19,2022 at 06:35:40 UTC from IEEE Xplore. Restrictions apply.

oy
o]
o
N

g i;‘ =v=Stable Flows 12 =v="Stable Flows

2 10 Bursty Flows "-é\ 10 Bursty Flows

o~ = 8

g 8 2

a 6 3

g4 3 ‘2*

éz 3 ———————————— 0 ————————————
1 2 3 4 1 2 3 4

No. of VNF Instances No. of VNF Instances

(a) Loss rate (b) Latency

Fig. 5. Packet loss rate and latency against different numbers of VNF
instances for stable flows and bursty flows, respectively.

the instantaneous traffic load of bursty flows in order to
avoid resource over-utilization or under-utilization while
guaranteeing SLAs.

2.2 Overhead of State Migration
Most VNFs perform stateful packet processing. Thus, when
migrating the flows we also need to migrate their associated
states from original VNF instance to the new one, which
incurs non-negligible overhead. To understand this over-
head, we deploy a five-machine testbed as shown in Fig. 3a
and measure the time used to migrate states using the net-
work workloads whose CDFs of flow sizes are shown in
Fig. 3b. They are from a cloud gateway cluster as mentioned
before, a web search cluster [27], a Facebook cache cluster
(FB) [28], and Azure WAN [29], respectively. Flows arrive
according to a Poisson process with an average load of 1.
Our observation is that state migration incurs downtime
on the order of O(100)ms [10], [14], which is significantly
larger than the flow completion time of many flows, espe-
cially the mice ones. This is because migrating states is a
control-plane action where complex optimization mecha-
nisms and serialization/deserialization have to be in place
to provide critical performance guarantees such as loss-free
and order-preserving for NFV applications. To see this, we
deploy OpenNF [14], state-of-the-art state migration system,
on the testbed (more details of the testbed in Section 5.1).
We use five physical machines instead of VMs for maxi-
mum performance. We use two PRADS asset monitor
instances [30] (PRADS, and PRADS,), which are OpenNF-
enabled. Initially all traffic is sent to PRADS,. After it has
created per-flow states for 2,000 flows, we move half of the
flows and their states to PRADS, for load balancing. Fig. 6a

0.6 1.2
NG DI LF PL+ER o
0.5 B NGPL LF+OP PL+ER % 1.0
= E= LFPL Eog
5 0.4 o
= > 0.6
2 I 2 0d
g % s
a1 s0
0.1 0% 0.0
’ 0 500 1000 1500 2000
0,
0.0 — The Number of Flows
(a) (b)

Fig. 6. (a) Migration time with no guarantees (NG), loss-free (LF), and
loss-free and order-preserving (LF+OP) with and without parallelizing
(PL) and early-release (ER) optimizations, using flow size distributions
of Fig. 3b; (b) Migration time when moving different numbers of flows
with loss-free and order-preserving guarantees, and parallelizing and
early-release optimizations in OpenNF

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 33, NO. 12, DECEMBER 2022

(ScaleFlux Controller
VNF Scaling Flow and State Manager
Scheduler [VNF State Manager][Flow Manager]
_ A A =

N
e

OpenFlow

Flow Bandwidth
Predictor

Load Monitor | [VNF Originall |_ _{| VNF New witch
Surrogate Instance Instance

A

Traffic Generator

Fig. 7. The system overview of ScaleFlux.

— Component Communication

---»

»Flows on the original instance

- - - »Flows moving to new instance

shows that even without any performance guarantees,
OpenNF takes at least 268ms to transfer 1,000 states. When
applications demand loss-free and/or order-preserving
guarantees, the migration time is beyond 400ms even with
optimizations.

This motivates us to take both the flows to migrate and
their states into consideration when scaling VNF instances.
We should select the flows which can reduce the VNF load
bursty efficiently while reducing the downtime for state
migration. This is because state migration time cannot be
ignored for all the flows, especially for mice flows, which
may finish the transmission long before state migration
ends. On the one hand, migrating large flows or bursty
flows can quickly deal with traffic load burstiness and
avoid SLA violation, especially for an individual bursty
flow. However, migrating other flows (e.g., mice flows)
will significantly harm their SLAs and cannot deal with
load burstiness of VNFs. We do not focus on the consis-
tency issues that arise when global or multi-flow state is
needed on the new VNF instance, which is addressed in
some existing work [14]. Our experiments only migrate
per-flow state.

The benefits of carefully selecting flows to migrate is
three-fold. First, it can handle the flows’ migration down-
time. We repeat the OpenNF migration experiments with
varying number of states and find that migration downtime
increases with number of states as shown in Fig. 6b.! Thus,
migrating fewer states can greatly cut the downtime and
eliminate the extra latency for flows. Second, it can help
avoid SLA violation for individual flows, especially bursty
flows, as shown in Fig. 5. Third, it also helps minimize
migration overhead at both the controller and OpenFlow
switches. Because the controller has fewer packets to buffer
and send messages for. Additionally, fewer forwarding
rules need to be updated at OpenFlow switches to adjust
routing of flows, further streamlining the entire migration
process with flows and states.

3 DESIGN

We now present the design of ScaleFlux in this section. We
start by presenting the system overview in Section 3.1. We
then explain the load monitor surrogate in Section 3.2, and
flow bandwidth predictor in Section 3.3. Lastly, we discuss

1. This is likely due to the increased complexity of providing loss-
free and order-preserving guarantees with more packets.

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on December 19,2022 at 06:35:40 UTC from IEEE Xplore. Restrictions apply.

LIU ETAL.: SCALEFLUX: EFFICIENT STATEFUL SCALING IN NFV

the scaling scheduler to achieve both flow-level latency
guarantee and resource efficiency in Section 3.4.

3.1 Overview

ScaleFlux is an automatic stateful scaling system in NFV.
Fig. 7 shows the system overview of ScaleFlux. It includes
four key components: load monitor surrogate, flow band-
width predictor, scaling scheduler, and flow and state man-
ager. The load monitor surrogate monitors queue size of each
VNF instance and detects network load burstiness in real
time. When the network load exceeds a predefined thresh-
old, VNF scaling is triggered, and then the flow bandwidth
predictor runs the attention-based CNN-LSTM model to
forecast the bandwidth time-series for individual flows and
calculates their future arrival rates. Next, the scaling sched-
uler determines the flows to migrate with flow-level latency
guarantee and resource efficiency. Finally, ScaleFlux uses
the flow and state manager to finish the migration of desig-
nated flows and their corresponding states.

We explain the key components of ScaleFlux below.

Load Monitor Surrogate. ScaleFlux employs a load monitor
surrogate for each VNF instance to continuously monitor
the overall network load in real time. The load monitor sur-
rogate monitors the queue size and compares it against the
predefined threshold. Once it finds the queue size exceeds
the threshold, it will report to scaling scheduler to launch
the scaling process.

Flow Bandwidth Predictor. Flow bandwidth predictor
adopts an attention-based CNN-LSTM (ABCNN-LSTM)
model to forecast time-series bandwidth for each flow and
then calculates their arrival rates for the future epoch
accordingly. It continuously collects flows” bandwidth
information and makes it as the input of ABCNN-LSTM at
each VNF instance. The prediction results are used for scal-
ing scheduling, as they can reflect the contribution of each
flow to the total network load. Besides, ScaleFlux uses the
information to update the model offline and adapts to the
characteristics of bandwidth time-series over time.

Scaling Scheduler. The scaling scheduler in ScaleFlux runs
the simulated annealing algorithm (SAA) to achieve both
flow-level latency guarantee and resource efficiency. It lis-
tens to the scaling launching event from load monitor surro-
gate and obtains flows’ future arrival rates from flow
bandwidth predictor. Then, it determines which flows and
states to migrate to the new instances, and invokes flow and
state manager to finish migration.

Flow and State Manager. Flow and state manager is wait-
ing for the commands on flow and state migration and sub-
sequently migrates the ones specified by scaling scheduler.
Once invoked, it adjusts the flow routing table at switches,
iteratively moves the states of selected flows to new VNF
instances, and deletes the states at the original instance and
finishes migration process.

3.2 Load Monitor Surrogate

As shown in Fig. 8a, the load monitor surrogate leverages a
process to proactively monitor and detect network load
changes for each VNF instance. When the software queue
size exceeds a pre-defined threshold K, some flows proc-
essed by the VNF instance need to be migrated to new

4805
(@)
28
Al § CNNs Attentio LSTM
=]
f Communication\ el L
Ring 22 =
woe [.8 -
[Queue Monitor] [Queue Monitor] %51—- 5 CNNs [~fAttentio; LSTM
K] 2
=T e _J
= : !
O = O = Egl :
| (2D O sl (#
]]]] s CNNs f+{Attentio LSTM
0 |5 O |

(a) (b)

Fig. 8. (a) Ring buffer for queue-based load detection in load monitor
surrogate; (b) The architecture of ABCNN-LSTM model.

instances to balance load and guarantee flows” SLAs. Load
monitor surrogate leverages counters to accurately monitor
the queue size, which can be software counters or hardware
counters within a commodity NIC.

Queue Size Threshold. Most practical NFV systems use
high performance packet IO tools, e.g., DPDK [31] and net-
map [32] for traffic processing. Within these systems, the
software and hardware communicate with each other via a
ring buffer. That is, the hardware directly places packets
into the ring buffer to send them to the software. Conse-
quently, when the VNF processing speed cannot catch up
with the traffic arrival rate during network load rising,
packets will be buffered and the packet queue will build up
in the ring buffer over time. Therefore, a sudden increase-
ment of packet queue size is a clear signal for the existence
of traffic load burstiness.

One important problem here is how to set the threshold
K to accurately detect network load burstiness and thus
trigger VNF scaling timely. Inspired by the idea on setting
the headroom size in PFC [33], [34], we set K accordingly.
For PFC, the headroom should be large enough to store the
packets received by a switch between the time point when
the PFC pause message is sent and the one when the mes-
sage takes effect. Similarly, a headroom should be reserved
to store the packets received by the ring buffer between the
time point when VNF scaling is triggered and the one when
flows which are responsible for the load bursty are success-
fully started migration. Following this principle, K is set as:

K= Qcap - (T;de, + ngt) X Mra,te7 (1)

where @, represents the overall queue capacity for each
VNF instance, Tj4 is the time required for identifying the
flows to migrate, 1},, is the time taken for launching the
flow and state migration process, and M, is the flow and
state migration rate. We will discuss the concrete setups for
Qcapr Tiat, Tingr, and M4, in Section 4. With this queue-based
mechanism, the load monitor surrogate can work efficiently
to detect load burstiness while avoiding packet drops before
migration.

3.3 Flow Bandwidth Predictor

To accurately predict flow bandwidth, we employ an atten-
tion mechanism to dynamically use the time-series features.
The attention network in ScaleFlux is designed to determine
the weights for the features since no prior information is
available for the attention network to specify weights, we
adopt an unsupervised model where the inputs to the

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on December 19,2022 at 06:35:40 UTC from IEEE Xplore. Restrictions apply.

4806

model are all the features. We present the architecture of the
unsupervised ABCNN-LSTM model in Fig. 8b, which
includes input module, CNN module, attention module,
and LSTM module. Flow future arrival rate is the average of
predicted bandwidth time-series. It is obtained as follows.
First, we preprocess the historical bandwidth time-series for
each flow as input. Then, the model uses CNN [35] and
attention modules to select the important features to focus
on. Next, the model adopts LSTM unit to predict bandwidth
time-series with the output of attention module. Finally, we
calculate their average as flow’s future arrival rate.

Flow Monitor. Flow bandwidth predictor relies on a flow
monitor to collect information of active flows at each VNF
instance. Here we consider active to mean existing within
the last 1000ms time window. The monitor maintains a flow
information table (FIT), where each entry stores the flow ID
hashed from five-tuples, its current size, packet timestamps,
and the list of calculated bandwidths. There are three opera-
tions associated with the FIT: insertion, update, and
eviction.

Insertion. When a packet arrives at the VNF instance, if
the flow is not present in the FIT, a new entry with the flow
ID and timestamp is added.

Update. When a packet arrives and its flow is present in
the table, the size and timestamp of the flow is updated.
Besides, every 5ms, flows” bandwidths are calculated and
the new values are added to the list.

Eviction. Every second, an eviction pointer goes through
the FIT to evict entries whose timestamps are not within the
last time window. This helps maintain the FIT size in a rea-
sonable level. We have varies time window values from
20ms to 2000ms to evict flow entries in Section 5.6. We
choose 1000ms because it is able to cover all active flows
that indeed cause overload for VNF instance. Of course, Sca-
leFlux can also adjust the time window size according to the
workloads.

The flow monitor adds delay to VNF’s packet processing.
This overhead can be minimized by implementing it using
high-performance packet I/O frameworks such as DPDK
[36] or netmap [32] with microsecond level delay. Besides,
in ScaleFlux, we convert the collected flow information into
corresponding bandwidth time series in milliseconds.

Attention-Based CNN Unit. Various attention-based CNN
models have been widely used to help improve the perfor-
mance by paying attention to important features [20].
The formal definition of the attention mechanism is given
as follows,

€ij = a(Si—lv hj)7)
€ 20
wy = —2PCa) 3)
> k=1 xp(€ik)
T.T
c; = Zj:lai’jhj’ (4)

where s;_; is the matching feature vector based on current
task, h; is the feature vector of a time point in the time-
series, ¢;; is the unnormalized attention score, and «o;; is the
normalized attention score. Besides, ¢; is the feature of the
current time point calculated based on the attention score
a;; and the feature sequence h;.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 33, NO. 12, DECEMBER 2022

LSTM Cell
@t+1

)\
(tank)
© O
[o] [eh] [o]
[} >

LSTM Cell@ t @

— X
LSTM Cell
@t—-1

Fig. 9. Long-short-term-memory network.

In addition, the CNN unit consists of multiple layers,
each of which includes a batch normalization layer, a convo-
lution layer, a pooling layer, and a non-linear layer. The
CNN module achieves sampling aggregation and extracts
more features using pooling layer and convolution layer,
respectively. It outputs m feature sequences of length n, and
the size can be expressed as n x m. In order to obtain the
important time-series features, we combine attention mod-
ule and CNN module in a serial fashion. Attention module
consists of feature aggregation and scale restoration compo-
nents. The feature aggregation component leverages multi-
ple convolutions and pooling layers to extract important
features from the sequence and uses a convolution kernel to
extract the relationship. And the scale restoration compo-
nent restores the important features to size n x m, which
corresponds to the size of the CNN module’s output.

The attention mechanism helps the model classify impor-
tant features from input sequences and makes it obtain more
comprehensive contextual information. In addition, the atten-
tion module can help prevent the interference of unimportant
features and improve the model’s prediction accuracy.

LSTM Unit. In ScaleFlux, we use long-short-term-mem-
ory (LSTM) [37] network, to support accurately predict
flows’ time-series bandwidth. As shown in Fig. 9, LSTM
uses a “gate” structure to delete or add information to the
state of the cell. The “gate” structure is a method of selec-
tively filtering information. LSTM cells include forget gates
fi, input gates i,, and output gates o, An LSTM cell com-
putes the following:

it = o(Wiiwe + bii + Wik 1) + bni), ()
Jo = o(Wig + by + Whshg_1) + biy), (6)
gr = tanh(Wigxs + big + Whgh_1) + o), (7)
0y = o(Wioy + big + Whoh—1) + bho), ()
¢ = fixcqo1y + kg, (&)

(10)

h = opx tanh(c;).

Here h, is the hidden state at time ¢, ¢; is the cell state at time
t, 7; is the input at time ¢, h;_) is the hidden state of the
layer at time ¢ — 1 or the initial hidden state at time 0, and 4,
ft, g+, o are the input, forget, cell, and output gates, respec-
tively. W are the weights of the respective DNNSs in the
rectangle nodes in the computation graph in Fig. 9, and b._.
are their respective biases. o is the sigmoid function, and
is the Hadamard product.

Flow Future Arrival Rate. Based on the predictions from
ABCNN-LSTM, we then calculate the future arrival rate for
each flow. Assuming the prediction result for each flow f is
B§ = {by,biy, by, ..., by, }, thus flow f’s arrival rate within

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on December 19,2022 at 06:35:40 UTC from IEEE Xplore. Restrictions apply.

LIU ETAL.: SCALEFLUX: EFFICIENT STATEFUL SCALING IN NFV

the time period 7' is,

S, bit
A== 11
f T (1mn
where \; represents the predicted arrival rate of the flow f
within 7', and b; represents the predicted bandwidth at each
time point i. Besides, ¢ is a constant and represents the cor-

responding interval for updating bandwidth measurement.

3.4 Scaling Scheduler

ScaleFlux controller consists of two components: scaling
scheduler and flow and state manager. The scaling sched-
uler listens to the messages from load monitor surrogate
and flow bandwidth predictor, determines which flows to
migrate and which instances to move to, and then invokes
flow and state manager to take actions to finish migration. It
optimizes to minimize resource usages of VNF instances, as
well as providing flow-level latency guarantee. The flow
and state manager manages both the flow routing table at
switches and flow state migration between VNF instances
with the APIs which we describe in Section 4.

Note that during state migration, the original VNF
instance stops establishing new states for flows it has not
seen yet. All packets that hit the original instance but do not
have any matching state are forwarded to the new instance
which processes them normally. For example for a persis-
tent TCP connection that does not always have traffic, Scale-
Flux would not regard it as a new flow, which guarantees
the correctness of VNFs.

Scaling Problem Formulation. We begin with a formulation
regarding to resource cost of VNF instances and flow-level
latency constraints. The number of instances for VNF F is
denoted by n, and these instances perform the same packet
processing. The queue capacity for each VNF instance i is
denoted by ¢;"”. Let Q“? = (¢{"", .., ¢"?) be the queue capac-
ity vector for all instances. Each VNF instance is allocated a
fixed bunch of resources (e.g., <2 CPU cores, 10GB Mem>)
and monopolizes them. This is practical since it avoids
resource contention [38], [39], [40] and provides high perfor-
mance. To simplify it, we use r to indicate the fixed CPU
resource for each instance. Thus, the total CPU resource
cost for VNF F'is,

c=nr. (12)

Then, the number of flows processed by VNF instance i is
denoted by h,. Thus, the total number of flows for VNF F'is,

H= ih‘
=0

The maximum latency that flow j can accept is denoted by
rer. Let LM = (I, ..., Ij*") be the maximum latency
vector for all the flows. We assume packets of flows arrive
according to a Poisson process and use the average band-
width of flow j to represent its packet arrival rate A\; within
the time interval 7. The vector A = (\y,..., A\y) represents
the arrival rates for all the flows. Besides, the maximum
downtime that flow j accepts is denoted by t;’.l during migra-
tion. We use the vector 7% = (¢¢, ..., t%,) to indicate all flows’
downtime constraints.

(13)

4807

We then analyze the service latency of VNF instance ¢ as
follows. The total packet arrival rate to VNF instance 1,

n;

Bi=> A (14)
=0
As a result, the queueing latency of VNF instance i is,
Bi—Si : :
o={"5 5 P8k 15
! { 0, Otherwise. (15
The average packet processing latency of instance i is,
1
= 5 (16)

The service latency of instance ¢ includes queueing latency
and processing latency. Thus, the service latency experi-
enced by flow j at instance i is,

L I+, flow j is processed by VNF instance i,
Y0, Otherwise.

1mn

The queue size for each instance ¢ within the time interval T’
is,
%= {0, Otherwise. (18)

We use a vector Q; = (¢1, - . -, ¢,) to indicate the queue sizes
of all instances. During migration, the packets of all the
migrated flows will be buffered until all their states are fin-
ished migration. We use "¢ to indicate the migration time
for each flow, which is a constant and only depends on the
bandwidth capacity between VNF instances. We use the
vector M;; to indicate the flows to migrate from VNF
instance ¢, where,

|1, flow j will be migrated,
Mi; = {O, Otherwise, (19)
and the total migration time for flow j at instance i is,
T;; = My xt™". (20)

In addition, we adopt the matrix By, to represent whether
the flow j € f is processed by instance i. Thus,

B — 1 flow j is processed by VNF instance i, @1)
77710 Otherwise.
The scaling problem can be formulated as the following;:
min c (22)
s.t. B]'L' * lLJ < lma1r7 (23)
Qi <Q, (24)
BT, <T9 (25)
f
Z M;; < hi, (26)
=0
n S ZEU' 27)

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on December 19,2022 at 06:35:40 UTC from IEEE Xplore. Restrictions apply.

4808

TABLE 1
The Notations Used in Algorithm 1
Notation Explanation
Thaw The initial temperature
Thin The stop temperature

t The variable used for the loop

g The number of VNF instances at time ¢
AR The difference between n;, 17 and n;r
TNnew The number of newly instantiated VNF instances

Note that we do not explain the notations already used in the problem
formulation.

We formulate the scaling scheduling problem as a non-
linear integer programming problem. The constraints are
nonlinear, which makes the problem computationally
expensive to solve. Besides, the scheduling task needs to
consider some more practical issues, such as VNF instance
initialization, flow routing table update, packet buffering
during migration, etc.. Therefore, in order to deploy Scale-
Flux practically, we design a heuristic algorithm to solve
the problem to minimize resource usage while providing
flow-level latency guarantee.

Scaling Scheduling Algorithm. We utilize the simulated
annealing algorithm (SAA) to solve the scaling scheduling
problem as it has demonstrated its efficiency in existing
work [41], [42]. SAA’s main logic is stated in Algorithm 1
and the notations used are shown in Table 1. We use the
function SAA () to implement the main logic of the algo-
rithm. First, we initialize the number of VNF instances
using Init () function. Then, we call a function Produce-
New () to produce the next potential number of VNF instan-
ces. Sequentially, we calculate the different value between
the adjacent resource usages with corresponding VNF
instances. If the difference value AR is larger than 0, the
number of VNF instances n is updated. Otherwise, it is
updated with the possibility exp(5£) > random(0, 1).
Next, we use Check () to see if we can find a A;; from all
possible solutions that satisfies constraints defined in
Eqgs. (23), (24), (25), and (26). If yes, the resource usage
returns; otherwise, an infinity. Until the temperature 7'
reaches the designated minimum value T},;,,, SAA () returns
the number (n,,.,) of new VNF instances to instantiate and
flows (M;;) to move.

4 IMPLEMENTATION

We implement the prototype of ScaleFlux with C and
Python codes. The load monitor surrogate and flow band-
width predictor communicate with the scaling scheduler
via RPC. We develop a library for the five primary compo-
nents: load monitor surrogate, flow monitor, ABCNN-
LSTM, scaling scheduler, and flow and state manager.
ScaleFlux can use hardware counters within the commodity
NIC to collect flow information, such as five tuples of pack-
ets, packet numbers, packet size, and packet timestamp,
and thus offload FIT into the NIC.

Load Monitor Surrogate. ScaleFlux leverages the queue
size as an indicator to monitor network load changes. The
queue size of each ring buffer can be calculated by polling
the size indicator from corresponding NIC pointers. We

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 33, NO. 12, DECEMBER 2022

jointly use the software consumer index pointer (rqg_ci)
and the hardware producer index pointer (rg_p1i) to calcu-
late the queue size as Q. (rg_ci - rg_pi). Therefore, we
implement a NIC pointer reading operation within the ker-
nel’s packet receiving logic. To achieve real-time load detec-
tion, ScaleFlux reads the pointers upon each packet arrival.
Of course, ScaleFlux can adopt virtual tables to record the
mappings between flows and VNF instances dynami-
cally [43] and assign a dedicated queue to a VNF instance.
According to the virtual tables, ScaleFlux can distribute
flows to the dedicated queues. Therefore, ScaleFlux can sup-
port multiple VNF instances simultaneously on a physical
server. Besides, both T}y and T, can be obtained experi-
mentally. T} is the time period for running SAA, thus we
set it as the maximum SAA execution time measured
in Section 5.4, which is 4.37ms. Similarly, we set T}, as
0.08ms in the experiments.

Algorithm 1. SAA for Scaling Scheduling

1: Input: Q°%, v, \, hi, L™, T, T, Trnin;
2: Output: ny,e0, Myj;
3: function SAA ()
t = Thnaxs
Init();
fort > Tmm do
ny11 = ProduceNew();
The resource usage when ny,e,, = ng: nyr;
9: AR = (g —ng)r;
10: if AR > 0 then

11: Npew = Mit41;

12: else if exp(£L) < random (0, 1) then
13: Npew = Ni+17

14: if Check (n) != co then

15: Update the optimal solution n,¢,,;
16: t =1t — 1; return nye,, Mij;

17: function Init ()

18: The scheduling result at time ¢: ny;

19: n;=randint();

20: function ProduceNew ()

21: i=randint(l, n),b=randint (-1, 1);
22: ifn; + b <0then

23: n;=n; +0b;

24: return n;;

25: function Check ()

26: if finding a M;; which satisfies all constraints then
27: return nye,r, M;j;

28: else

29: return oo;

Flow Monitor. The flow monitor in flow bandwidth pre-
dictor is responsible for managing FIT in the software and
hardware, to collect and update flow information. To imple-
ment flow monitor using commodity NIC, we leverage the
rte_flow_create and rte_flow_destroy of the rte_-
flow API in the commodity NIC to insert and replace FIT
entry. We do not implement it using switch [44], [45], [46],
because it takes more time to detect the load burstiness and
forward the signal packets to scaling scheduler and moni-
tors excessive flows for other VNFs.

ABCNN-LSTM. We implement the ABCNN-LSTM model
on top of PyTorch 1.5.1 and CUDA 9.2 with Python 3.8.0.

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on December 19,2022 at 06:35:40 UTC from IEEE Xplore. Restrictions apply.

LIU ETAL.: SCALEFLUX: EFFICIENT STATEFUL SCALING IN NFV

We set the learning rate as 0.001 and the mini-batch size as
256. To make it practical, we train the model using a feder-
ated fashion with the generated network traces from the
four network workloads, which will be introduced shortly
in Section 5.1. Besides, for the model training phrase, we
randomly select 70% flows from each network trace to train
the ABCNN-LSTM model. All the network traces we use
have various network loads ranging from 1Gbps to 10Gbps.
This suits for the NFV scenarios where the network load
changes over time and the traffic that VNF processes is
from various applications. In addition, to determine the
best tradeoff between model accuracy and training effi-
ciency, we employ 0.05, 0.1, 0.15, 0.2, 0.25, 0.3, 0.35, 0.4, 0.45,
0.5, 0.9, 1, 10 as the thresholds of gradient and experimen-
tally select 0.25 as the final one as illustrated in Section 5.3.

Flow and State Manager. ScaleFlux provides a new API call
moveFlowsfor VNF scaling scheduler to enable selective
flow and state migration. It transfers both the state and
input (i.e., traffic) for a set of flows from one VNF instance
to another one. Its syntax is:

moveFlows(src, dst, scope, properties).

The implementation extends OpenNF’s move method. The
scope argument specifies which class(es) of state (per-flow
and/or multi-flow) to move. We only consider per-flow in
this paper. The properties argument defines whether the
move should be loss-free and order-preserving [14].

When the VNF scaling scheduler issues moveFlows, it
sends the selected flows, corresponding states, and desig-
nated new VNF instances to flow and state manager. Then,
the flow and state manager receives the call and communi-
cates with the library patch inside VNF original instance.
This is not available in OpenNF whose original API only
allows applications to specify which classes of flows should
be moved, such as all flows, or flows destined to port 80.
This is done through the filter API described below.

The filter API between the controller and the VNF instan-
ces consists of three functions: FilterChannel, SetFil-
ter, and UpdateFilter. When the flow and state
manager receives moveFlows call, it invokes the Filter-
Channel function to send a flow moving message to the
VNF instance. The VNF instance then uses the SetFilter
function to package the five-tuples of selected flows, which
is a dictionary specifying values for five-tuples in OpenNF.
The flow and state manager uses the matched filters to con-
figure the corresponding moveFlows operation. For each
matched filter, it invokes the OpenNF getPerflow function
and passes the filter as the input to get the per-flow state
pertaining to the flow. For a move without guarantees, the
state manager calls putPerflow on the destination VNF
instance and delPerflow on the original VNF instance to
complete per-flow state transfer. Meanwhile, the flow man-
ager uses UpdateFilter to make the OpenVSwitch to
update the flow tables correspondingly. In detail, in our
new filter APIs, we rewrite the RuleSetup and Opera-
tion functions, which can first build connection with
library patched in VNF instances. The setfilter function
tells getPerflow function the filters and make it export
associated per-flow state from VNF. In this way, we imple-
ment to just get per-flow state for flows we selected.

4809

5 EVALUATION

In this section, we evaluate ScaleFlux through a series of
testbed experiments on a five-machine cluster using traffic
traces from four industrial workloads. Our evaluation seeks
to answer the following questions:

e How well does ScaleFlux’s load monitor surrogate per-
form (Section 5.2)?Load monitor surrogate can detect
traffic load burstiness efficiently with at least 0.89ms
for 50Mpps peak rate, and at most 10.81ms for
10Mpps.

e How accurately does flow bandwidth predictor perform
(Section 5.3)?Compared against CNN-LSTM, LSTM,
GRU, SVR, and ARIMA, ABCNN-LSTM can predict
flow bandwidth more accurately with at least
34.04% better accuracy on average across the four
workloads.

e How efficiently does VNF scaling scheduler work (Sec-
tion 5.4)? Across the four workloads, the VNF scaling
scheduler achieves at least 217% average latency
reduction and at most 402%, and achieves near-opti-
mal CPU resource usage during scaling.

e How much performance benefit can ScaleFlux provide
compared to OpenNF (Section 5.5)?ScaleFlux reduces
the downtime by at least 60.12%, 72.90% on aver-
age, and up to 80%, compared to OpenNF. It saves
at least 80.50% buffer usage and 83.48% on aver-
age, and the saving can be up to 87.87%. Besides,
ScaleFlux reduces extra end-to-end latency to
migrated flows by at least 88.51%, 93.40% on aver-
age, and at most 96.38%, respectively, compared to
OpenNF.

o How well does ScaleFlux work with various time window
sizes in FIT (Section 5.6)?We evaluate the FCT with
various time window sizes from 20ms to 2000ms.
Observing that the average FCT across all the net-
work traces reduces along with the time window
size increasing from 20ms to 1000ms. Yet, when the
time window size changes from 1000ms to 2000ms,
the average FCT changes vary little.

e How much performance loss does ScaleFlux have when
replacing the flow bandwidth predictor or SAA with naive
solutions (Section 5.7)?We compare ScaleFlux with
ScaleFlux-FBP and ScaleFlux-SAA. ScaleFlux-FBP
and ScaleFlux-SAA are ScaleFlux without flow band-
width predictor and ScaleFlux without SAA, respec-
tively. The performance loss of ScaleFlux in terms of
downtime, buffer usage, and FCT are 63.93% and
2.64%, 77.24% and 28.21%, and 51.52% and 36.15%
on average, compared against ScaleFlux-FBP and
ScaleFlux-SAA, respectively. Also, ScaleFlux-SAA
provides worse per-flow SLAs.

e How much overhead does ScaleFlux add (Section 5.8)?We
evaluate ScaleFlux’s overhead in terms of number of
entries used in FIT, model prediction time, and the
operating time of flow routing table. The experiment
results show that the overhead of FIT is bounded in
a reasonable level, and the time used for flow band-
width prediction and operating flow routing table is
limited, which can be ignored compared to flow
completion time.

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on December 19,2022 at 06:35:40 UTC from IEEE Xplore. Restrictions apply.

4810

5.1 Testbed and Setup

Our testbed consists of five servers arranged as shown in
Fig. 3a. Each server has two 2.5GHz Intel Haswell 12-Core
E5-2680 v3 processors, two Tesla K40m GPUs, 256GB DDR4
RAM, two 1TB 7.2K RPM 3G SATA HDDs, a dual-port Intel
X710 10GbE NIC, and a dual-port Mellanox ConnectX-5
10GbE NIC. Two servers run two OpenNF-modified
PRADS [30] as VNFs separately. One server runs Open-
vSwitch as an OpenFlow switch. Another one runs the Sca-
leFlux controller while the fifth server generates traffic.

Workloads. We use four industrial workloads including
cloud gateway, web search [27], Facebook[28], and the
Azure WANI29] to generate traffic traces. Fig. 3b shows the
flow size distributions for the four workloads. For the web
search, Facebook, and Azure WAN workloads, since we do
not have their concrete flow information, such as band-
width, flow source and destination IP addresses, and flow
arrival times, and only have the flow size distributions, we
generate the network traces to satisfy the flow size distribu-
tions of the corresponding workloads. Besides, for each
industrial workload, we generate 10 network traces with
the network loads ranging from 0.1 (i.e., 1Gbps) to 1 (.e.,
10Gbps). For each generated network trace, flows arrive
and finish dynamically according to a Poisson process. Spe-
cially, for the cloud gateway workload, we have the con-
crete flow information and it is a 1-hour network trace
collected every 1ms from 18:00pm to 19:00pm. The overall
network load of the 1-hour network trace is shown in Fig. 1.
We scale the flow bandwidth accordingly to match the cor-
responding network loads.

Methodology. We generate five network traces for each
workload above and send flows according to the traces. The
same trace is used for the different compared schemes. Thus
for each scenario we repeat experiments for five independent
runs. We calculate the average result of the five runs for each
workload and further obtain the average result for the four
workloads, and then report the final average one. We consider
VNF queue size thresholds from 10 to 100 packets for the cor-
responding network loads from 0.1 to 1. We use the corre-
sponding threshold values to calculate the maximum latency
that flows can accept to wait for VNF processing.

Schemes Compared. To demonstrate the efficiency of
ScaleFlux’s scaling scheduling algorithm, we compare it
against the optimal one in terms of resource efficiency and
flow-level latency. Besides, to demonstrate the ScaleFlux’s
efficiency in state migration, we compare ScaleFlux against
OpenNF that moves all flows. We choose OpenNF because
only it provides loss-free and order-preserving guarantees
compared with other solutions mentioned in Section 6.
These guarantees are important to ensure the new VNF
instances work correctly. ScaleFlux also provides these
guarantees. In our experiments, we set the guarantee to be
loss-free, the scope to be per-flow state, and the optimiza-
tions to be parallelizing and early-release for both schemes.
This is consistent with the setup in [14]. In addition, we do
not compare ScaleFlux against the white-box schemes [11],
[12], [22], because they require to totally re-implement
VNFs with their own APIs and cannot guarantee VNF proc-
essing performance, compared to existing productions.

Metric Used. We utilize detection time to evaluate the effi-
ciency of load monitor surrogate. And we adopt Root Mean

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 33, NO. 12, DECEMBER 2022

EIO
g®
T 6
=
g 7
a2 7
. _
10 20 30 40 50

Peak Sending Rate of Traffic (Mpps)
Fig. 10. Detection time of traffic load burstiness for cloud gateway work-
load with different peak sending rates.

Square Error (RMSE) to evaluate the performance of flow
bandwidth predictor. RMSE is calculated as the following;:

1

1 n) 2
RMSE = (=S |y —ai2]
(s3]

i=1

(28)

where y is the actual flow bandwidth time-series, and ¢ is
the predicted time-series.

5.2 Efficiency of Load Monitor Surrogate

We first investigate the efficiency of ScaleFlux’s load moni-
tor surrogate for detecting traffic load burstiness. We proac-
tively generate flows with the same average rate (5 Mpps)
but different peak rates (e.g., 10, 20, 30, 40, 50 Mpps) regard-
ing to the flow size distributions of the four workloads as
shown in Fig. 3b. When the traffic sent from the sender
begins to burst, we inject some special signal packets into
the traffic. The detection time of burstiness is just the time
interval between the time point when the traffic burstiness
happens and the one when the scaling scheduler receives
the signal packet.

Fig. 10 shows the traffic load detection time for cloud
gateway workload with different peak sending rates. In
general, other three workloads have the similar variation
tendency with different sending peak rates. That is, the
detection time decreases as the flow peak rate increases.
Table 2 shows the average traffic load detection time across
all the four workloads. We can see the average load detec-
tion time across various peak sending rates is 3.96ms, which
is much smaller than the duration time of traffic burstiness,
i.e., several seconds or even minutes.

5.3 Performance of Flow Bandwidth Predictor
In this section, we are going to investigate the performance
of ScaleFlux’s flow bandwidth predictor. First, we need to
determine the proper hyperparameters for ABCNN-LSTM.
As we know, for the federated training, proper hyperpara-
meter setup, i.e., threshold of absolute gradient value, is
important for the model accuracy and communication effi-
ciency. Therefore, we begin with looking at the performance
of ABCNN-LSTM model with different thresholds of gradi-
ent and find the most proper one. We select the gradient
thresholds from the set [0.05,0.1,0.15,0.2,0.25,0.3,0.35, 0.4,
0.45,0.5,0.9,1,10]. Besides, for the model evaluation, we
randomly select 70% flows from each network trace and use
them for the model training and the remaining for testing.
Fig. 11 shows the average RMSE of all network loads with
all the four workloads. We can observe its prediction

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on December 19,2022 at 06:35:40 UTC from IEEE Xplore. Restrictions apply.

LIU ETAL.: SCALEFLUX: EFFICIENT STATEFUL SCALING IN NFV

TABLE 2
Average Detection Time of Traffic Load Burstiness Across All the
Four Workloads With Different Peak Sending Rates

Peak Sending Rate (Mpps) 10 20 30 40 50
10.81 413 227 1.69 0.89

Avg. Detection Time (ms)

performance becomes better with higher gradient threshold.
Besides, when itis 0.25, RMSE is 3.48; and when it is 10, RMSE
is 3.439. This means gradient threshold is increased by 40x,
the model accuracy is only improved by 1.18%. In addition,
we know the gradient threshold is related to communication
efficiency and models are usually trained slower with the
larger one. Thus, to achieve the best tradeoff between model
performance and training efficiency, we choose 0.25 as the
final gradient threshold for ABCNN-LSTM.

We now evaluate the performance of ScaleFlux’s flow
bandwidth predictor, compared against CNN-LSTM [47],
LSTM [37], GRU [48], Support Vector Regression (SVR) [49],
and ARIMA [50]. We select these models as the baselines of
ScaleFlux’s flow bandwidth predictor, since they are com-
monly used in various time-series prediction tasks. All the
compared schemes use the same training and testing data-
sets with ScaleFlux's ABCNN-LSTM. Fig. 12 shows the per-
formance comparison in terms of average RMSE between
ABCNN-LSTM, CNN-LSTM, LSTM, GRU, SVR, and
ARIMA, for each workload. Observing that the proposed
model ABCNN-LSTM performs the best for flow band-
width time-series prediction. ABCNN-LSTM performs bet-
ter than CNN-LSTM by 34.04% on average. They are 39.86%
for LSTM, 41.52% for GRU, 79.80% for SVR, and 82.85% for
ARIMA, respectively. This is because ABCNN-LSTM uti-
lizes attention mechanism to extract important features
from the historical bandwidth time-series and avoid the gra-
dient vanishing and exploding problems in deep learning
models, such as LSTM and GRU. Besides, ABCNN-LSTM
takes advantage of LSTM in predicting time-series data.
Especially, ABCNN-LSTM, CNN-LSTM, and LSTM use the
completely same LSTM structure here, and LSTM uses the
full features without any selection. The performance
improvements of both ABCNN-LSTM and CNN-LSTM to
LSTM further demonstrate the effectiveness of the ABCNN
and CNN-based feature selection methods.

5.4 Efficiency of Scaling Scheduler
We now look at the efficiency of SAA for VNF scaling
scheduling. To see the performance gap between SAA and

INANANNANNNNNY

% - E s
% 7007900 7
, 100790609 790427%¢7

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.9 1.0 10
Gradient Threshold

Fig. 11. The average RMSE of ABCNN-LSTM model for flow band-
width prediction with all the four workloads.

4811

E= LsT™
M GRrRU

WZZ ABCNN-LSTM SVR
R

CNN-LSTM

RMSE

Cloud Gateway Web Search FB
Workloads

Azure WAN

Fig. 12. Performance comparison in average RMSE between ABCNN-
LSTM, CNN-LSTM, LSTM, GRU, SVR, and ARIMA, for each workload.

the optimal, we compare the CPU resource usage of SAA
against the one of the exiting algorithm for global optimiza-
tion - the controlled random search (CRS) algorithm [51],
which is implemented in the non-linear optimization
(NLopt) package in R [52]. Generally, CRS starts with a ran-
dom “population” of points, and randomly “evolve” these
points by heuristic rules. In the experiments, we set the ini-
tial population as 3.

Fig. 13 shows the comparison between SAA and the opti-
mal algorithm with various network loads. Here, we show
the average CPU usages for each network load across the
four workloads. We obtain the total usage results of VNF
instances by sending traffic to achieve the specified network
load within the first two seconds. When the network load is
stable at the target one, we measure the total CPU usages of
VNF instances instantiated by SAA and the optimal algo-
rithm, respectively. We can see SAA achieves near-optimal
performance in CPU resource usage (The line for SAA and
the one for the optimal in Fig. 13 almost coincide). This
demonstrates SAA’s near-optimal scheduling efficiency in
CPU resource usage.

Besides, we then look at flow latency reduction of SAA,
during flow and state migration, compared against state-of-
the-art black-box scheme OpenNF [14]. We compare Scale-
Flux against OpenNF, because it is practical for flow and
state migration in NFV and both OpenNF and ScaleFlux do
not need to reimplement VNFs from scratch. Other schemes
generally adopt white-box methods and require people
spending much time learning them. This is impractical,
because industry products usually adopt existing open-
source projects and different VNFs may use different devel-
opment frameworks and programming languages. These
VNFs, however, belong to the same service chain. Fig. 14
shows the average flow latency reductions with various net-
work loads across the four workloads, compared to
OpenNF. We can see SAA achieves at least 217% average

SAA 4

10 =¥= Optimal 7/
r3\° e
o 8 7

< /
X o

7] L

S ¥

o e

& .

© 2 -

01 02 03 04 05 06 07 08 09 1
Network Load

Fig. 13. CPU resource usage comparison between SAA and the optimal
algorithm with various network loads. We show the average CPU usage
across the four workloads for each network load.

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on December 19,2022 at 06:35:40 UTC from IEEE Xplore. Restrictions apply.

4812

Latency Reduction (10%2%)
- oW IN

(=]

0.1 02 o0 06 07 08 09 1

3 04 05

Network Load

Fig. 14. Average flow latency reductions with various network loads com-
pared against OpenNF. We show the average flow latency reduction for
each network load across the four workloads.

latency reduction and at most 402% reduction. This is
because that SAA considers flow-level latency constraints
when scheduling flows and states to migrate, while mini-
mizing VNF resource usage. Instead, OpenNF simply
moves all the flows and states without such consideration.
This demonstrates the efficiency of SAA in terms of flow
latency reduction.

Finally, we evaluate the efficiency of SAA in terms of exe-
cution time over various network loads. Fig. 15 shows the
average execution time of SAA to make scheduling decisions
with various network loads for the four workloads. Note
that the network load represents the total traffic for SAA to
schedule and the execution time is the time period elapsed
for ScaleFlux to run SAA in order to produce the scheduling
results. We can see for various network loads, the execution
time of SAA ranges from 2.93ms to 4.37ms, which is signifi-
cantly smaller than flow completion time and time window
(1000ms) used by flow monitor in Section 3.3 to monitor
active flows. Also, compared to the duration of traffic load
burstiness (i.e., several minutes), the execution time of SAA
can be ignored. Therefore, not only SAA can achieve near-
optimal performance for CPU resource usage, but also is exe-
cuted efficiently.

5.5 Downtime, Buffer Usage, and FCT

We now evaluate the performance benefit of ScaleFlux in
terms of downtime, buffer usage, and flow completion time
(FCT). We use them as the metrics because they can mea-
sure and reflect the end-to-end performance of ScaleFlux.
Scaling downtime here is defined as time elapsed between
the beginning of the moveFlow call and the finish time of
the last delPerflow call. Buffer usage refers to the overall
memory used to buffer packets that arrive during flow
and state migration. FCT reduction is defined as the ratio

44
242

=

o 4.0

8§36
234
32
3.0

01 02 03 04 05 06 07 08 09 1
Network Load

Exe

Fig. 15. The execution time of SAA with various network loads. We show
its average execution time for finishing one scheduling decision across
the four workloads.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 33, NO. 12, DECEMBER 2022

100 P22 - ScaleFlux - BB OpenNF

E 75

o

£

€ 50

2

o

o J .I J J J

. ool

0.1 02 03 04 05 06 07 08 09 1
Network Load

Fig. 16. Average downtime across various network loads for the four
workloads.

between the migrated flow’s FCT in OpenNF and the corre-
sponding one in ScaleFlux, and it can evaluate ScaleFlux’s
end-to-end impact on the performance of migrated flows.

Figs. 16 and 17 show the comparisons in terms of the
average downtime and buffer usage, respectively, across
various network loads for the four workloads. We can
observe that ScaleFlux provides significant performance
benefits. It reduces the downtime by at least 60.12%, 72.90%
on average, and up to 80% compared to OpenNF, and saves
at least 80.50% buffer usage, 83.48% on average, and up to
87.87%. This is because ScaleFlux takes considerations of
flow-level latency constraints and selectively migrate flows
and states, while significantly reducing the network load at
the original VNF instance, instead of moving all like
OpenNF. The results demonstrate ScaleFlux can manage
VNF scaling with efficient buffer usage.

Then, we look at ScaleFlux’s FCT reduction to the
migrated flows. We calculate the FCTs for all migrated
flows in ScaleFlux and OpenNF, respectively. Note that
FCTs in both ScaleFlux and OpenNF include state migration
time, as migrated flows” FCTs are affected by the state
migration process. Fig. 18 shows the results for average FCT
reduction of migrated flows in ScaleFlux across network
loads for the four workloads, compared to OpenNF. We can
observe that FCTs of migrated flows in OpenNF are
extended at least 8.70x, compared to that in ScaleFlux,
17.04x on average, and at most 27.6x. This means ScaleFlux
reduces extra end-to-end latency to migrated flows by at
least 88.51%, 93.40% on average, and at most 96.38%, respec-
tively. This is because OpenNF moves much more useless
flows and states to release the network load at the original
VNF instance than ScaleFlux.

5.6 Sensitivity Analysis
As described in Section 3.3, ScaleFlux maintains a flow
information table (FIT) to store flows and their bandwidth

]:Z WZZ ScalcFlux B OpenNF]
?JJJJJJJJJ

0.1 02 03 04 05 06 07 08 09 1
Network Load

Buffer Usage (MB)

Fig. 17. Average buffer usage across various network loads for the four
workloads.

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on December 19,2022 at 06:35:40 UTC from IEEE Xplore. Restrictions apply.

LIU ET AL.: SCALEFLUX: EFFICIENT STATEFUL SCALING IN NFV

28
24
g 20 .
£ é
& ? v
4 g r
X A7 7 b 7
04 05 06 . 09 1
Network Load

Fig. 18. Average FCT reduction ratio of migrated flows between Scale-
Flux and OpenNF across various network loads for the four workloads.

time-series. FIT utilizes a time window to monitor active
flows. Therefore, the time window size determines the num-
ber of active flows that ScaleFlux can see and further affects
the flows ScaleFlux can migrate when VNF scaling is
launched. In other words, when the VNF instance is over-
loaded and scaling is launched, ScaleFlux can only migrate
flows from the FIT. Thus, a smaller time window will lead
to less migrated flows and launch scaling more repeatedly,
because the network load is not migrated crisply for one
time. This further leads to that more packets need to buffer
at the original VNF instance and results in longer FCTs.

As a result, to find a suitable time window size for all the
network traces, we test the FCT with different time window
sizes from 20ms to 2000ms. Fig. 19 shows the average FCT
with different time window sizes across the four workloads.
Note that we increase the time window size with 10ms each
time and only show the key points in the figure, and we cal-
culate the average FCT for all the flows here. We can see the
average FCT reduces along with the time window size
increasing from 20ms to 1000ms. Yet, when the time win-
dow size changes from 1000ms to 2000ms, the average FCT
changes very little for each workload. These are because
ScaleFlux with smaller time window cannot monitor all the
active flows, only moves limited traffic for each scaling pro-
cess, and cannot solve the overload throughly. When the
time window size is between 1000ms and 2000ms, ScaleFlux
can basically see the same active flows across all the net-
work traces. Thus, ScaleFlux can solve the overload issue
for one-shot scaling and achieve stable performance. These
demonstrate that 1000ms is the best choice of the time win-
dow size for the network traces we use.

5.7 Deep Dive

Next, we conduct a series of experiments to investigate the
impact of the key design components in ScaleFlux. We

200 & =¥=__ Cloud Gateway
'g I ~< ‘Web Search
= bl
= 150 STaRS FB
(;L) ™ Azure WAN
[5) Sy
0
g 100 N \\
z 50 \\

Y =)
20 50 100 500 1000 2000

Time Window Size (ms)

Fig. 19. Average FCT with different time window sizes in FIT across the
four workloads. Note that we measure the FCTs for all the flows here,
instead of only migrated flows above.

4813

selectively disable each component and use a naive imple-
mentation to replace it in ScaleFlux. Here, we compare Sca-
leFlux against ScaleFlux-FBP and ScaleFlux-SAA. For
ScaleFlux-FBP, we disable the flow bandwidth predictor
(FBP) in ScaleFlux and use the instant flow bandwidth
when scaling is launched as the prediction result. ScaleFlux-
SAA uses the top k£ mechanism to replace SAA in ScaleFlux.
For each scaling, ScaleFlux-SAA directly moves top k flows
and their states which make the network load lower than
the pre-defined threshold.

Figs. 20, 21 and 22 show the comparisons in downtime,
buffer usage, and FCT between ScaleFlux, ScaleFlux-FBP,
and ScaleFlux-SAA. Observing that compared against Scale-
Flux-FBP, ScaleFlux reduces downtime, buffer usage, and
FCT by 63.93%, 77.24%, and 51.22% on average, respec-
tively. ScaleFlux’s reductions are 2.64%, 28.21%, and
36.15%, compared against ScaleFlux-SAA. Note that we
measure the FCTs for all the flows here, instead of only
migrated flows.

We can see removing the key component in ScaleFlux
(flow bandwidth predictor or SAA) leads to large perfor-
mance degradation. This is because the non-accurate flow
bandwidth prediction can result in that more smaller flows
are migrated, which cannot solve the overload issue at once
and launches scaling repeatedly in a short time. Further,
this causes more flows are migrated than ScaleFlux and
thus significantly increases the downtime, buffer usage, and
average FCT. ScaleFlux-SAA works better than ScaleFlux-
FBP in downtime, buffer usage, and FCT, and has similar
performance in downtime with ScaleFlux. Because Scale-
Flux-SAA can predict flow bandwidth accurately and the
top k£ mechanism in ScaleFlux-SAA migrates less flows than
ScaleFlux-FBP. Yet, migrating top k elephant flows makes
ScaleFlux-SAA utilize more buffer and incurs large average
FCTs, since the top k elephant flows’ traffic and FCTs domi-
nate the overall load and the total FCT. In addition, Scale-
Flux can provide better SLA for each flow than ScaleFlux-
SAA, as the SAA takes per-flow latency into consideration
in the scaling scheduling.

5.8 Overhead

We now evaluate the overhead of ScaleFlux. We first con-
sider the overhead of FIT used in flow monitor. Table 3
shows the number of entries in FIT at each 1000ms-eviction
epoch for one run of our experiment using the cloud gate-
way workload, web search workload, Facebook workload,
and the Azure WAN workload, respectively. Results for
other runs are qualitatively similar. It indicates that the

ScaleFlux
B ScaleFlux-FBP

wbdddd

0.1 02 03 04 05 06 07 08 09 1
Network Load

E=3 ScaleFlux-SAA

D
(=]

Downtime (ms)
N
(==}

[353
(=]

Fig. 20. Average downtime across various network loads for the four
workloads.

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on December 19,2022 at 06:35:40 UTC from IEEE Xplore. Restrictions apply.

4814

80 ScaleFlux E=3 ScaleFlux-SAA
) B ScaleFlux-FBP
S 60
o
g
2 40
2
= * * L
Rt

0.1 02 03 04 05 06 07 08 09 1
Network Load

Fig. 21. Average buffer usage across various network loads for the four
workloads.

EZZ2 ScaleFlux E=3 ScaleFlux-SAA
=z B ScaleFlux-FBP
£ 100
H
@]
=
(]

o0
g 50
2
<

kEEERL

0.1 02 03 04 05 06 07 08 09 1
Network Load

Fig. 22. Average FCT of all the flows across various network loads for the
four workloads. Note that we measure the FCTs for all the flows here,
instead of only migrated flows.

overhead of flow information table used by flow monitor is
bounded in a reasonable level.

Next, we consider the prediction time of ABCNN-LSTM.
As we stated in Section 4, the ABCNN-LSTM model is run-
ning on one Tesla K40m GPU for online prediction. Here
we only measure the prediction time, i.e., inference time, of
the model, and ignore the time used of model training
phrase. Because the model training can be done offline, and
will not affect the performance of online VNF scaling.
Fig. 23 shows the average prediction time of ABCNN-LSTM
over various network loads for the four workloads. Besides,
in the experiments, the network load is higher, the number
of flows to be predicted by the model is more. We can see
the prediction time ranges from 1.69ms to 2.45ms, which
demonstrates it works efficiently over various network
loads.

Finally, we loot at the operating time for the flow routing
table at OpenVSwitch to complete flow migration. We
obtain the operating time by measuring the total time used
to adjust the flow routing table during VNF scaling. Fig. 24
shows the results. We observe the operating time ranges
from 0.65ms to 1.75ms over various network loads, which is
pretty short. This is because ScaleFlux carefully selects the
flows to be migrated and thus significantly reduces the
number of table entries to operate.

6 RELATED WORK

Many solutions are proposed to make elastic and flexible
VNF scaling in NFV. We present ScaleFlux first in the con-
ference paper [1], which focuses on efficient state migration
in NFV, instead of a NFV scaling system. Here we signifi-
cantly revise the design to make it become a complete end-
to-end NFV scaling system to support real-time traffic load
burstiness detection and corresponding elastic stateful VNF
scaling to achieve both flow-level latency guarantee and

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 33, NO. 12, DECEMBER 2022

TABLE 3
The Number of Flow Table Entries in One Run of the Experiment
Using the Four Workloads, Respectively

Time (x1000ms) 1 2 3 4 5 6

Number of Entries (Cloud Gateway)329 601 875 538402 672
Number of Entries (Web Search) 8931004 11318078911029
Number of Entries (Facebook) 503 546 474 553631 669
Number of Entries (Azure WAN) 424 454 566 403592 497

g N Ing
o S IS

Prediction Time (ms)

—_
oo

01 02 03 04 05 06 07 08 09 1
Network Load

Fig. 23. The average prediction time of ABCNN-LSTM over various net-
work loads for the four workloads.

1.75
E 150
o
g
E=1.25
on
g
£ 1.00
L
o
©0.75
0.1 02 03 04 05 06 07 08 09 1
Network Load

Fig. 24. The average operating time to adjust the flow routing table at
OpenVSwitch over various network loads for the four workloads.

VNF resource efficiency (Section 3). We implement Scale-
Flux (Section 4) and evaluate it using testbed experiments
(Section 5). Of course, there are some recent work which
focuses on different aspects of VNF scaling. We discuss
them in the following.

Elastic NFV Scaling. E2 [10], NFVnice [53], Metron [12],
ScalIMS [54] and FlexNFV [9] consider dynamic scaling to
improve service chain performance. To avoid complex state
migration, E2 [10] only uses new created VNFs to process
new flows without states, while FlexNFV [9] adopts consis-
tent hashing to keep the flow affinity. NFVnice [53] utilizes
backpressure mechanism and proactively adjusts CPU allo-
cation to the service chain to improve chain-level perfor-
mance and avoid resource wastage. Flurries [55] runs a
unique service chain for each flow to provide flow-level cus-
tomized SLA. ScaleFlux can easily support VNF service
chains like these work without the need to do any modifica-
tions, as the service chain can be seen as a consolidated
VNF [56], [57]. Besides, ScaleFlux can automatically detect
network load changes and trigger stateful VNF scaling in
real time. For scenarios where existing flows’ SLAs cannot
be guaranteed by the existing VNFs, ScaleFlux can adap-
tively perform vertical scaling. Besides, some works are pro-
posed to minimize VNF deployment and placement
cost [58], [59], [60], [61], [62], [63], [64], [65]. ScaleFlux tries
to minimize the CPU resource usage for VNF scaling.

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on December 19,2022 at 06:35:40 UTC from IEEE Xplore. Restrictions apply.

LIU ETAL.: SCALEFLUX: EFFICIENT STATEFUL SCALING IN NFV

Similar to [9], [10], [53], [66], [67], ScaleFlux makes auto-
matic VNF scaling with network load changing. Yet, Scale-
Flux achieves efficient stateful scaling and tries to reduce
the latency of flow migration.

NFV State Migration. There are many existing solutions for
NFV state management [68], [69]. Split/Merge [13], Pico Repli-
cation [70], OpenNF [14], [71], and DiST [72] are systems that
provide some control over both internal VNF state and net-
work state. Split/Merge and Pico Replication provide shared
libraries that VINFs use to create, access, and modify internal
state through pre-defined APIs. OpenNF provides a north-
bound API for applications to specify which state to move, and
which guarantees to enforce; and it also implements a south-
bound API for the controller to perform the export or import of
VNF state. DiST [72] differs from OpenNF by buffering the
packets during migration at the destination VNF instead of at
the controller. Olteanu and Raiciu [73] attempt to migrate per-
flow state between VM replicas without application modifica-
tions. Similar to [13], [14], [71], ScaleFlux achieves efficient NFV
state migration. Further, ScaleFlux proposes a complete VNF
auto-scaling framework to enable efficient VNF scaling includ-
ing state management.

White-Box NFV. Some research work[11], [12], [22], [74]
proposes and builds a complete white-box NFV framework
and APIs to manage VNFs. For example, StatelessNF [22]
re-architects network functions so that their internal states
are maintained in a shared separate storage tier, which has
to face the performance challenge for frequent state update.
S6 [11] proposes a distributed shared state model and
decouples state maintainance and VNF processing. Met-
ron [12] splits traffic into different classes and takes traffic
class as the basic unit to perform packet processing, 1/O
operations, and state management. Yet, the white-box NFV
frameworks require to completely re-implement VNFs,
which is hard in practice, requires long learning process
and huge development effort. In contrast, ScaleFlux pro-
vides a black-box model without the need to re-implement
VNFs and separates the implementation of VNF products
and scaling management, and thus frees VNF operators to
focus on the packet processing logic.

In sum, ScaleFlux designs and implements a complete
system to enable end-to-end automatic stateful VNF scaling,
while achieving resource efficiency and flow-level latency
guarantee.

7 CONCLUSION

We introduced ScaleFlux, an efficient end-to-end NFV sys-
tem to achieve automatic VNF scaling. ScaleFlux achieves
resource efficiency and flow-level latency guarantee by
adopting queue-based network load detection mechanism
to launch VNF scaling timely, designing an ABCNN-LSTM
model for flow bandwidth prediction, and leveraging the
simulated annealing algorithm for efficient scaling schedul-
ing. ScaleFlux efficiently migrates per-flow state for selected
flows and maintains state for other flows in the original
VNF instance until they expire. We implemented ScaleFlux
and evaluated it on an five-machine testbed. Our experi-
ment results show that ScaleFlux significantly achieves effi-
cient resource usage for VNFs and reduces downtime and
the performance penalty during scaling.

4815

REFERENCES

[11 L. Liu, H. Xu, Z. Niu, P. Wang, and D. Han, “U-HAUL: Efficient
state migration in NFV,” in Proc. 7th ACM SIGOPS Asia-Pacific
Workshop Syst., 2016, pp. 1-8.

[2] European Telecommunications Standards Institute, Network
functions virtualisation: Introductory white paper, 2012. [Online].
Available: http:/ /portal.etsi.org/NFV/NFV_White Paper.pdf

[3] X.Fei, F. Liu, H. Jin, and H. Hu, “Paving the way for NFV acceler-
ation: A taxonomy, survey and future directions,” ACM Comput.
Surveys, vol. 53, no. 4, pp. 1-42, 2020.

[4] S.Jain et al.,, “B4: Experience with A globally-deployed software
defined WAN,” ACM SIGCOMM Comput. Commun. Rev., vol. 43,
no. 4, pp. 3-14, 2013.

[5] U. Naseer, L. Niccolini, U. Pant, A. Frindell, R. Dasineni, and T. A.
Benson, “Zero downtime release: Disruption-free load balancing
of a multi-billion user website,” in Proc. ACM Annu. Conf. ACM
Special Int. Group Data Commun. Appl., Technol., Architect., Protoc.
Comput. Commun., 2020, pp. 529-541.

[6] H.Shao, X. Wang, Y. Lu, Y. Yu, S. Zheng, and Y. Zhao, “Accessing
cloud with disaggregated software-defined router,” in Proc. USE-
NIX Symp. Netw. Syst. Des. Implementation, 2021, pp. 1-14.

[7] S. Yan, X. Wang, X. Zheng, Y. Xia, D. Liu, and W. Deng, “ACC:
Automatic ECN tuning for high-speed datacenter networks,” in
Proc. ACM SIGCOMM Conf., 2021, pp. 384-397.

[8] Z. Ye, Y. Wang, S. He, C. Xu, and X.-H. Sun, “Sova: A software-
defined autonomic framework for virtual network allocations,” IEEE
Trans. Parallel Distrib. Syst., vol. 32, no. 1, pp. 116-130, Jan. 2021.

[9]1 X.Fei, F. Liu, H. Jin, and B. Li, “FlexNFV: Flexible network service
chaining with dynamic scaling,” IEEE Netw., vol. 34, no. 4,
pp- 203-209, Jul./Aug. 2020.

[10] S. Palkar, C. Lan, S. Han, K. Jang, A. Panda, and S. Ratnasamy,
“E2: A framework for NFV applications,” in Proc. ACM 25th
Symp. Oper. Syst. Princ., 2015, pp. 121-136.

[11] S. Woo, J. Sherry, S. Han, S. Moon, S. Ratnasamy, and S. Shenker,
“Elastic scaling of stateful network functions,” in Proc. USENIX
Symp. Netw. Syst. Des. Implementation, 2018, pp. 299-312.

[12] G. P. Katsikas, T. Barbette, D. Kostic, R. Steinert, and G. Q.
Maguire Jr, “Metron: NFV service chains at the true speed of the
underlying hardware,” in Proc. USENIX Symp. Netw. Syst. Des.
Implementation, 2018, pp. 171-186.

[13] S.Rajagopalan, D. Williams, H. Jamjoom, and A. Warfield, “Split/
Merge: System support for elastic execution in virtual mid-
dleboxes,” in Proc. USENIX Symp. Netw. Syst. Des. Implementation,
2013, pp. 227-240.

[14] A. Gember-Jacobson et al., “OpenNF: Enabling Innovation in Net-
work Function Control,” ACM SIGCOMM Comput. Commun. Rev.,
vol. 44, no. 4, pp. 163-174, 2014.

[15] W. Wang, X. C. Wu, P. Tammana, A. Chen, and T. S. E. Ng,
“Closed-loop network performance monitoring and diagnosis
with spidermon,” in Proc. USENIX Symp. Netw. Syst. Des. Imple-
mentation, 2022, pp. 267-285.

[16] R.Joshi, T. Qu, M. C. Chan, B. Leong, and B. T. Loo, “BurstRadar:
Practical real-time microburst monitoring for datacenter networks,”
in Proc. ACM Asia-Pacific Workshop Syst., 2018, pp. 1-8.

[17] V.Nathan, V. Sivaraman, R. Addanki, M. Khani, P. Goyal, and M.
Alizadeh, “End-to-end transport for video QoE fairness,” in Proc.
ACM Special Int. Group Data Commun., 2019, pp. 408-423.

[18] X. Chen, H. Kim, J. M. Aman, W. Chang, M. Lee, and J. Rexford,
“Measuring TCP round-trip time in the data plane,” in Proc. ACM
Workshop Secure Programmable Netw. Infrastructure, 2020, pp. 35-41.

[19] X. Zuo et al., “Bandwidth-efficient multi-video prefetching for
short video streaming,” 2022, arXiv:2206.09839.

[20] W. Yin, H. Schiitze, B. Xiang, and B. Zhou, “ABCNN: Attention-
based convolutional neural network for modeling sentence pairs,”
Trans. Assoc. Comput. Linguistics, vol. 4, pp. 259-272, 2016.

[21] M. Kablan, B. Caldwell, R. Han, H. Jamjoom, and E. Keller, “Stateless
network functions,” in Proc. ACM SIGCOMM Workshop Hot Topics
Middleboxes Netw. Function Virtualization, 2015, pp. 49-54.

[22] M. Kablan, A. Alsudais, E. Keller, and F. Le, “Stateless network func-
tions: Breaking the tight coupling of state and processing,” in Proc.
USENIX Symp. Netw. Syst. Des. Implementation, 2017, pp. 97-112.

[23]]. Sherry and S. Ratnasamy, “A survey of enterprise middlebox
deployments.” 2012. [Online]. Available: https://www2.eecs.
berkeley.edu/Pubs/TechRpts/2012/EECS-2012-24.pdf

[24] S. Hanks, D. Meyer, D. Farinacci, T. Li, and P. Traina, “Generic
routing encapsulation (GRE),” RFC 2784, 2000. [Online]. Avail-
able: https:/ /www.rfc-editor.org/rfc/rfc2784.html

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on December 19,2022 at 06:35:40 UTC from IEEE Xplore. Restrictions apply.

http://portal.etsi.org/NFV/NFV_White_Paper.pdf
https://www2.eecs.berkeley.edu/Pubs/TechRpts/2012/EECS-2012--24.pdf
https://www2.eecs.berkeley.edu/Pubs/TechRpts/2012/EECS-2012--24.pdf
https://www.rfc-editor.org/rfc/rfc2784.html

4816

[25]

[26]

[271

[28]

[29]

[30]

[31]

[32]
[33]

[34]

[35]

[36]
[371

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[471

[48]

[49]

[50]

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 33, NO. 12, DECEMBER 2022

M. Mahalingam et al., “Virtual eXtensible local area network
(VXLAN): A framework for overlaying virtualized layer 2 net-
works over layer 3 networks,” RFC 7348, pp. 1-22, 2014.

D. Kim et al., “TEA: Enabling state-intensive network functions on
programmable switches,” in Proc. Annu. Conf. ACM Special Int.
Group Data Commun. Appl. Technol. Architectures Protoc. Comput.
Commun., 2020, pp. 90-106.

M. Alizadeh et al., “Data center TCP (DCTCP),” in Proc. ACM SIG-
COMM Conf., 2010, pp. 63-74.

A. Roy, H. Zeng,]. Bagga, G. Porter, and A. C. Snoeren, “Inside
the social network’s (datacenter) network,” in Proc. ACM Conf.
Special Int. Group Data Commun., 2015, pp. 123-137.

K. He, A. Fisher, L. Wang, A. Gember, A. Akella, and T. Risten-
part, “Next stop, the cloud: Understanding modern web service
deployment in EC2 and Azure,” in Proc. Conf. Internet Meas. Conf.,
2013, pp. 177-190.

Passive real-time asset detection system. 2009. [Online]. Available:
http:/ /prads.projects.linpro.no

Intel, “Data plane development kit,” 2014. [Online]. Available:
https://www.intel.com/content/www /us/en/developer/topic-
technology/networking /dpdk.html

L. Rizzo, “Netmap: A novel framework for fast packet I/O,” in
Proc. USENIX Conf. Annu. Tech. Conf., 2012, Art. no. 9.

802.1Qbb, “802.1Qbb - Priority-based flow control,” 2008. [Online].
Available: http:/ /www.ieee802.org/1/pages/802.1bb.html

C. Tian et al., “P-PFC: Reducing tail latency with predictive PFC in
lossless data center networks,” IEEE Trans. Parallel Distrib. Syst.,
vol. 31, no. 6, pp. 1447-1459, Jun. 2020.

Y. LeCun et al., “Backpropagation applied to handwritten zip
code recognition,” Neural Comput., vol. 1, no. 4, pp. 541-551, 1989.

DPDK. 2013. [Online]. Available: http://dpdk.org/

S. Hochreiter and J. Schmidhuber, “Long short-term memory,”
Neural Comput., vol. 9, no. 8, pp. 1735-1780, 1997.

R. Iyer, L. Pedrosa, A. Zaostrovnykh, S. Pirelli, K. Argyraki,
and G. Candea, “Performance contracts for software network
functions,” in Proc. USENIX Conf. Netw. Syst. Des. Implementation,
2019, pp. 517-530.

A. Manousis, R. A. Sharma, V. Sekar, and]. Sherry, “Contention-
aware performance prediction for virtualized network functions,”
in Proc. Annu. Conf. ACM Special Int. Group Data Commun. Appl.
Technol. Archit. Protoc. Comput. Commun., 2020, pp. 270-282.

J. Gong, Y. Li, B. Anwer, A. Shaikh, and M. Yu, “Microscope:
Queue-based performance diagnosis for network functions,” in
Proc. Annu. Conf. ACM Special Int. Group Data Commun. Appl. Tech-
nol. Archit. Protoc. Comput. Commun., 2020, pp. 390-403.

K. Jin and C. Xia, “Data-driven design of microtransit services via
optimal transport and simulated annealing,” in Proc. 22nd Int.
Workshop Mobile Comput. Syst. Appl., 2021, pp. 179-181.

A. W. Harrow and A. Y. Wei, “Adaptive quantum simulated
annealing for Bayesian inference and estimating partition fun-
ctions,” in Proc. 31st Annu. ACM-SIAM Symp. Discrete Algorithms,
2020, pp. 193-212.

C. Song et al., “HDFI: Hardware-assisted data-flow isolation,” in
Proc. IEEE Symp. Secur. Privacy, 2016, pp. 1-17.

A. Wang, Y. Guo, F. Hao, T. V. Lakshman, and S. Chen, “UMON:
Flexible and fine grained traffic monitoring in open vSwitch,”
in Proc. ACM Conf. Emerg. Netw. Experiments Technol., 2015,
Art. no. 15.

S. Zhao et al., “I-CaN-MaMa: Integrated campus network moni-
toring and management,” in Proc. IEEE Netw. Operations Manage.
Symp., 2014, pp. 1-7.

G. Liu, S. Guo, B. Xiao, and Y. Yang, “SDN-based traffic matrix
estimation in data center networks through large size flow identi-
fication,” IEEE Trans. Cloud Comput., vol. 10, no. 1, pp. 675-690,
First Quarter 2022.

J. Donahue et al., “Long-term recurrent convolutional networks
for visual recognition and description,” in Proc. IEEE Conf. Com-
put. Vis. Pattern Recognit., 2015, pp. 2625-2634.

K. Cho et al, “Learning phrase representations using RNN
encoder-decoder for statistical machine translation,” in Proc. Conf.
Empir. Methods Natural Lang. Process., 2014, pp. 1724-1734.

H. Drucker et al., “Support vector regression machines,” in Proc.
Int. Conf. Neural Inf. Process. Syst., 1997, pp. 156-161.

A.]. Conejo, M. A. Plazas, R. Espinola, and A. B. Molina, “Day-
ahead electricity price forecasting using the wavelet transform
and ARIMA models,” IEEE Trans. Power Syst., vol. 20, no. 2,
pp- 1035-1042, May 2005.

[51]
[52]

[53]

[54]

[55]

[56]

[57]

[58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]

[69]

[70]

[71]

[72]

[73]

[74]

W. Price, “Global optimization by controlled random search,” J.
Optim. Theory Appl., vol. 40, no. 3, pp. 333-348, 1983.

NLopt algorithms. 2018. [Online]. Available: https://nlopt.
readthedocs.io/en/latest/NLopt Algorithms/

S. G. Kulkarni et al., “NFVnice: Dynamic backpressure and sched-
uling for NFV service chains,” IEEE/ACM Trans. Netw., vol. 28,
no. 2, pp. 639-652, Apr. 2020.

J. Duan, C. Wu, F. Le, A. X. Liu, and Y. Peng, “Dynamic scaling
of virtualized, distributed service chains: A case study of IMS,”
IEEE |. Sel. Areas Commun., vol. 35, no. 11, pp. 2501-2511,
Nov. 2017.

W. Zhang,]. Hwang, S. Rajagopalan, K. Ramakrishnan, and
T. Wood, “Flurries: Countless fine-grained NFs for flexible per-
flow customization,” in Proc. 12th Int. Conf. Emerg. Netw. Experi-
ments Technol., 2016, pp. 3-17.

J. Zheng et al., “Orchestrating service chain deployment with Plu-
tus in next generation cellular core,” in Proc. IEEEJACM 27th Int.
Symp. Qual. Serv., 2019, pp. 1-10.

C. Tian, A. Munir, A. X. Liu, J. Yang, and Y. Zhao, “OpenFunction:
An extensible data plane abstraction protocol for platform-inde-
pendent software-defined middleboxes,” IEEE/ACM Trans. Netw.,
vol. 26, no. 3, pp. 1488-1501, Jun. 2018.

Z. Li and Y. Yang, “Placement of virtual network functions in
hybrid data center networks,” IEEE Trans. Multi-Scale Comput.
Syst., vol. 4, no. 4, pp. 861-873, Oct.—Dec. 2018.

J. Zheng et al., “Optimizing NFV chain deployment in software-
defined cellular core,” IEEE]. Sel. Areas Commun., vol. 38, no. 2,
pp. 248-262, Feb. 2020.

J. Zheng, Z. Zhang, Q. Ma, X. Gao, C. Tian, and G. Chen, “Multi-
resource VNF deployment in a heterogeneous cloud,” IEEE Trans.
Comput., vol. 71, no. 1, pp. 81-91, Jan. 2022.

Y. Xiao et al., “NFVdeep: Adaptive online service function chain
deployment with deep reinforcement learning,” in Proc. IEEE/
ACM 27th Int. Symp. Qual. Serv., 2019, pp. 1-10.

S. Rampersaud and D. Grosu, “Sharing-aware online virtual
machine packing in heterogeneous resource clouds,” IEEE
Trans. Parallel Distrib. Syst., vol. 28, no. 7, pp. 2046-2059, Jul.
2017.

X. Shang, Y. Huang, Z. Liu, and Y. Yang, “Reducing the service
function chain backup cost over the edge and cloud by a self-
adapting scheme,” in Proc. IEEE Conf. Comput. Commun., 2020,
pp- 2096-2105.

X. Shang, Z. Liu, and Y. Yang, “Online service function chain
placement for cost-effectiveness and network congestion control,”
IEEE Trans. Comput., vol. 71, no. 1, pp. 27-39, Jan. 2022.

X.Shang, Y. Liu, Y. Mao, Z. Liu, and Y. Yang, “Greening reliability
of virtual network functions via online optimization,” in Proc.
IEEE/ACM 28th Int. Symp. Qual. Serv., 2020, pp. 1-10.

R. Han et al., “Workload-adaptive configuration tuning for hierar-
chical cloud schedulers,” IEEE Trans. Parallel Distrib. Syst., vol. 30,
no. 12, pp. 2879-2895, Dec. 2019.

G. Hu, Q. Li, S. Ai, T. Chen, J. Duan, and Y. Wu, “A proactive
auto-scaling scheme with latency guarantees for multi-tenant
NFV cloud,” Comput. Netw., vol. 181, no. 2, 2020, Art. no. 107552.
F. Yousefi, A. Abhashkumar, K. Subramanian, K. Hans, S. Ghor-
bani, and A. Akella, “Liveness verification of stateful network
functions,” in Proc. 17th USENIX Conf. Netw. Syst. Des. Implementa-
tion, 2020, pp. 257-272.

J. Khalid and A. Akella, “Correctness and performance for stateful
chained network functions,” in Proc. 16th USENIX Symp. Netw.
Syst. Des. Implementation, 2019, pp. 501-515.

S. Rajagopalan, D. Williams, and H. Jamjoom, “Pico replication: A
high availability framework for middleboxes,” in Proc. 4th Annu.
Symp. Cloud Comput., 2013, Art. no. 1.

A. Gember-Jacobson and A. Akella, “Improving the safety, scal-
ability, and efficiency of network function state transfers,” in Proc.
ACM SIGCOMM Workshop Hot Topics Middleboxes Netw. Function
Virtualization, 2015, pp. 43-48.

B. Kothandaraman, M. Du, and P. Skoldstrom, “Centrally
controlled distributed VNF state management,” in Proc. ACM SIG-
COMM Workshop Hot Topics Middleboxes Netw. Function Virtualiza-
tion, 2015, pp. 37-42.

V. A. Olteanu and C. Raiciu, “Efficiently migrating stateful mid-
dleboxes,” in Proc. ACM SIGCOMM Conf., 2012, pp. 93-94.

J. Duan, X. Yi, J. Wang, C. Wu, and F. Le, “NetStar: A future/
promise framework for asynchronous network functions,” IEEE |.
Sel. Areas Commun., vol. 37, no. 3, pp. 600-612, Mar. 2019.

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on December 19,2022 at 06:35:40 UTC from IEEE Xplore. Restrictions apply.

http://prads.projects.linpro.no
http://www.ieee802.org/1/pages/802.1bb.html
http://dpdk.org/
https://nlopt.readthedocs.io/en/latest/NLopt_Algorithms/
https://nlopt.readthedocs.io/en/latest/NLopt_Algorithms/

LIU ETAL.: SCALEFLUX: EFFICIENT STATEFUL SCALING IN NFV

Libin Liu (Member, IEEE) received the BE
degree in software engineering from Shandong
University, and the PhD degree from the Depart-
ment of Computer Science, City University of
Hong Kong. He is currently an assistant rese-
archer with Zhongguancun Laboratory, Beijing,
China. His current research interests include
NFYV, resource scheduling for data analytics sys-
tems, and machine learning for networking. From
2020 to 2022, he was with Department of Net-
working Platform in Tencent, Huawei Hong Kong
Research Center, and Shandong Computer Science Center (National
Supercomputing Center in Ji'nan). He is a member of the ACM.

Hong Xu (Senior Member, IEEE) received the
BEng degree from the Chinese University of
Hong Kong, in 2007, and the MASc and PhD
degrees from the University of Toronto, in 2009
and 2013, respectively. He is an Associate Pro-
fessor with the Department of Computer Science
and Engineering, Chinese University of Hong
Kong. His research area is computer networking
and systems, particularly Big Data systems and
data center networks. From 2013 to 2020, he
was with the City University of Hong Kong. He
was the recipient of an Early Career Scheme Grant from the Hong Kong
Research Grants Council in 2014. He received three best paper awards,
including the IEEE ICNP 2015 Best Paper Award. He is a senior member
of the ACM.

Zhixiong Niu received the BE degree in network
engineering from Dalian Maritime University
(DMU), in 2012, the MSc degree in computer sci-
ence from the University of Hong Kong (HKU), in
2014, and the PhD degree from the Department
of Computer Science, City University of Hong
Kong, in 2019. He is a senior researcher with
Microsoft Research Asia.

Jingzong Li (Student Member, IEEE) received
the BE degree majored in software engineering
from the University of Electronic Science and
Technology of China, in 2019. He is currently
working toward the PhD degree with the Depart-
ment of Computer Science, City University of
Hong Kong. His research interests include video
systems and networked systems. He is a student
member of the ACM.

Wei Zhang received the BE degree from Zhe-
jiang University, in 2004, the MS degree from
Liaoning University, in 2008, and the PhD degree
from the Shandong University of Science and
Technology, in 2018. He is currently a Professor
with the Shandong Computer Science Center
(National Supercomputer Center in Ji'nan), Qilu
University of Technology (Shandong Academy of
Sciences). His research interests include future
generation network architectures, edge comput-
ing, and edge intelligence.

4817

Peng Wang received the BS degree in informa-
tion engineering from Xidian University, Xian,
China, and the PhD degree from the Department
of Computer Science, City University of Hong
Kong. He is currently a researcher with Theory
Lab, Huawei Hong Kong Research Center, Hong
Kong. His research interests include data center
networking and cloud computing. He received the
Best Paper Award from ACM CoNEXT Student
Workshop 2014.

Jiamin Li (Student Member, IEEE) received the
BS degree from the Department of Computer Sci-
ence, City University of Hong Kong, in 2019. She
is currently working toward the PhD degree in the
Department of Computer Science, City University
of Hong Kong. Her research interests include dis-
tributed machine learning, machine learning sys-
tems, and resource scheduling. She is a student
member of the ACM.

Jason Chun Xue (Member, |IEEE) received the
BS degree in computer science and engineering
from the University of Texas at Arlington, in 1997,
and the MS and PhD degrees in computer sci-
ence from the University of Texas at Dallas, in
2002 and 2007, respectively. He is currently an
Associate Professor with the Department of
Computer Science, City University of Hong Kong.
His research interests include memory and paral-
lelism optimization for embedded systems, soft-
ware/hardware codesign, real time systems, and
computer security. He is a distinguished member
of the ACM.

Cong Wang (Fellow, IEEE) is currently a Profes-
sor with the Department of Computer Science,
City University of Hong Kong. His current rese-
arch interests include data and network security,
blockchain and decentralized applications, and
privacy-enhancing technologies. He is one of the
founding members of the Young Academy of Sci-
ences of Hong Kong. He received the Outstand-
ing Researcher Award (junior faculty) in 2019, the
Outstanding Supervisor Award in 2017 and the
president’s awards in 2019 and 2016, all from the
City University of Hong Kong. He is a co-recipient of the IEEE INFOCOM
Test of Time Paper Award 2020, Best Paper Award of IEEE ICDCS
2020, Best Student Paper Award of IEEE ICDCS 2017, and the Best
Paper Award of IEEE ICPADS 2018 and MSN 2015. His research has
been supported by multiple government research fund agencies, includ-
ing the National Natural Science Foundation of China, Hong Kong
Research Grants Council, and Hong Kong Innovation and Technology
Commission. He served as associate editor of the IEEE Transactions on
Dependable and Secure Computing, |IEEE Internet of Things Journal
and IEEE Networking Letters, and The Journal of Blockchain Research,
and TPC co-chairs for a number of IEEE conferences and workshops.
He is a member of the ACM.

> For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/csdl.

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on December 19,2022 at 06:35:40 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

