
Luopan: Sampling-Based Load Balancing
in Data Center Networks

Peng Wang ,Member, IEEE, George Trimponias, Hong Xu ,Member, IEEE, and Yanhui Geng

Abstract—Data center networks demand high-performance, robust, and practical data plane load balancing protocols. Despite progress,

existingwork falls short of meeting these requirements.We design, analyze, and evaluate Luopan, a novel sampling based load balancing

protocol that overcomes these challenges. Luopan operates at flowcell granularity similar to Presto. It periodically samples a few paths for

each destination switch and directs flowcells to the least congested one. By being congestion-aware, Luopan improves flow completion

time (FCT), and ismore robust to topological asymmetries compared to Presto. The sampling approach simplifies the protocol andmakes

it muchmore scalable for implementation in large-scale networks compared to existing congestion-aware schemes.We provide analysis

to show that Luopan’s periodic sampling has the same asymptotic behavior as instantaneous sampling: taking 2 random samples provides

exponential improvements over 1 sample.We conduct comprehensive packet-level simulations with production workloads. The results

show that Luopan consistently outperforms state-of-the-art schemes in large-scale topologies. Compared to Presto, Luopanwith

2 samples improves the 99.9%ile FCT ofmice flows by up to 35 percent, and average FCT ofmedium and elephant flows by up to

30 percent. Luopan also performs significantly better than Local Samplingwith large asymmetry.

Index Terms—Data center networks, load balancing, network congestion, distributed

Ç

1 INTRODUCTION

DATA center networks usemulti-rootedClos topologies to
provide many equal-cost paths between hosts [4], [18].

To load balance traffic, switches run ECMP—Equal Cost
Multi-Path—that forwards packets among equal-cost egress
ports using static hashing. Though simple to implement,
ECMP’s drawbacks arewidely recognized in the community.
Hash collisions cause flow collisions and congestion, degrad-
ing throughput for elephant flows [5], [12], [14] and tail
latency formice flows [7], [8], [25], [37].

Recent work such as Presto [20] proposes to break flows
into small flowcells and load balance flowcells across avail-
able paths in a round-robin fashion. By transforming the
heavy-tailed flows into many smaller flowcells, Presto can
better balance the load and improve flow completion time
(FCT) for medium and large flows (Section 2.1). However,
in practice most flows are small and only have a few flow-
cells. We find that in one production network 90 percent of
the flows have less than 6 flowcells (Section 2.2). This
implies that a flow can only utilize a few random paths out
of the hundreds available in typical large scale produc-
tion networks [9], [33]. Further, Presto’s round-robin only

balances the number of flowcells. It does not work well with
link failures and network asymmetry, which are rather com-
mon in practice [17]. Even in a symmetric network with uni-
form flowcells, Presto’s round-robin still causes transient
congestion in the lower tier of a multi-tier Clos network,
because it sequentially uses the ports of a switch first before
moving to the next (Section 2.2). Transient load imbalance
still exists with Presto, which degrades the tail FCT for mice
flows.

A more robust approach is congestion-aware load bal-
ancing advocated by CONGA [6] and HULA [24]. Switches
monitor congestion levels for each path and direct a flow or
flowlet to the least congested path. This is responsive to
changing network conditions, and robust to failures and
network asymmetry [6], [24]. To make the best load balanc-
ing decisions, prior work strives to collect congestion feed-
back for each path between the source and destination ToR
switches. These omniscient schemes perform well in small-
scale enterprise networks with simple 2-tier leaf-spine
topologies [6]. The challenge is that they have serious scal-
ability and overhead issues that impede the deployment
potential in large-scale networks (Section 2.3). Production
networks such as Google’s [33], Facebook’s [9], and Ama-
zon’s [3] use 3-tier or even more complex Clos topologies.
For a typical 3-tier Clos network, hundreds of paths exist
between any two ToR switches, and a ToR switch can com-
municate with hundreds of other ToR switches [9]. Thus,
omniscient per-path feedback requires storing and tracking
a daunting number of paths at each ToR in the time scale of
RTT (tens of microseconds). Further, acquiring omniscient
information involves many switches in the process and
makes the control loop slower.

We explore a different direction: what if we use congestion
information of just a few random paths for load balancing?

� P. Wang and H. Xu are with the Department of Computer Science, City
University of Hong Kong, Kowloon Tong, Hong Kong.
E-mail: pewang4-c@my.cityu.edu.hk, henry.xu@cityu.edu.hk.

� G. Trimponias is with Huawei Noah’s Ark Lab, Hong Kong.
E-mail: g.trimponias@huawei.com.

� Y. Geng is with Huawei Montreal Research Centre, Markham, ON L3R
5A4, Canada. E-mail: geng.yanhui@huawei.com.

Manuscript received 11 Dec. 2017; revised 26 Apr. 2018; accepted 9 July 2018.
Date of publication 23 July 2018; date of current version 12 Dec. 2018.
(Corresponding author: Hong Xu.)
Recommended for acceptance by B. He.
For information on obtaining reprints of this article, please send e-mail to:
reprints@ieee.org, and reference the Digital Object Identifier below.
Digital Object Identifier no. 10.1109/TPDS.2018.2858815

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 30, NO. 1, JANUARY 2019 133

1045-9219� 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See ht _tp://www.ieee.org/publications_standards/publications/rights/index.html for more information.

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on April 25,2022 at 02:30:52 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0002-4008-1963
https://orcid.org/0000-0002-4008-1963
https://orcid.org/0000-0002-4008-1963
https://orcid.org/0000-0002-4008-1963
https://orcid.org/0000-0002-4008-1963
https://orcid.org/0000-0002-9359-9571
https://orcid.org/0000-0002-9359-9571
https://orcid.org/0000-0002-9359-9571
https://orcid.org/0000-0002-9359-9571
https://orcid.org/0000-0002-9359-9571
mailto:
mailto:
mailto:
mailto:

To answer this question we design and evaluate Luopan,1 a
sampling based load balancing protocol for large-scale data
center networks. Inspired by the power of two choices in ran-
domized load balancing [26], in Luopan each ToR switch
sends probe packets to sample a few random paths towards
each active destination ToR switch. It stores the information
in a local table, directs flowcells to the least congested path,
and periodically re-samples the network to refresh the table
(Section 3). Luopan greatly reduces the overhead ofmaintain-
ing global congestion information, and is more scalable for
practical deployment. It also offers a much simpler switch
implementation compared to existingwork [6], [24].

We conduct comprehensive packet-level simulations in
ns-3 using production workloads to assess Luopan’s perfor-
mance (Section 4). Luopan provides salient performance ben-
efits: with two samples it improves the 99.9%ile FCT for mice
flows by up to 35 percent, and average FCT of elephant flows
by up to 30 percent compared to the congestion-agnostic
Presto. Using more samples only marginally improves per-
formance. Luopan achieves salient performance with negli-
gible bandwidth overhead: assuming a 10G network with a
probe size of 38B, sampling period of 40ms, and 100 active
destination ToR switches, Luopan’s probing overhead on
each link is 0.38 percent.

Our evaluation also shows that Luopan outperforms
Local Sampling, where a switch locally and independently
samples some random egress ports and selects the least
congested one for each flowcell [16]. We find that with
symmetric topologies and uniform traffic patterns, Local
Sampling is only marginally worse than Luopan with
global path-wise information. However, when there are
link failures or non-uniform traffic, Luopan reduces
the 99%ile FCT of mice flows by 4� over Local Sampling.
In these scenarios, congestion happens in the downstream
segment of a path, and knowing local information is insuf-
ficient to direct traffic away from congested links in the
first few hops.

In summary, our contributions are the following:

� We design and implement Luopan, which uses a few
samples to achieve global congestion-awareness and
effectively balance load for large-scale data center
networks.

� We extensively evaluate Luopan with packet-level
simulations and further explore parameter settings
(including number of samples and expiry time). We
demonstrate that two samples are enough to deliver
good performance. Our results also show that Luo-
pan can effectively handle topological asymmetry
caused by failures without involving the controller.

� We also analyze and establish the effectiveness
of Luopan’s periodic sampling design compared to
instantaneous sampling required by power of two
choices [26] in the Appendix.

2 DESIGN DECISIONS

We start by motivating and justifying the key design
decisions behind Luopan.

2.1 Load Balancing Granularity: Flowcell

The first key design decision is to adopt flowcells as the load
balancing granularity. Per-flow load balancing such as
ECMP is ineffective in data centers because traffic is heavy-
tailed with many mice flows and a few elephant flows that
carry most bytes [5], [6], [7], [20], [29]. Simply balancing the
number of flows does not balance the load on each path.
Sub-flow level load balancing achieves better FCT by trans-
forming the heavy-tailed flows into many data units of simi-
lar sizes. Presto is the state-of-the-art fine-grained load
balancing protocol that breaks a flow into flowcells of at
most 64KB [20]. This threshold value is chosen to be the
maximum TCP Segment Offload (TSO) size to utilize high
speed optimizations provided by the NIC and OS. Most
mice flows are also smaller than 64KB and do not suffer
from packet reordering. Regardless, existing mechanisms
such as modifying the Generic Receive Offload (GRO) han-
dler in the host network stack [20] can be used to minimize
the adverse effect of reordering. It has been shown [20] that
Presto with flowcells outperforms per-flow ECMP and other
sub-flow units such as flowlets [6].

2.2 Congestion-Aware versus Congestion-Agnostic

Presto [20] uses round-robin to route flowcells. This conges-
tion-agnostic approach balances the link load well in sym-
metric topologies and delivers good FCT performance for
medium and large flows.

We argue that a congestion-aware approach has advan-
tages over Presto’s round-robin design. First, a congestion-
aware approach is fundamentally more robust to link fail-
ures and topological asymmetries [6]. A congestion-agnostic
protocol can handle failures by pruning the spanning tree
affected by failure and adjusting the weights of paths over
the spanning tree. However it involves slow and expensive
controller reconfiguration [20]. Besides, weighted round-
robin in a load-oblivious manner could not completely solve
load imbalance.

We consider the asymmetric topology in Fig. 1a where
the link between switch A1 and T1 is down. End-hosts
connected to T1 and T2 send TCP traffic to T3. Due to the
failure, P1: T1 ! A1 ! T3 is not reachable from T1. Thus,
traffic from T1 can only take P2: T1 ! A2 ! T3, P3:
T1 ! A3 ! T3 and P4: T1 ! A4 ! T3 to T3. But T2 can
take all four paths. Presto equally spreads flowcells from
both T1 and T2 among these available paths. To quantize
the impact of asymmetry, we measure one-way delay
among all paths from T2 to T3. Fig. 1b shows the CDF of
path delay. Obviously, P1 is under-utilized while other
paths are heavily loaded. P1’s 99%ile delay is much less
than the other three paths, by a factor of 2.7x. This shows
severe load imbalance. To better utilize the network, more
flowcells should be sent to P1. By dynamically reacting to
congestion and shifting traffic away from hotspots caused
by failures, a congestion-aware approach can re-balance the
load among paths [6], [16], [24].

Second, even in symmetric topologies, Presto’s round-
robin can also cause transient congestion and performance
problems. To show this we conduct some packet-level simu-
lations on ns-3 for a 12-pod fat-tree fabric. We compare
Presto to an “ideal” congestion-aware approach where
each flowcell is routed along the least congested path.1. Magnetic compass in Chinese.

134 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 30, NO. 1, JANUARY 2019

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on April 25,2022 at 02:30:52 UTC from IEEE Xplore. Restrictions apply.

Background traffic is generated based on the web search
workload widely used in the literature [6], [20], [24]. We
then issue 20K flows of 2KB between random pairs of hosts
within 250ms and collect their completion time. Fig. 2 shows
the CDF. We observe that while they do provide similar
average-case performance, Presto’s 99.9%ile FCT is 2�
larger than that of the “ideal” congestion-aware scheme.

The reason for round-robin’s inefficiency is twofold.
First, the number of flowcells in most flows is much smaller
than the number of paths available. Fig. 3 depicts that 90
percent of flows have less than 50 flowcells for the web
search workload [7] and 6 flowcells for the Facebook work-
load [29], another commonly used flow size distribution.
Typically hundreds of paths exist between any pair of ToR
switches in large scale production data centers [9], [33].

Thus a flow only leverages a small portion of all available
paths during its lifetime.

Second, the limited number of paths selected by round-
robin cluster around a few switches in the lower layers of
the topology. Take Fig. 4 with a 6-pod fat-tree as an exam-
ple. A flow from ToR switch 1 has 3 flowcells to send to a
host in pod 6. The first flowcell is routed by Presto to a ran-
dom path, say aggregation switch 2 then core switch 4.
The next two flowcells then take the successive egress ports
at aggregation switch 2 to go to core switches 5 and 6.
The three paths share the same ToR-aggregation link as
highlighted, while other aggregation switches are not used
at all. In some extreme cases, a few links may be repeatedly
exploited by multiple flows over a short period, which can
lead to queue buildup. The clustering effect of round-robin
becomes more serious with more layers in the topology,
which are very common in large-scale data centers [29],
[33]. Selecting paths randomly can alleviate clustering but
they still cause long tail latency due to the randomness.

2.3 Sampling versus Omniscient

Existing congestion-aware load balancing schemes such as
CONGA [6] and HULA [24] maintain congestion informa-
tion for all paths connecting a ToR switch pair. This is done
by either frequently (every tens of microseconds) flooding
probes to all paths as in HULA [24], or opportunistically pig-
gybacking information on data packets as in CONGA [6].

This omniscient approach works well in small-scale
enterprise networks with 2-tier leaf-spine topologies [6].
It however suffers from serious scalability challenges that
make it difficult to deploy in practice. Production networks
such as Google’s [33], Facebook’s [9], and Amazon’s [3] use

Fig. 2. Distribution of FCT for 2KB mice flows.

Fig. 1. Sceario of topological asymmetry: (a) Link failure between A1 and T1 causes topological asymmetry; End-hosts from switch T1 and T2 send
traffic to T3; (b) CDF of one-way delay measured for paths from switch T2 to T3.

Fig. 3. Distribution of number of flowcells in a flow.
Fig. 4. Example of the clustering effect of round-robin load balancing.
Even with flowcells, transient congestion may still happen.

WANG ET AL.: LUOPAN: SAMPLING-BASED LOAD BALANCING IN DATA CENTER NETWORKS 135

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on April 25,2022 at 02:30:52 UTC from IEEE Xplore. Restrictions apply.

3-tier or even more complex Clos topologies. For a typical
3-tier Clos network, hundreds of paths exist between any
two ToR switches, and a ToR switch can communicate with
hundreds of other ToR switches [9], [33]. For example a ToR
switch in Facebook’s Altoona data center network has
�220K paths to the fabric [9]. Google’s Jupiter network has
even more paths due to its 7-layer structure [33]. Thus,
omniscient per-path feedback requires tracking a huge
number of paths at each ToR switch at the time scale of a
few RTTs. Moreover, flooding probes every tens of micro-
seconds imposes significant bandwidth overhead to the
network and processing overhead to the switches. Even
opportunistic piggybacking on data packets is very difficult,
since there would not be enough concurrent flows that hap-
pen to traverse all paths at the same time.

Thus, Luopan uses randomized sampling to practically
exploit congestion feedback in a large-scale topology. Sam-
pling has much less overhead and scales better than the
omniscient approach.

3 DESIGN

We present the design of Luopan in this section. Luopan is a
data plane protocol. ToR switches periodically send probe
packets to sample the congestion metrics of two random
end-to-end paths. The information is maintained in a
table at the ToR switch for each active destination ToR
(Section 3.1). Load balancing decisions are made at flowcell
granularity: a flowcell is routed to the least congested sam-
pled path (Section 3.2).

3.1 Path Sampling

We explain Luopan’s sampling mechanism, including the
congestion metric used, probe packet header, the sampling
process, and its bandwidth overhead.

Congestion Metric. Queue length [16] and link utilization
[6], [24] are two commonly used congestion metrics in the
literature. Luopan builds upon flowcells [20] that are at
most 64KB. Flowcells are more sensitive to queuing delay
rather than link utilization, since each of them finishes
quickly. Besides, transient congestion caused by collisions
among flowcells happens in a short time period, which is
hard to be captured by link utilization. We therefore use
queue length as the congestion metric to make path selec-
tion decisions. We experiment with both metrics and find
that queue length has much better performance.

Probe Packet Header. Sampling is performed using probe
packets. As illustrated in Fig. 5, each probe packet is 38 bytes
with a 14B Ethernet header, a 4B probe header, and a 20B IP
header. Probe header contains the following information:

� Path ID, PID (24 bits): This field specifies the com-
plete path to be explored by the packet from the

source ToR to the destination ToR switch. 24 bits are
sufficient since the number of paths between a pair
of ToR switches rarely reaches 16 million.

� Type (1 bit): This field is used to identify probe and
ACK-probe packet. It is set to 0 for probe packet and
1 for ACK-probe packet.

� Quantized Congestion Metric, QCM (7 bits): This field
contains the sum of queue lengths over each hop of
an end-to-end path, quantized within 7 bits.

Sampling Process. Fig. 6 illustrates the sampling process in
Luopan. The source ToR switch can be configured to send d
probes to sample d paths per destination ToR switch. As a
probe packet traverses each switch on the path, the instanta-
neous queue length of the corresponding egress port is
added to the current value in the QCM field of the probe
header. The destination ToR immediately generates an
ACK-probe packet in response to each probe packet. The IP
and probe headers are copied from the probe packet to the
ACK-probe packet, with the source and destination IP
addresses swapped for the reverse direction, and probe
type changed to 1. Upon receiving the ACK-probe, the
source ToR retrieves the destination ToR switch address,
path ID, and congestion metric, and updates the corre-
sponding entry in a congestion table. CONGA [6] shows
that switches can actually maintain a large number of
entries (i.e., 64K) for the congestion table. Besides, entries
without hits in a certain time period are removed.

To maintain up-to-date information, entries in a conges-
tion table expire after a short time, and new probes are sent
out immediately to another d random paths. We empirically
find that Luopan with expiry time of 40 ms and 2 samples
achieves a good balance between performance and sampling
overhead in a large scale 10Gbps network with various set-
tings (Section 4.3, Section 4.4). We thus choose them as the
default parameters for Luopan. Although parameters for
Luopan in this paper are static, in principle it is also possible
to dynamically adapt them based on network congestion.

Bandwidth Overhead. We now discuss the bandwidth
overhead of our sampling approach. Overhead is deter-
mined by number of probes and expiry time of the conges-
tion table entry. Specifically, the average probe overhead on
each network link is:

2 � numActiveDstToRs � probeSize
expiryTime � numLinks � linkBw :

numActiveDstToRs is the number of active destination ToR
switches that current flows talk to. A source ToR switch

Fig. 5. Header format of a probe packet.

Fig. 6. Luopan’s sampling process. The source ToR samples congestion
of d paths over a total of n paths available. It updates its congestion table
upon receiving the ACK-probe packet from destination ToR switches.

136 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 30, NO. 1, JANUARY 2019

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on April 25,2022 at 02:30:52 UTC from IEEE Xplore. Restrictions apply.

needs to sample at least two paths from itself to each active
destination ToR switch. numLinks is the number of links for
each ToR switch to send traffic to its upper layer switches.
numLinks � linkBw represents the total capacity to carry
traffic from each ToR switch to upper layer switches. For a
network with 10G links where numActiveToRs is 100,
probeSize is 38 bytes, expiryTime is 40us, and numLinks is
40, the bandwidth overhead is only 0.38 percent of the 10G
link capacity, compared to HULA’s 7.6 percent overhead
[24] with the same settings.

3.2 Path Selection

Similar to Presto, a sending host in Luopan adds a sequen-
tially increasing flowcell ID into each packet. Flowcell ID
increases by 1 for every 64KB data sent out. The source
MAC address field is used to hold the flowcell ID [20]. Luo-
pan recognizes the flowcell ID for each packet by matching
the source MAC address field.

Luopan makes path selection decisions on the first packet
of each flowcell, and records the selected path ID in a flow
table. Flow table is the second table maintained at a ToR
switch; the first table being the congestion table discussed in
Section 3.1. Each flow table entry records flow ID (i.e., flow’s
5-tuple), flowcell ID, path ID, and time last seen. When a
new packet arrives and matches both the flow ID and flow-
cell ID, it is a subsequent packet from a recorded flowcell
and thus routed to the selected path recorded. If it only
matches the flow ID, it belongs to the next flowcell and the
new flowcell ID is recorded. If it does not match any entry in
the flow table, it is the first packet of a flowcell from a new
flow and a new entry is added to the flow table. For the first
packet of each flowcell, a new path selection decision should
be made by looking up the congestion table, and recorded in
the flow table. If it does not match any dest ToR in the con-
gestion table, Luopan creates a new entry in the congestion
table, and chooses a random path as the path selection result.
Luopan then sends probe packets to the corresponding desti-
nation ToR switch to start the sampling process. After probe
packets come back and update the congestion table entry,
subsequent flowcells can use the information to choose better
paths. Flow table entries that have not been updated for a
long time (e.g., 1ms) will be removed.

3.3 Source Routing

In Luopan, we implement source routing to forward probe
packets and data packets along designated paths. Source rout-
ing is not a new concept. There are several implementations

using ECMP spoofing [28], MPLS, VXLAN tag [6], or shadow
MAC [20]. Luopan uses a source routing implementation
proposed in Sourcey [21], which is simple and scalable.
The source ToR translates the selected path ID into output
port numbers at each switch on this path, and pushes them as
a stack of labels into the packet headers. Each switch simply
looks up the label as the output port for each packet and then
pops it off. The overhead is negligible since the diameter of
data center networks is usually small.

4 EVALUATION

We evaluate Luopan’s performance using packet-level ns-3
simulation. We answer three key questions here:

� How does Luopan perform in typical data center
network topologies of various scales running realis-
tic workloads (Section 4.2, Section 4.4)?

� How does Luopan perform with different parameter
settings (Section 4.3)?

� Is Luopan effective in handling Incast (Section 4.5),
non-uniform workloads (Section 4.6) and topological
asymmetry (Section 4.7)?

4.1 Methodology

Fabric Topology. As shown in Fig. 7, we use a 12-pod fat-tree
[4] as the baseline topology. The fabric consists of 432 hosts
and 36 core switches. There are 36 equal-cost paths between
any pair of ToR switches across pods. Link capacity is
10Gbps, and the fabric RTT is � 40ms. Each switch port has
a buffer of 300KB. In the non-oversubscribed topology, each
ToR switch connects to 6 aggregation switches and 6 end-
hosts. We vary the number of end-hosts to achieve different
over-subscription ratios. Our baseline topology uses 4:1
over-subscription ratio.

Realistic Workloads. We use two realistic workloads from
production data centers running web search [7] and cache
jobs [29]. Both workloads are heavy-tailed as shown in
Fig. 8: most flows are mice but elephant flows carry a large
fraction of traffic. Each host continuously samples the flow
size distribution, and sends a flow to a random receiver in a
different pod. Flow arrivals follow a Poisson process, and
we vary the mean inter-arrival time to simulate different
network loads ranging from 0.1 to 0.8.

Fig. 7. 12-pod fat-tree topology used for evaluation experiments.

Fig. 8. The flow size distributions used in the evaluation.

WANG ET AL.: LUOPAN: SAMPLING-BASED LOAD BALANCING IN DATA CENTER NETWORKS 137

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on April 25,2022 at 02:30:52 UTC from IEEE Xplore. Restrictions apply.

Performance Metric.We use flow completion time (FCT) as
the primary performance metric. We consider 99.9%ile FCT
for mice flows (0, 64KB], and average FCT for medium flows
(64KB, 10MB] and elephant flows (10MB, þ1). These set-
tings are in accordance with prior work [6], [8], [15], [20].

Schemes Compared.We use the following load balancing
protocols.

� Luopan: Our sampling based scheme. The expiry
time is 40 ms. We select the better one of two ran-
domly sampled paths. These parameters are fixed in
all experiments except the sensitivity analysis (Sec-
tion 4.3).

� Local Sampling: Each switch locally samples all egress
ports and sends a flowcell to the least congested one.
Aflowcell is agnostic to congestion of subsequent links
along its path. Thus, Local Sampling leads to worse
performance in asymmetric topologies (Section 4.7).

� Random: Each flowcell selects a random path.
� Presto: This is the state-of-the-art load balancing pro-

tocol at flowcell granularity [20]. A flow sends its
first flowcell to a random path. Consecutive flowcells
in the same flow are then sent in a round-robin fash-
ion to other paths.

4.2 Overall Performance

In this section, we show the overall performance of Luo-
pan in a large scale network. As explained in Section 4.1,
Luopan uses expiry time of 40 ms with 2 samples. Figs. 9
and 10 show the FCT results for both workloads, with net-
work load varying from 0.1 to 0.8. Compared to Presto,
Luopan improves the 99.9%ile FCT for mice flows by 8 to
35 percent for the web search workload, and by 10 to

35 percent for the cache workload. Compared to Random,
Luopan improves the 99.9%ile FCT for mice flows by up to
24 percent for the web search workload, and up to 20 per-
cent for the cache workload. In terms of the average
FCT for medium flows, Luopan achieves up to around
25 percent improvement for the web search workload and
13 percent for the cache workload. Luopan also improves
FCT for elephant flows by as much as �30 percent. Presto’s
bad FCT for mice flows can be explained by the clustering
effect as discussed in Section 2.2. The same low layer links
are repeatedly used by several successive flowcells of a
flow. This causes transient imbalance among the links and
temporary increase in queue occupancies. Flowcells expe-
rience longer queuing delay in the network which causes
large tail latency. Moreover, elephant flows also suffer
from the imbalance. Due to the impact of flowcell-based
load balancing, packets within the same flow traverse dif-
ferent paths and do not always arrive in order. To prevent
reordering, out-of-order packets need to be re-sorted
below TCP layer. Earlier out-of-order packets need to wait
a long time for the right order packets before being sub-
mitted to the TCP layer. Significant load imbalance exacer-
bates the adverse effect of reordering. This undoubtely
harms TCP throughput.

Another interesting observation is that Local Sampling
closely tracks Luopan and performs only slightly worse in
all metrics. Since the topology is symmetric and each pair of
sender and receiver is randomly selected for each generated
flow (i.e., the number of senders and receivers is roughly
equal), the upstream path segments observe similar conges-
tion as the downstream path segments. Local Sampling can
balance traffic on upstream path segments well. Thus, it
performs close to Luopan in these scenarios.

Fig. 9. Flow completion time for web search workload in 12-pod fat-tree with oversubscription of 4:1.

Fig. 10. Flow completion time for cache workload in 12-pod fat-tree with oversubscription of 4:1.

138 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 30, NO. 1, JANUARY 2019

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on April 25,2022 at 02:30:52 UTC from IEEE Xplore. Restrictions apply.

4.3 Sensitivity Analysis

In this section, we conduct sensitivity analysis for two impor-
tant parameters in Luopan: expiry time of the congestion
information, and number of samples per destination switch.

Impact of Expiry Time. Entries in the congestion table
expire periodically (every T seconds) to avoid stale informa-
tion. More frequent sampling accelerates the congestion
information update process at the cost of more probing
overhead. We aim to find a good setting of expiry time to
strike a balance between performance and overhead. Fig. 11
shows the overall average FCT of all flows with various
expiry time settings. Intuitively, Luopan’s performance
suffers when expiry time increases. Interestingly, when
increasing T from 10 ms to 40 ms, Luopan experiences mar-
ginal performance degradation for moderate network load
(0.2, 0.4 and 0.6). Even for high load of 0.8, performance
degradation of 40 ms compared to 10 ms is only 5 percent.
As T increases to 100 ms and 200 ms, performance degrada-
tion is more significant. An expiry time of 40 ms achieves a
good balance between performance and overhead. As net-
work load and network speed increase, the arrival rate of
flowcells increases, and one may need to reduce the expiry
time in order to avoid the likelihood that many flowcells are
routed to the same path. Luopan can also empirically deter-
mine the best value for the expiry time.

Impact of Number of Samples. We vary the number of sam-
ples from 2 to 36 in Luopan and investigate its impact on
the overall average FCT for all flows. Note that the number
of paths in the 12-pod fabric is 36 between a pair of ToR
switches. Luopan with 36 samples effectively has omni-
scient information. We observe that performance with dif-
ferent numbers of samples is similar for low network loads.
Fig. 12 shows the effect of number of samples with 40 ms
expiry time. As the number of samples increases, the overall
average FCT slightly decreases. Luopan with 2 samples
achieves similar performance with more samples. Even in
high network load (0.6 and 0.8), the performance degrada-
tion is within 5 percent. We also find that increasing the
number of samples does not improve performance much
after the number exceeds 9 even for high network load.
One reason is that paths chosen from 9 sampled paths are
good enough. Another reason is that increasing the number
of samples exacerbates the synchronization effect of choos-
ing the best path. Multiple flowcells from different ToR
switches may synchronously choose paths that share the

same under-utilized links in the higher layers of the topol-
ogy. The side effect of synchronization negates to certain
extent the benefits of more samples.

4.4 Network Fabric Settings

In this section, we present Luopan’s performance gains
under fabrics with different settings, particularly, different
network scales, network over-subscriptions, different trans-
port protocols, and buffer sizes. We evaluate performance
of Luopan, Random, Local Sampling and Presto running
the web search workload.

Impact of Network Scale. Fig. 13 shows the average FCT for
all flows in 6-pod, 12-pod, and 24-pod fat-tree networks at
60 percent traffic load. We make the following observations.
First the performance gap between Presto and other
schemes becomes larger as the network scale increases.
Presto outperforms Random in the 6-pod fat-tree, but its
performance drops drastically for larger scale fat-tree. In the
12-pod fat-tree, the improvement of Luopan over Presto
becomes 40 percent. As explained in Section 2.2, the cluster-
ing effect of Presto becomes more serious in a larger net-
work, since consecutive flowcells are more likely to be
placed onto the same lower layer links in a short period.
Besides, we also observe consistent performance improve-
ment of Luopan over Random. The improvement in overall
average FCT of Luopan over Random ranges from 10 to
35 percent for all network scales.

Impact of Network Over-Subscription. We also vary the
over-subscription ratios to simulate different extents of
in-network contention, and see its impact on Luopan’s

Fig. 11. Sensitivity to expiry time for Luopan with two samples. Fig. 12. Sensitivity to number of samples with 40us expiry time.

Fig. 13. Comparison of average FCT for all flows among Luopan (2 sam-
ples with expiry time of 40 ms), Random, Local Sampling, and Presto in a
fat-tree with different scales.

WANG ET AL.: LUOPAN: SAMPLING-BASED LOAD BALANCING IN DATA CENTER NETWORKS 139

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on April 25,2022 at 02:30:52 UTC from IEEE Xplore. Restrictions apply.

benefits. We adjust the number of hosts to over-subscribe a
12-pod network with ratios from 2 to 4. Fig. 14 shows the
comparison result using again the overall average FCT for
all flows at 60 percent traffic load. In the non-oversub-
scribed network, congestion mostly occurs at the network
edge. The improvement of Luopan over Random is mar-
ginal. This makes sense since Luopan aims at alleviating in-
network congestion with better load balancing. With the
increase of over-subscription ratio, in-network congestion
becomes more severe. Luopan then outperforms Random
by around 23 percent, and Presto by 22 to 38 percent. In
practice a data center network is usually over-subscribed at
4:1 or higher [29] for cost reasons. Therefore Luopan is able
to provide salient performance benefits in realistic network
settings.

Impact of Switch Buffer Size. To show Luopan’s robustness
to different buffer sizes, we vary buffer size from 25 to

400 percent of the default buffer size (300KB). Fig. 15 shows
the 99.9%ile FCT of mice flows and average FCT of elephant
flows. With the increase of buffer size, tail FCT of mice flows
for both Luopan and Presto becomes larger. Beyond 100
percent of the default buffer size, FCT of Luopan becomes
stable, while that of Presto keeps increasing. This is because
overbuffering exacerbates congestion of the worst paths,
which prolongs the tail latency of mice flows. However,
Luopan is globally congestion-aware, which effectively
avoids paths with larger queue length, and more robust to
the increase of buffer size. Luopan consistently outperforms
Presto by 19 to 37 percent on 99.9%ile FCT of mice flows.
For elephant flows, we observe that performance of both
Luopan and Presto becomes better. This is because larger
buffers lead to higher utilization of links, which effectively
increases the throughput of elephant flows. Luopan still
achieves 6 to 30 percent performance gains over Presto.

Impact of Transport Protocols. Besides TCP, DCTCP is a
commonly used congestion control protocol in data center
networks [7]. DCTCP uses a fixed marking threshold at the
switch queue, and marks based on the instantaneous queue
length. It estimates the extent of network congestion based
on the fraction of marked packets of every window of data,
and then reduces window size in proportion to it. We repeat
the previous experiment in Section 4.2 for DCTCP with net-
work load varying from 0.3 to 0.8. We set the ECN marking
threshold at the switch queue to be 100KB. Fig. 16 compares
the overall average FCT. All schemes achieve better perfor-
mance with DCTCP than TCP. Luopan still achieves the
best performance with DCTCP, outperforming Presto by
around 15 percent on the overall average FCT. Under
DCTCP, the performance gap between Luopan and Presto
becomes smaller. This is not surprising, since DCTCP effec-
tively keeps queue sizes small and thus alleviates conges-
tion of the worst path.

4.5 Incast

Incast is a common traffic pattern in datacenters which
arises in many applications such as web search and MapRe-
duce. We evaluate Luopan’s performance for Incast traffic
pattern. In our experiment, a client requests for a 1MB file
stripped across 20 other different servers. Upon receiving
the request, these servers respond with 1MB/20 of data in a

Fig. 14. Comparison of average FCT for all flows among Luopan (2 sam-
ples with expiry time of 40 ms), Random, Local Sampling, and Presto in a
12-pod fat-tree with different over-subscription ratios.

Fig. 15. Effect of buffer size on overall average FCT of all flows. Luopan
uses 2 samples with expiry time of 40 ms. Default buffer size is 300KB.

Fig. 16. Overall average FCT for all flows among Luopan (2 samples
with expiry time of 40 ms), Random, Local Sampling, and Presto in a 12-
pod fat-tree using DCTCP.

140 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 30, NO. 1, JANUARY 2019

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on April 25,2022 at 02:30:52 UTC from IEEE Xplore. Restrictions apply.

synchronized pattern. The last response determines the
completion time of an Incast job. We launch 7.5K Incast jobs
within 250ms and measure the completion time of each
Incast job. We also generate background traffic using the
web search workload at 80 percent network load. The mini-
mum retransmission timeout is 200 ms and transport proto-
col used is DCTCP. In Fig. 17, Luopan outperforms Presto
by 20 percent on the 99.9%ile tail completion time. In Incast
traffic pattern, congestion mostly occurs on the receiver
side. In-network load balancing does not help to alleviate
congestion on the last hop. Luopan still provides benefits
because it reduces in-network queuing delay for all flows.

4.6 Non-Uniform Workload

As discussed in Section 4.2 and Section 4.4, Local Sampling
performs similar to Luopan in symmetric topologies with
uniform workloads. In this section, we consider the non-
uniform workload scenario, and highlight the robustness of
Luopan with global information compared to Local Sam-
pling. Except for the traffic pattern, the other experimental
settings are same as Section 4.2 and Section 4.4. In this
experiment, we compare all four schemes with non-uniform
workloads.

To create non-uniform workloads, clients from one pod
repeatedly retrieve data from servers in the other two pods.
The data size follows the web search workload. We set the
network load between 40 to 90 percent with respect to
the aggregate link capacity to a single pod. Clearly, now
the downstream paths are more likely to be the bottleneck.
As a result, most flowcells suffer congestion in the down-
stream direction to the clients. To better balance traffic,
downstream congestion information is essentially required.
However, neither Local Sampling nor congestion-agnostic
schemes, including Presto and Random, can utilize down-
stream congestion information. The results in Fig. 18 con-
firm that Luopan is significantly better than other schemes
in terms of the 99.9%ile FCT of mice flows and average FCT
of elephant flows over all loads. Luopan outperforms Presto
by 21 to 53 percent, Random by 8 to 39 percent, and Local
Sampling by 6 to 36 percent on the 99.9%tile FCT of mice
flows. For elephant flows, Luopan reduces the average FCT
by up to 35 percent over Presto and Random, and 26 percent
over Local Sampling. Local Sampling performs roughly on
par with Random. This is because making path selection
decisions based on per-hop congestion cannot avoid the

hotspots in the downstream direction, and Local Sampling
essentially degrades to Random.

4.7 Topological Asymmetry

All experiments we conducted so far are for symmetric
topologies. We have validated that Luopan works well in
different settings. In data center networks, asymmetry is
bound to happen: link failure events are common, which
lead to topological asymmetry. Balancing traffic becomes
challenging in an asymmetric topology due to unequal
available capacity of paths between one or more source/
destination pairs. In this section, we evaluate the perfor-
mance of Luopan in a 6-pod network with 10 random aggre-
gation-core link failures. Network settings are the same as in
Section 4.2. We run web search workload with network load
from 0.1 to 0.8. We do not consider the reaction time of the
routing protocol to handle failures.

Fig. 19 shows the performance comparison among all
schemes in the asymmetric fat-tree topology. Luopan is par-
ticularly effective in handling asymmetry, achieving up to
31 percent lower 99%ile FCT for mice flows and �35 percent
lower average FCT for elephant flows than Presto and Ran-
dom. Interestingly, we observe that Local Sampling per-
forms the worst. Compared to Luopan, it is up to 4� worse
in 99%tile FCT for mice flows, 5.3� worse in average FCT
for medium flows and 5.5� worse in average FCT for ele-
phant flows.

We now use a simple example in Fig. 20 to explain why
Local Sampling does not handle topological asymmetry
well and performs the worst. After the link between a11 and

Fig. 17. Incast: CDF of Incast job completion time. Background traffic is
web search workload at 80 percent load.

Fig. 18. Comparison in 99.9%ile FCT for mice flows and average FCT for
elephant flows among all schemes under non-uniform workloads. Luo-
pan uses 2 samples with expiry time of 40 ms.

WANG ET AL.: LUOPAN: SAMPLING-BASED LOAD BALANCING IN DATA CENTER NETWORKS 141

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on April 25,2022 at 02:30:52 UTC from IEEE Xplore. Restrictions apply.

c11 fails, the aggregate bandwidth from a11 to core switches
suffers a 1

3 loss. Uplinks from ToR switches to a11 then appear
less utilized than other uplinks, since most traffic is con-
gested at a11. Therefore, Local Sampling is more likely to
choose a11 at each ToR switch, which actually exacerbates
congestion at a11 and leads to inferior FCT.

We further conduct experiments in an asymmetric 2-tier
leaf-spine topology when a fabric link fails (Fig. 1a in Sec-
tion 2.2). We use the web search workload. Hosts under
switch T1 and T2 send traffic to those under T3. Fig. 21
shows the overall average FCT for the web search workload.
Since the aggregate bandwidth from T1 to spine switches
faces a 25 percent loss, we only consider network loads up
to 60 percent. Luopan still performs the best among all
schemes. Compared to Presto, Luopan achieves up to 55 per-
cent lower overall average FCT. As opposed to the results
for the 3-tier fat-tree topology, Local Sampling now per-
forms better than Presto and similar to Random. This is
because Local Sampling can now recognize the uplink from

leaf switch with less congestion and shift traffic to it. Yet
Local Sampling is not able to handle congestion and asym-
metry at downstream links.

We now explain why Luopan performs the best with
global congestion information. For congestion-agnostic
schemes like Presto and Random, they try to evenly distrib-
ute flowcells among available paths. Flows from T1 and T2
equally share the bottleneck downstream links A2 ! T3,
A3 ! T3 and A4 ! T3. Assume that TCP has been in the
steady state, flows from T2 send at 5Gbps (half of full link
capacity) at P2, P3, and P4. Since loads on each path are
roughly equal, T1 also keeps the rate of flows on P1 to be
5Gbps. This leads to 50 percent ofP1’s capacity beingwasted.
T3 should send twice more traffic on P1 than other paths.We
measure the number of flowcells sent to each path from T2 to
T3 to validate the effectiveness of Luopan. Table 1 reports the
results and shows that Luopan roughly sends twice more
flowcells on P1 than other paths. Presto, Random, and Local
Sampling are not able to react to congestion at downstream
paths, still evenly sending traffic to each path.

5 DISCUSSION

In this section, we elaborate on certain design choices, and
discuss possible future improvements.

Adaptive Design of Luopan. As discussed in Section 4.3,
more frequent sampling will improve flow performance but
at the cost of more probing overhead. To make Luopan sim-
ple and practical, expiry time is kept fixed. However, static
expiry time is not able to strike the best balance between
performance and overhead under changing network
dynamics. When no congestion is present, there is no need
to change path and we can slow down sampling. On the
other hand, the sampling frequency should increase when
congestion is observed. If all paths are heavily congested,
we should not exacerbate congestion with more sampling.
We should have a range for expiry time as well. In this way,
adaptive probing could further reduce probing overhead
while maintaining good performance.

Fig. 19. FCT for web search workload in a 6-pod fat-tree with 10 randomly selected aggregation-core link failures.

Fig. 20. The link between a11 and c11 fails. There are only two links avail-
able from a11 to core switches after link fails.

Fig. 21. Overall average FCT for web search workload in an asymmetric
leaf-spine topology.

TABLE 1
Percentage of Flowcells Sent on Each Path

P1 P2 P3 P4

Luopan 42.8% 18.7% 19.1% 19.4%
Presto 22.5% 27.0% 24.9% 25.6%
Random 23.0% 25.9% 25.4% 25.7%
Local Sampling 24.6% 25.2% 24.9% 25.3%

142 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 30, NO. 1, JANUARY 2019

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on April 25,2022 at 02:30:52 UTC from IEEE Xplore. Restrictions apply.

Choice of Congestion Metric. In our design, we measure
congestion using queue length. ECN is also a possible solu-
tion[23], but ECN only reflects congestion when queue
length exceeds a threshold. It is less accurate in measuring
congestion than queue length, but available at many com-
modity switches. Another direction is to use end-to-end
delay as congestion signal[27]. Recent NICs provide sup-
port for timestamping of packet events and hardware-gen-
erated ACKs, which allows us to measure data center RTTs
in high precision. Luopan is able to use all the above metrics
based on the requirements of data center operators.

Effect of Reordering Buffer. Luopan adopts flowcell as the
load balancing granularity, and spreads flowcells among
multiple equal-cost paths. A major concern is the impact on
TCP performance. To handle reordering, a reordering buffer
is implemented below TCP to re-sort out-of-order packets. It
guarantees that out-of-order packets observed by TCP are
due to packet losses, and not the load balancing protocol.
TCP then correctly reduces transmission rate. The challenge
is that the size of the reordering buffer needs to be carefully
tuned. Accumulating too many packets in the reordering
buffer could cause traffic burst after all buffered packets are
submitted to the TCP stack. Luopan balances load more
effectively and thus alleviates the impact of reordering on
TCP. More sophisticated reordering schemes can be investi-
gated in future work.

Implementation in Programmable Switches. Luopan requires
randomized sampling and maintaining sampled congestion
information for flows. These operations are supported by
the emerging programmable switching ASICs such as Cav-
ium’s XPliant [1] and Barefoot’s Tofino chips [2] even at line
rate. Recent works [24], [32] have demonstrated the feasibil-
ity of periodic probing and maintaining congestion informa-
tion in programmable switches with the P4 language.
Luopan has simple packet processing logic and does not
require complex computation, and programmable switches
are able to run Luopan at line rate.

Deployment. Luopan requires modifications at commod-
ity switches, which hinders near-term deployment in the
real world. Yet, it is simple enough to be implemented with
programmable switches. We wish to evaluate Luopan in a
real testbed, but lack the hardware to build a networked
system with emerging programmable switches. Our simula-
tions constitute the first step toward evaluating Luopan’s
performance. We expect to deploy Luopan in programma-
ble switches in the future.

6 RELATED WORK

We now discuss prior work closely related to Luopan.
There are in general two lines of work dealing with

ECMP’s drawbacks in data center networks. The first is cen-
tralized routing that aims to assign elephant flows to good
paths based on global network view. Schemes such as
Hedera [5], MicroTE [11], DevoFlow [13] and myopic flow
scheduling [31] rely on a central controller to poll network
utilization information and modify flow entries at switches.
This approach is too slow to react to transient congestion for
mice flows. It also poses scalability challenges for commodity
Openflow switches [13]. To improve scheduling latency at
scale, some randomized myopic algorithms [31] also lever-
age the power of two choices to achieve low complexity.

The other thread is distributed data plane load balancing,
which is more related to Luopan. A number of works focus
on sub-flow level load balancing. Packet spraying adopts
per-packet load balancing [12], [14], which induces packet
reordering and interacts poorly with TCP. Flare [22] and
Presto [20] break flows into flowlets or flowcells. LetFlow
[34] works with flowlet switching and randomly selects
path for each flowlet. It naturally leverages the elasticity of
flowlet switching to balance the traffic on different paths.
Luopan builds upon Presto with flowcells [20] as the state-
of-the-art sub-flow load balancing. Congestion-aware load
balancing schemes are also studied to improve the robust-
ness of the congestion-agnostic approach. LocalFlow [30]
uses local load information to reroute flows based on TCP
sequence numbers. DRILL [16] is a per-packet load balanc-
ing scheme based on local congestion information. CONGA
[6] and HULA [24], on the other hand, use global path-wise
information. As discussed, they require omniscient per-
path information for all switches, and do not scale well to
large production networks. Expeditus [35] solves the scal-
ability issue, but it specifically works for 3-tier Clos. Luopan
is topology oblivious. Similar to Luopan, Hermes [38] sam-
ples network congestion with a small number of samples to
reduce overhead. It re-routes traffic at sub-flow level instead
of flowcells. Luopan provides a more comprehensive analy-
sis of sampling based load balancing at flowcell granularity.

Another related work is Multipath TCP [19]. MPTCP cre-
ates multiple subflows for one TCP flow, and sends them
over different paths. Each subflow reacts to congestion on
its own path, shifting traffic from a congested path to a less
congested one. MPTCP increases congestion at the edge
links because multiple sub-flows cause more burstiness.
This hurts the performance of mice flows which are more
sensitive to latency and packet drops. It has been shown
that mice flows perform worse in MPTCP than TCP [6].

Finally, Luopan is inspired by the power of two choices
in randomized load balancing [26]. As explained in the
Appendix, the difference is that Luopan adopts periodic
sampling where the sampled information is reused for a
small time period, whereas the classical model assumes
ideal instantaneous sampling. Periodic sampling reduces
overhead significantly, and we show that it is as effective as
instantaneous sampling asymptotically.

7 CONCLUSION

In this paper, we presented Luopan, a sampling based load
balancing protocol for large scale networks. Luopan sam-
ples only two random paths to efficiently balance the traffic
with low implementation overhead. Using extensive simu-
lations, we demonstrated the effectiveness of Luopan for
large scale fat-tree networks with various settings. It greatly
reduces the 99.9%ile FCT for mice flows and the average
FCT for medium and elephant flows compared to Presto
and other schemes. Luopan also performs consistently well
in asymmetric topologies.

APPENDIX

This section summarizes the theoretical underpinning of
sampling based load balancing. Note that the purpose of

WANG ET AL.: LUOPAN: SAMPLING-BASED LOAD BALANCING IN DATA CENTER NETWORKS 143

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on April 25,2022 at 02:30:52 UTC from IEEE Xplore. Restrictions apply.

our analysis is not to accurately model Luopan, which in
itself is challenging. Instead, we aim to analyze the effect of
periodic sampling and reusing the sampled information,
which may be outdated at the time of decision-making, in
the design of Luopan.

The classical randomized load balancing model [10], [26]
assumes instantaneous sampling, where load balancing
protocols should be designed to sample for each individual
flowcell upon its arrival. Instantaneous sampling incurs
large overhead in high-speed networks and extra latency
waiting for the probe to come back. Thus Luopan adopts
periodic sampling: flowcells arriving within the same
period use the same information locally available at the ToR
switch. We extend the original framework [10], [26] to con-
sider the effect of sample reuse, where the sampled conges-
tion is valid for a fixed number of flowcells; that is, the
information may be stalled. We establish that the asymp-
totic behavior of periodic sampling with sample reuse is the
same as instantaneous sampling, demonstrating the theoret-
ical effectiveness of Luopan’s design.

The “Balls into Bins” Model. Two well-studied paradigms
for randomized load balancing are the continuous supermar-
ket model [26], [36] and the discrete balls into bins model [10].
In this work, we adopt the latter because it simplifies our
analysis while providing a good abstraction of randomized
load balancing.

Under this model, we sequentially place m balls into
n � m bins. At each time step a ball is placed in the least full
among d bins, chosen independently and uniformly at ran-
dom. Load balancing studies the asymptotic behavior of the
aforementioned stochastic process in the limit as n ! 1, and,
in particular, the number of balls (load) on the fullest bin.

One of the most fundamental results concerns a pro-
found dichotomy between the cases d ¼ 1, where the ball is
placed in one randomly chosen bin, and d � 2, where at
least two bins are sampled. In particular, when d ¼ 1 the
fullest bin has with high probability ð1þ oð1ÞÞlogn=log logn
balls in it. On the other hand, when d � 2, the fullest bin has
with high probability log logn=log dþOð1Þ balls, an expo-
nential improvement over d ¼ 1 [10].

Note that in our scenario the balls correspond to the
flowcells (of variable size) and the bins to the paths for each
source-destination pair; the bin load thus corresponds to
the path congestion. The above results naturally motivate
a randomized load balancing scheme, where each time
we sample a small number of d paths, and select the least
congested one.

New Model with Sample Reuse. A practical challenge with
the original mechanism is that we need to sample paths
for each individual flowcell. This incurs large overhead in
high-speed networks. For this reason, we propose an exten-
sion of the original framework for Luopan where the
sampled congestion is valid for a time period t; after t time
units have expired, the sample is no longer valid, so we
need to resample the network.

Because this model is more challenging to analyze, we can
consider an alternative scheme where the sampled paths are
used for k consecutive flowcells instead of just one. Note that
this is equivalent to the previous scheme as long as the flow-
cells arrive at a constant rate of 1 cell per t=k time units.

Proposition 1. For fixed k and d � 2, the new scheme has the
same asymptotic complexity as the original without sample reuse.

Proof. Azar et al. [10] prove that the fullest bin has with
high probability Qðm=nÞ þ ð1þ oð1ÞÞlog logn=log d balls,
when m � n. Now, assume m ¼ k �m0 balls. The idea is
to consider each k consecutive balls using the same sam-
ples as one large ball, and analyze the system in terms of
these m0 ¼ m=k large balls. Indeed, the fullest bin has
Qðm0=nÞ þ ð1þ oð1ÞÞlog logn=log d large balls. Since a
large ball consists of k smaller ones, this implies that the
fullest bin contains k � ðQðm0=nÞ þ ð1þ oð1ÞÞlog logn=
log dÞ ¼ Qðm=nÞ þ ð1þ oð1ÞÞ � k � log logn=log d. For fixed
k, the asymptotic complexity of sample reuse is trivially
the same as that of the original mechanism. tu
On the other hand, note that when k ¼ vðlognÞ, d ¼ 1

asymptotically performs better. Thus, as long as k is suffi-
ciently small, performance is better than ECMP; but as soon
as k increases beyond a threshold, a large number of flow-
cells are routed through the same links, so performance
may become even worse than d ¼ 1 (Section 4.3).

ACKNOWLEDGMENTS

This work was supported in part by Huawei Technologies
(contract research no. 9231208) and the Research Grants
Council, University Grants Committee of Hong Kong (GRF-
11202315).

REFERENCES

[1] Cavium Xpliant. (2015). [Online]. Available: https://www.
cavium.com/pdfFiles/CNX880XX_PB_Rev1.pdf

[2] The World’s Fastest and Most Programmable Networks.
(2016). [Online]. Available: https://barefootnetworks.com/
media/white_papers/Barefoot-Worlds-Fastest-Most-
Programmable-Networks.pdf

[3] A. Agache, R. Deaconescu, and C. Raiciu, “Increasing datacenter
network utilisation with GRIN,” in Proc. 12th USENIX Conf. Netw.
Syst. Des. Implementation, 2015, pp. 29–42.

[4] M. Al-Fares, A. Loukissas, and A. Vahdat, “A scalable, commod-
ity data center network architecture,” in Proc. ACM SIGCOMM
Conf. Data Commun., 2008, pp. 63–74.

[5] M. Al-Fares, S. Radhakrishnan, B. Raghavan, N. Huang, andA. Vah-
dat, “Hedera: Dynamic flow scheduling for data center networks,”
in Proc. USENIXConf. Netw. Syst. Des. Implementation, 2010, p. 19.

[6] M. Alizadeh, T. Edsall, S. Dharmapurikar, R. Vaidyanathan,
K. Chu, A. Fingerhut, V. T. Lam, F. Matus, R. Pan, N. Yadav, and
G. Varghese, “CONGA: Distributed congestion-aware load bal-
ancing for datacenters,” in Proc. ACM Conf. SIGCOMM, 2014,
pp. 503–514.

[7] M. Alizadeh, A. Greenberg, D. A. Maltz, J. Padhye, P. Patel,
B. Prabhakar, S. Sengupta, and M. Sridharan, “Data center TCP
(DCTCP),” in Proc. ACM SIGCOMM Conf., 2010, pp. 63–74.

[8] M. Alizadeh, S. Yang, M. Sharif, S. Katti, N. M. B. Prabhakar, and
S. Shenker, “pFabric: Minimal near-optimal datacenter transport,”
in Proc. ACM SIGCOMM Conf., 2013, pp. 435–446.

[9] A. Andreyev, “Introducing data center fabric, the next-generation
Facebook data center network,” Nov. 2014. [Online]. Available:
https://code.facebook.com/posts/360346274145943/introducing-
data-center-fabric-the-next-generation-facebook-data-center-
network/

[10] Y. Azar, A. Z. Broder, A. R. Karlin, and E. Upfal, “Balanced
allocations,” SIAM J. Comput., vol. 29, no. 1, pp. 180–200, 1999.

[11] T. Benson, A. Anand, A. Akella, and M. Zhang, “Microte: Fine
grained traffic engineering for data centers,” in Proc. ACM 7th
Conf. Emerging Netw. Experiments Technol., 2011, Art. no. 8.

[12] J. Cao, R. Xia, P. Yang, C. Guo, G. Lu, L. Yuan, Y. Zheng, H. Wu,
Y. Xiong, and D. Maltz, “Per-packet load-balanced, low-latency
routing for Clos-based data center networks,” in Proc. 9th ACM
Conf. Emerging Netw. Experiments Technol., 2013, pp. 49–60.

144 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 30, NO. 1, JANUARY 2019

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on April 25,2022 at 02:30:52 UTC from IEEE Xplore. Restrictions apply.

https://www.cavium.com/pdfFiles/CNX880XX_PB_Rev1.pdf
https://www.cavium.com/pdfFiles/CNX880XX_PB_Rev1.pdf
https://barefootnetworks.com/media/white_papers/Barefoot-Worlds-Fastest-Most-Programmable-Networks.pdf
https://barefootnetworks.com/media/white_papers/Barefoot-Worlds-Fastest-Most-Programmable-Networks.pdf
https://barefootnetworks.com/media/white_papers/Barefoot-Worlds-Fastest-Most-Programmable-Networks.pdf
https://code.facebook.com/posts/360346274145943/introducing-data-center-fabric-the-next-generation-facebook-data-center-network/
https://code.facebook.com/posts/360346274145943/introducing-data-center-fabric-the-next-generation-facebook-data-center-network/
https://code.facebook.com/posts/360346274145943/introducing-data-center-fabric-the-next-generation-facebook-data-center-network/

[13] A. R. Curtis, J. C. Mogul, J. Tourrilhes, P. Yalagandula, P. Sharma,
and S. Banerjee, “Devoflow: Scaling flow management for high-
performance networks,” in Proc. ACM SIGCOMM Conf., 2011,
pp. 254–265.

[14] A. Dixit, P. Prakash, Y. C. Hu, and R. R. Kompella, “On the impact
of packet spraying in data center networks,” in Proc. IEEE INFO-
COM, 2013, pp. 2130–2138.

[15] P. X. Gao, A. Narayan, G. Kumar, R. Agarwal, S. Ratnasamy, and
S. Shenker, “pHost: Distributed near-optimal datacenter transport
over commodity network fabric,” in Proc. ACM Conf. Emerging
Netw. Experiments Technol., 2015, Art. no. 1.

[16] S. Ghorbani, Z. Yang, B. Godfrey, Y. Ganjali, and A. Firoozsha-
hian, “DRILL: Micro load balancing for low-latency data center
networks,” in Proc. ACM Conf. Special Interest Group Data Com-
mun., 2017, pp. 225–238.

[17] P. Gill, N. Jain, and N. Nagappan, “Understanding network fail-
ures in data centers: Measurement, analysis, and implications,” in
Proc. ACM SIGCOMMConf., 2011, pp. 350–361.

[18] A. Greenberg, J. R. Hamilton, N. Jain, S. Kandula, C. Kim,
P. Lahiri, P. Patel, and S. Sengupta, “VL2: A scalable and flexible
data center network,” in Proc. ACM SIGCOMM Conf. Data Com-
mun., 2009, pp. 51–62.

[19] H. Han, S. Shakkottai, C. V. Hollot, R. Srikant, and D. Towsley,
“Multi-path TCP: A joint congestion control and routing scheme
to exploit path diversity in the Internet, “IEEE/ACM Trans. Netw.,
vol. 14, no. 6, pp. 1260–1271, Dec. 2006.

[20] K. He, E. Rozner, K. Agarwal, W. Felter, J. Carter, and A. Akella,
“Presto: Edge-based load balancing for fast datacenter networks,”
in Proc. ACM Conf. Special Interest Group Data Commun., 2015,
pp. 465–478.

[21] X. Jin, N. Farrington, and J. Rexford, “Your data center switch is
trying too hard,” in Proc. ACM Symp. SDN Res., 2016, Art. no. 12.

[22] S. Kandula, D. Katabi, S. Sinha, and A. Berger, “Dynamic load bal-
ancing without packet reordering,” SIGCOMM Comput. Commun.
Rev., vol. 37, no. 2, pp. 51–62, Apr. 2007.

[23] N. Katta, A. Ghag, M. Hira, I. Keslassy, A. Bergman, C. Kim, and
J. Rexford, “Clove: congestion-aware load balancing at the virtual
edge, in Proc. ACM 13th Conf. Emerging Netw. Experiments Technol.,
2017, pp. 323–335.

[24] N. Katta, M. Hira, C. Kim, A. Sivaraman, and J. Rexford, “HULA:
Scalable load balancing using programmable data Planes,” in
Proc. ACM Symp. SDN Res., 2016, Art. no. 10.

[25] S. Liu, H. Xu, and Z. Cai, “Low latency datacenter networking: A
short survey,” 2014. [Online]. Available: http://arxiv.org/abs/
1312.3455

[26] M. Michael, “The power of two choices in randomized load bal-
ancing,” IEEE Trans. Parallel Distrib. Syst., vol. 12, no. 10, pp. 1094–
1104, Oct. 2001.

[27] R. Mittal, V. T. Lam, N. Dukkipati, E. Blem, H. Wassel, M. Gho-
badi, A. Vahdat, Y. Wang, D. Wetherall, and D. Zats, “TIMELY:
RTT-based congestion control for the datacenter,” in Proc. ACM
Conf. Special Interest Group Data Commun., 2015, pp. 537–550.

[28] J. Perry, A. Ousterhout, H. Balakrishnan, D. Shah, and H. Fugal,
“Fastpass: A centralized “Zero-Queue” datacenter network,” in
Proc. ACM Conf. SIGCOMM, 2014, pp. 307–318.

[29] A. Roy, H. Zeng, J. Bagga, G. Porter, and A. C. Snoeren, “Inside
the social network’s (Datacenter) network,” in Proc. ACM Conf.
Special Interest Group Data Commun., 2015, pp. 123–137.

[30] S. Sen, D. Shue, S. Ihm, and M. J. Freedman, “Scalable, optimal
flow routing in datacenters via local link balancing,” in Proc.
ACM 9th Conf. Emerging Netw. Experiments Technol., 2013,
pp. 151–162.

[31] M. Shafiee and J. Ghaderi, “A simple congestion-aware algorithm
for load balancing in datacenter networks,” IEEE/ACM Trans.
Netw., vol. 25, no. 6, pp. 3670–3682, Dec. 2017.

[32] N. K. Sharma, A. Kaufmann, T. Anderson, C. Kim, A. Krishna-
murthy, J. Nelson, and S. Peter, “Evaluating the power of flexible
packet processing for network resource allocation,” in Proc. 14th
USENIX Conf. Netw. Syst. Des. Implementation, 2017, pp. 67–82.

[33] A. Singh, J. Ong, A. Agarwal, G. Anderson, A. Armistead, R.
Bannon, S. Boving, G. Desai, B. Felderman, P. Germano, A.
Kanagala, J. Provost, J. Simmons, E. Tanda, J. Wanderer, U.
H€olzle, S. Stuart, and A. Vahdat, “Jupiter rising: A decade of
clos topologies and centralized control in Google’s datacenter
network,” in Proc. ACM Conf. Special Interest Group Data Com-
mun., 2015, pp. 183–197.

[34] E. Vanini, R. Pan, M. Alizadeh, P. Taheri, and T. Edsall, “Let it
flow: Resilient asymmetric load balancing with flowlet switch-
ing,” in Proc. USENIX Conf. Netw. Syst. Design Implementation,
2017, pp. 407–420.

[35] P. Wang, H. Xu, Z. Niu, D. Han, and Y. Xiong, “Expeditus:
Congestion-aware load balancing in clos data center networks,”
in Proc. ACM 7th ACM Symp. Cloud Comput., 2016, pp. 442–455.

[36] L. Ying, R. Srikant, and X. Kang, “The power of slightly more than
one sample in randomized load balancing,” in Proc. IEEE Conf.
Compute. Commun., 2015, pp. 1131–1139.

[37] D. Zats, T. Das, P. Mohan, D. Borthakur, and R. Katz, “DeTail:
Reducing the flow completion time tail in datacenter networks,”
in Proc. ACM Conf. Appl. Technol. Architectures Protocols Comput.
Commun., 2012, pp. 139–150.

[38] H. Zhang, J. Zhang, W. Bai, K. Chen, and M. Chowdhury,
“Resilient datacenter load balancing in the wild,” in Proc. ACM
Conf. ACM Special Interest Group Data Commun., 2017, pp. 253–266.

Peng Wang received the BS degree in informa-
tion engineering from Xidian University, in 2013.
He is currently working toward the PhD degree in
the Department of Computer Science, City Uni-
versity of Hong Kong. His research interests
include data center networking and cloud com-
puting. He received the best paper award
from ACM CoNEXT Student Workshop 2014.
He is a member of the IEEE.

George Trimponias received the five-year
diploma degree in electrical and computer engi-
neering from the National Technical University of
Athens, Greece, and the PhD degree from the
Department of Computer Science and Engineer-
ing, the Hong Kong University of Science and
Technology. He is currently a researcher at Hua-
wei Noah’s Ark Lab in Hong Kong. His research
interests include algorithmic design, combinato-
rial optimization, and game theory.

Hong Xu received the MASc and PhD degrees
from the Department of Electrical and Computer
Engineering, University of Toronto. He is an
assistant professor with the Department of Com-
puter Science, City University of Hong Kong. His
research interests include data center network-
ing, NFV, and cloud computing. He was the recip-
ient of an Early Career Scheme Grant from Hong
Kong Research Grants Council in 2014. He also
received the best paper awards from ACM TURC
(Sigcomm China) 2017, IEEE ICNP 2015,

and ACM CoNEXT Student Workshop 2014. He is a member of ACM
and IEEE.

Yanhui Geng received the BEng and MEng
degree in electronic engineering and information
science from the University of Science and Tech-
nology of China, in 2002 and 2005, respectively,
and the PhD degree in electrical and electronic
engineering from the University of Hong Kong
(HKU), in 2009. He is currently the director of
Huawei Montreal Research Centre. Before that,
he was a senior researcher and project manager
at Huawei Noah’s Ark Lab (Hong Kong). His
research interests include artificial intelligence,

machine learning, big data analytics, SDN (Software-Defined Networks),
and data-center networking. He has filed more than 20 patents globally
and he has 26 technical publications on international journals and con-
ferences. He received the IEEE ICC 2010 Best Paper Award.

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

WANG ET AL.: LUOPAN: SAMPLING-BASED LOAD BALANCING IN DATA CENTER NETWORKS 145

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on April 25,2022 at 02:30:52 UTC from IEEE Xplore. Restrictions apply.

http://arxiv.org/abs/1312.3455
http://arxiv.org/abs/1312.3455

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

