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Abstract
Solving optimization problems through machine
learning is a promising research direction. In this
position paper, we sketch a general framework
motivated by first-order necessary conditions to
solve non-convex sum-rate optimization problems
arising from practical resource allocation prob-
lems in cellular networks. We construct two pa-
rameter matrices to update matrix-form decision
variables of the given objective function. We in-
herently enhance the learning efficiency by in-
creasing the dimensionality of decision variables
with a learnable parameter matrix. Our prelimi-
nary evaluation shows that our approach achieves
up to 98% optimality over state-of-the-art numer-
ical algorithms while being up to 38× faster in
various settings.

1. Introduction
Learning to Optimize (L2O) has garnered significant inter-
est in AI for Science. Despite the remarkable progress in
deep learning, their effectiveness in solving non-convex op-
timization remains limited. L2O can be categorized into two
distinct regimes: online and offline. In the online learning
regime, L2O methods usually serve as a parameter-updating
strategy to improve the optimality of the solutions. Sev-
eral deep learning techniques, such as LSTM (Chen et al.,
2020) and model-based reinforcement learning (Li & Malik,
2017), have been employed. However, online learning has
low efficiency: it works within the same iterative process as
in conventional optimization algorithms (i.e., SGD (Robbins
& Monro, 1951), WMMSE (Shi et al., 2011), etc.) when
solving a problem instance, which renders its running time
much longer than conventional methods (Xia & Gunduz,
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2021). Thus we focus on offline learning, which strives to
learn a mapping from a concrete problem instance to its
potential optimal solutions offline so that the learned model
can directly output a solution with one forward pass.

This work examines a fundamental non-convex optimization
problem called sum-rate maximization that arises in many
domains, in particular in wireless communications (Shi et al.,
2011). Specifically, the problem is adjusting the channel
and power allocation for downlink from the base stations to
users to maximize the total throughput across users (Luo &
Zhang, 2008).

The problem formulation is shown in Equation (1). We con-
sider a cellular network with B base stations (BSes), each
with Nt transmitting antennas. Each base station serves U
users (UE), each equipped with Nr receiving antennas. The
channel state between UE u and BS b is denoted by ma-
trix Hb,u ∈ CNr×Nt , b = 1, . . . , B, u = 1, . . . , U , while
the decision variable (including beamforming and power
allocation) is denoted by matrix Vb,u. We optimize each
Vb,u ∈ CNt×Nr (referred to as the precoding matrix) with
the given channel state H and total power constraint P to
maximize the sum rate of users. Notably, the non-convexity
of the objective function arises from the inversion of the
outer product, which captures the potential interference
among all users, including intra-BS and inter-BS interfer-
ence. This problem is known to be NP-hard (Luo & Zhang,
2008).

Instead of using a generic solver, a numerical algorithm
known as the Weighted Mean-Square Error (WMMSE) al-
gorithm (Shi et al., 2011) is widely regarded as the state-of-
the-art method in terms of optimality to specifically tackle
Problem (1). Generally, WMMSE formulates a dual prob-
lem with two types of auxiliary variables, enabling numeri-
cal solvability via a blocked coordinate descent algorithm.
Consistent with prior work, we also benchmark our method
against WMMSE.

In addition to conventional algorithms, deep learning has
recently been explored to improve the efficiency and (hope-
fully) optimality of solving the non-convex rate maximiza-
tion. There are two lines of work here in general. The
first is a learning-assisted approach, which utilizes learn-
ing to reduce the empirical running time of WMMSE and
other conventional methods. For instance, Hu et al. (2021)
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employ two parameter matrices to approximate the matrix
inversions in WMMSE, while Schynol & Pesavento (2023)
replace the W-update and V-update steps in WMMSE with
graph convolution neural networks. The experimental re-
sults in these works achieve more than 90% optimality of
WMMSE and offer salient speedups, especially for large
problem sizes.

Nonetheless, it is essential to note that learning-assisted
methods inherit the same iterative solving process of
WMMSE (or other conventional optimization algorithms),
and the neural networks are used to replace specific calcula-
tion steps in this process. Their performance is intrinsically
bounded by WMMSE’s inherent limitations. The optimality
is clearly upper-bounded by WMMSE. Moreover, there is
no robustness guarantee due to the random initialization. Al-
though the most recent WMMSE variant proposed by Zhao
et al. (2023) utilizes interference zero-forcing (Gao et al.,
2011) in conjunction with singular value decomposition, it
remains non-deterministic.

In response to the limitations above, recent studies have
explored learning-only approach that does not follow the
framework of conventional optimization algorithms. Vari-
ous neural network techniques, such as vanilla DNN (Sun
et al., 2018), deep reinforcement learning (Zhao et al., 2021),
and graph neural networks (Shen et al., 2021; 2022), have
been employed in this regard. However, most methods over-
simplify the problem in Equation (1) by degenerating the
decision variable Vb,u from a matrix to a scalar (i.e., no
beamforming). Consequently, in our practice, the model pre-
sented in (Shen et al., 2021) shows less than 70% optimality
of WMMSE for the original matrix form.

To our best knowledge, current learning-only approaches
ignore the intrinsic structure and characteristics of the prob-
lem. They essentially use black-box models to approximate
the solutions to Equation (1). Our method is based on two
key insights. First, motivated by the workflow of numerical
optimization algorithms, we adopt two parameter matrices
to update each matrix-form solution Vb,u by matrix multipli-
cations on both sides. We construct these parameter matrices
using DNN models with selected intermediate results of the
objective function. Second, motivated by orthogonalization-
based interference reduction methods in wireless MIMO
communications (Gao et al., 2011), we improve the solv-
ability of Equation (1) by mapping its solution space to a
specific higher dimensional space such that interference re-
duction can be readily applied to solve it. Another DNN

is then used to learn the mapping from this higher dimen-
sional space back to the original space. We show that our
method is able to provide over 90% optimality of WMMSE
and comparable efficiency to learning-assisted algorithms,
outperforming all existing learning-only methods.

2. Design: A Structured Learning Framework
In this section, we introduce our end-to-end structured learn-
ing framework as depicted in Figure 1. Briefly, in each
training step after initialization, the initial solution V0 and
the channel state H are transformed into a higher dimen-
sional space by a learnable matrix D for solving. In this
higher dimensional space, the solution V0 is improved for
a fixed number of iterations according to H. The obtained
solution is then projected back to the original space with
D again so we can evaluate the loss and gradients, and this
completes one training step. Our framework has two key
novelties, both of which involve the use of machine learn-
ing: First, structured solution updates. Each update to the
solution variable V is done in the form of two matrix multi-
plications on its left and right-hand side with WL and WR,
both learned from two DNNs of the same structure. Second,
the dimension expanding and shrinking with D, which is
also learned using DNN. For simplicity, throughout this
work, we use fully connected layers unless stated otherwise.
We explain more details of the two key novelties below.

2.1. Structured Solution Updates with DNN

Our structured updates to the solution V are motivated by
the first-order necessary condition in the WMMSE algo-
rithm. WMMSE performs a matrix inversion with sev-
eral matrix multiplications of intermediate solutions from
the last iteration. We mimic this with two learnable pa-
rameter matrices generated by DNNs. Specifically, given
a feasible solution Vt−1

b,u at iteration t, we utilize two
squared parameter matrices denoted as Wt

L ∈ CNt×Nt and
Wt

R ∈ CNt×Nr to update the solution by Wt
LV

t−1
b,u Wt

R.
We employ several neural networks to construct Wt

L and
Wt

R in the initialization and solution update phases.

Initialization. In Equation (1), each Vb,u is multiplied with
Hb,u in the numerator and multiplied with HH

b̃,ũ
, b̃, ũ 6= b, u

in the denominator. Such fractions imply that an ideal de-
cision variable Vb,u should achieve parallelism in all exis-
tences on the numerator and orthogonality in all existences
on the denominator. Moreover, since each Vb,u is linearly
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Figure 1: Overall framework of our proposed model.

multiplied with related H, the value of Hb,uH
H
b̃,ũ
, b̃, ũ 6=

b, u illustrates the extend that Vb,u achieves. Hence, we
add the value of such product along with original Hb,u

and HH
b̃,ũ
, b̃, ũ 6= b, u to the input of the DNN models.

Our initialization module achieves up to 80% optimality
of WMMSE if it is standalone trained. Our initialization
only takes H as input and can be readily implemented in a
distributed setting with a single communication among base
stations.

Solution Update. In this phase, we improve each initial
V0

b,u using a fixed number of iterations through another
DNN. This approach allocates learning tasks of improving
each Vb,u to each iteration.

We construct the inputs of DNN models as the values of
Hb,uV

t−1
b,u in the numerator of the objective function and

Hb,uV
t−1
b̃,ũ

, b̃, ũ 6= b, u in the denominator, along with the
corresponding original matrices.

To achieve multi-variable coordination explicitly, we intro-
duce a message-passing neural network (MPNN) (Gilmer
et al., 2017) that collects and aggregates the parameter ma-
trices Wt−1

L and Wt−1
R of all b, u, using a sum-pooling

method. From the perspective of one single user, the MPNN
collects the parameter matrices of all other users, i.e., the
current base station’s all other users and other base stations’
users. Then, the MPNN aggregates such matrices with the
mean-pooling method, where we calculate the mean values
of parameter matrices of all other users. We utilize two
fully connected layers with GELU activation functions to
enhance such aggregation by learning.

2.2. Dimension Expanding and Shrinking

As introduced, we raise the dimension of the original prob-
lem in Equation (1), i.e., coefficient H and solution V, and
try to find a solution in the higher dimensional space to
improve efficiency. First, based on Theorem A.1 and Corol-
lary A.2 in Appendix A.1, it is sufficient to construct a
feasible solution of Equation (1) by finding a feasible so-
lution in a higher dimensional space and then projecting it
back to original space. For example, any arbitrary one fat
unitary matrice is feasible since they keep values of the ma-

trix multiplications in Equation (1). Second, finding a (near)
optimal solution in a higher dimensional space is more solv-
able than in the original space as long as the dimension of
the new space is sufficiently large. This is essentially due
to the characteristics of MIMO communications: when the
transmitting antennas are sufficient, it is possible to find a
precoding matrix V that effectively cancels the interference.
Appendix A.2 has more detailed explanations.

We perform the dimension expanding and shrinking by ma-
trix multiplications with a learnable parameter matrix D.
We utilize a learning approach to construct feasible solu-
tions in higher dimensional space. Thus, they are integrated
into one end-to-end learning process. We further eliminate
the unitary constraint on the dimension-transformation ma-
trix D in Theorem A.1. The process achieves a trade-off
between finding a feasible solution in a higher dimensional
space and transforming it into a feasible solution in the
original space. We discuss its potential effectiveness in
Appendix A.3.

Finally, note that we apply a normalization step in each
phase of our framework as in Figure 1 to ensure that the
intermediate solutions are feasible.

2.3. Module Architectures

Our approach employs an adaptive model construction tai-
lored to the dimension scalings defined in Equation (1). For
initialization module, the output dimension of the DNN
model feeding Hb,uH

H
b̃,ũ
, b̃, ũ 6= b, u, Hb,u, and Hb̃,ũ are

Nt/4 times, Nt times, and Nt times of their input di-
mensions respectively. For the embeddings of Hb,uH

H
b̃,ũ

and Hb̃,ũ, they are sum-pooled to keep an identical shape
with embedding of Hb,u. This manipulation also achieves
permutation-equivalence with different numbers and orders
of users.

Further, we utilize two three-layer fully connected models to
generate vector-form W0

L and W0
R from the concatenation

of all embeddings. They are then reshaped to Nt-by-Nt and
Nr-by-Nr dimensions matrices as our solution updating
framework parameters. The dimensions of the output layers
are N2

t -N2
t -N2

t t and N2
r 8-N2

r ∗ 4-N2
r respectively.
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For update module, the dimension expandings for Hb,uVb,u

Hb̃,ũVb,u, b̃, ũ 6= b, u, Vb,u, and Vb̃,ũ are 4, 4, Nt/2, and
Nt/2 respectively. We apply one layer MPNN with another
one fully-connected layer to output vector-form Wt

L, which
takes all concatenated embeddings as input. The output
dimensions are (Nr ∗ Ub ∗ B)2-(Nr ∗ Ub ∗ B)2. For the
DNN model for Wt

R, we apply the same architecture of as
that for W0

R.

3. Preliminary Evaluation
We conduct experiments using Intel Xeon Gold 5320 CPU
and an NVIDIA RTX 3090 GPU. Our proposed framework
is evaluated in simulated scenarios of varying scales, includ-
ing small, moderate, and large. These scales are defined
by eight, sixteen, and thirty-two V arranged on 8-by-2,
16-by-2, and 32-by-2 matrix spaces, respectively.

The datasets for the three scales have 100k, 120k, and 120k
samples, respectively, with a ratio of 8:1:1 for training, eval-
uation, and testing. We construct the loss function as nega-
tive objective value of Problem (1). The mini-batch sizes
are 512, 512, and 200, respectively. The training optimizer
is AdamW. The learning rate is set to 0.001 and decays with
epochs to 0.00001. We train 400 epochs for all scenarios.

To generate data (H in Equation (1)), we follow the con-
figurations outlined in the latest WMMSE paper (Zhao
et al., 2023). Moreover, we consider two scenarios with
distinct inter-cell interference levels based on inter-base sta-
tion distances. We set the inter-base station distance for
the small inter-cell interference scenario to 2.8 km (Zhao
et al., 2023). For the large inter-cell interference scenario,
we set it to 0.5 km. The scalar in constraints is set to be
P = 10[W ]. The noise power for each base stations b is set
to be σ2

b = 10
1
U

∑
u log10

1
Nr
‖Hb,u‖2F × 10−

SNR
10 (Zhao et al.,

2023), where the SNR is set to be SNR = 5[dB]. Input
channels (coefficients of Equation (1)) are randomly sam-
pled upon circularly-symmetric standard complex Gaussian
distribution with path loss between the users and the base
stations. We set the users to be uniformly located in a 0.1
∼ 0.3 km range to its base stations. The WMMSE algo-
rithm is implemented with a threshold of 0.01 for iteration
termination and a maximum iteration limit of 50.

Our complex-number neural network implementations are
based on an open-source codebase developed by Popoff
(2022) on PyTorch (Paszke et al., 2019). In our initialization
module, each matrix-form input is flattened and fed into a
unique fully-connected embedding layer, producing higher-
dimensional outputs (embeddings). These embeddings are
then concatenated and used to create two distinct multi-
layer fully-connected models, which generate W0

L and W0
R.

We similarly constructed our update module. For a more
detailed description of our model architecture, please refer

Small Moderate Large
Small Interference 98.6% 96.9% 93.0%
Large Interference 96.9% 95.7% 91.5%

Table 1: Percentage of optimal objective value achieved of our
method over WMMSE (SOTA). Columns indicate different prob-
lem scales; rows different inter-cell interference levels.

to Appendix 2.3.

Figure 2: Empirical cumulative distribution function of objective
values across two inter-cell interference scenarios in small scale
and moderate scale. Left: Small interference scenarios. Right:
Large interference scenarios.

We first evaluate the optimality attained by our proposed ap-
proach. We compare the objective values, i.e., sum rates, in
Figure 2 and Table 1. Our findings indicate that our method
achieves over 90% optimality compared to WMMSE. More-
over, we observe that larger inference scenarios result in
higher variances of the input coefficients in Equation (1),
leading to a marginal decline in performance when com-
pared to smaller scenarios.

To evaluate the empirical efficiency of our proposed method,
we quantify the execution time by determining the duration

Figure 3: Execution time (seconds) on moderate scale scenario.
‘Serial’ means each sample executes individually. ‘Parallel’ means
100 samples execute concurrently.
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required to solve 100 problems with varying coefficients H
in Equation (1). Additionally, we conduct a parallel execu-
tion time assessment of the 100 problems for our proposed
method. In contrast, the WMMSE algorithm cannot achieve
parallel execution due to the impossibility of having the
same number of iteration rounds in all cases.

Figure 3 presents the average time the WMMSE consumes
and our proposed method over ten runs. Our structured
framework employs five iterations during the updating
phase, whereas the WMMSE algorithm requires an average
of 28.16, 28.47, and 24.23 iterations across three differ-
ent scales, respectively. Our proposed method achieves a
5× speed-up over the WMMSE algorithm across all three
scenarios when executed on a CPU. When run on a GPU,
the speed-up over the WMMSE algorithm is 5×, 8×, and
38×. Moreover, parallelizing 100 samples on a GPU leads
to a substantial acceleration of hundreds of times over the
WMMSE algorithm.

4. Conclusion
This study proposes a structured framework to learn a map-
ping from given coefficients to optimal solutions of the
non-convex sum rate maximization problem. Our approach
involves using manually constructed parameter matrices to
achieve a fixed-number updating process on each decision
variable with matrix multiplications, where we employ DNN
models to non-linearly generate the parameter matrices. To
systematically construct the DNN models, we base them
on the objective function. Additionally, we utilize another
learnable parameter matrix to transform the optimization
problem’s dimensionalities to improve the solvability of the
non-convex problem. We evaluate the effectiveness of our
proposed method on several synthetic datasets. The pre-
liminary experimental results demonstrate that our method
achieves up to 98% optimality compared to state-of-the-art
conventional optimization algorithms, with up to 38× faster
execution times.
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6. Broader impact
Despite the impressive performance of large black-box mod-
els like GPT in computer vision and natural language pro-
cessing, we argue that precise and systematic manipula-
tions are still essential. This study introduces a systematic
deep-learning design to solve a mathematical optimization
problem. Our findings offer insights into how deep learning
algorithms can be enhanced to tackle continuous non-convex

optimization problems more effectively, and we hope they
will inspire further research in this area.
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A. Appendix
A.1. Theorem and Corollary

Suppose Vb,u ∈ CNt×Nr . Suppose a parameter matrix D ∈
CNt×(NrUbB) and DDH = I. Then, H′b,u = Hb,uD, b =
1, . . . , B, u = 1, . . . , U generates a new problem in higher
dimensional space from Problem (1). We have the following
simple theorem:

Theorem A.1. If Vb,u, b = 1, . . . , B, u = 1, . . . , U is a
feasible solution of original space, DHVb,u is a feasible
solution of the new space.

The Theorem A.1 demonstrates that for any objective value
of the original problem, there exists a feasible solution in a
higher dimensional space to achieve the same value.

Suppose V′b,u ∈ C(NrUbB)×Nr , based on Theorem A.1, we
derive the following corollary:

Corollary A.2. If V′b,u is a feasible solution, Vb,u =

DV′b,u,Vb,u ∈ CNt×Nr is a feasible solution of original
Problem (1).

The Corollary A.2 demonstrates that any feasible solution
in the higher dimensional space can be transformed into a
feasible solution in Problem (1) in the original space.

A.2. Discussion of Solvability

Increasing the dimensionalities of the decision variable en-
hances solvability. The zero-forcing (Gao et al., 2011)
method demonstrates that Problem (1) can be solved through
singular value decomposition (SVD) when the number of
rows of decision variables V is greater than or equal to
Nr × Ub ×B (Shi et al., 2011).

Specifically, define the interference space as [HH
b̃,ũ
, ũ 6=

b, u]H ∈ CNr(BU−1)×Nt , the condition ensure the equation
[HH

b̃,ũ
, ũ 6= b, u]HVb,u = 0 has more than one solutions. It

is feasible to find a basis, denote as Ṽb,u, in the null space of
[HH

b̃,ũ
, ũ 6= b, u]H with SVD. Further, define the target space

as Hb,u ∈ CNr×Nt , another basis, denote as V′b,u, is also
achievable with SVD. Hence, a feasible Vb,u is calculated
by Vb,u = V′b,uṼb,u. The detailed demonstrations are in
(Clerckx & Oestges, 2013).

A.3. Discussion of Trade-Off

Our end-to-end learning process intuitively involves a trade-
off among the proposed three steps. First, infinite optimal
solutions exist in the increased dimensional space. For in-
stance, the basis of null space by SVD is not unique. Hence,
it is necessary for the linear mapping with D to be suffi-
ciently robust to map all of these optimal solutions to the
optimal solutions of the original Problem (1). It is only pos-
sible if the original problem has a finite number of optimal
solutions. Even if the number of optimal solutions in the
original space is infinite, achieving a mapping D that builds
an equivalence between NP-hardness and P-complement
is generally impossible. We use our structured learning
framework to construct a single feasible solution to avoid
the dilemma of multiple optimal solutions and the corre-
sponding many-to-one dimension-transformation problem.
The optimality is implicitly achieved by training.


