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Interference in Multi-Cell Multi-User MIMO

Picture from K.-K. Wong, G. Liu, W. Cun, W. Zhang, M. Zhao, and Z. Zheng. Truly Distributed Multicell Multi-Band Multiuser MIMO by Synergizing Game Theory and Deep 
Learning. IEEE Access, vol. 9, pp. 30347-30358, 2021.

Download-link in a cellular network:
• Sender: Base stations.
• Receiver: Users (equipment).
• Signal: 𝑦, 𝑥.
• Channel: 𝑯.

Receiving signal on user side:

Interference

𝑦1,1 =  𝑯1,1 ∙ (𝑥1,1 + 𝑥1,2)
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Classical Problem Formulation

Interference Reduction by Precoding 𝑽

Signal-to-Interference-plus-Noise Ratio (SINR)

Formulation: Sum Rate (SINR) Maximization Problem

 Non-triviality: Non-convex, NP-hard in some cases [IEEE JSTSP' 08].

SINR = 
𝐒𝐢𝐠𝐧𝐚𝐥

 𝐈𝐧𝐭𝐞𝐫𝐟𝐞𝐫𝐞𝐧𝐜𝐞 + 𝐍𝐨𝐢𝐬𝐞 

𝑦1,1 =  𝑯1,1  ∙  (𝑥1,1 + 𝑥1,2)

𝑦1,1 =  𝑯1,1  ∙  (𝑽1,1𝑥1,1 + 𝑽1,2𝑥1,2)
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Algorithms for Sum Rate Maximization

• Conventional Algorithms
• Zero Forcing Scheme: Orthogonalization with SVD

• Efficient (one shot).

• Poor optimality in ill-conditioning cases.

• WMMSE Algorithm [IEEE TSP’ 11]: Block Coordinate Descent
• State-of-the-art optimality.

• Auxiliary variables.

• First order derivative condition for local optimality.

• Learning-related Methods
• Learning-only Approaches

• Learning-assisted Approaches
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Timeline for Learning-related Methods

TSP-DNN (IEEE TSP’ 17) 
Vanilla DNN, Supervised learning

Learning-only Approaches Learning-assisted Approaches

PCNets (IEEE JSAC’ 20) 
Ensembled DNN, Unsupervised learning IAIDNN (IEEE TWC’ 21)

Approximate matrix inversion in WMMSE.DDPG DQN (IEEE Access’ 21) 

HetGNN, PCGNN (IEEE TWC’ 21, 22)
Message Passing Graph Neural Networks

Supervised + unsupervised learning

GCNWMMSE (IEEE TWC’ 23)
Heuristically approximate matrix operations in WMMSE.

Degenerated SISO problems only.
Poor optimality on MIMO problems.
Efficient: Full parallel on GPU.

SOTA on optimality over all learning related 
approaches.
Inefficient: Serially update users.
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Can we keep both optimality and efficiency?

• We need to combine the two kinds of learning-related methods.

• What?
• We try to improve the learning-only method.

• Why?
• Efficiency is more important.
• Learning-assisted approaches are limited by the backboned algorithm (vanilla 

WMMSE).

• How?
• Observation: Existing learning-only methods are black-box.
• We try to learn from the SOTA non-learning algorithm (WMMSE) and the 

optimization problem itself.
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Learn from WMMSE: Structural Solution Update

• Q: Can we make a more white-box layer in learning-only model?

• Observation: In each iteration, WMMSE computation can be 
transferred into one-line form.
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Per Iteration Structural Solution Update

• Unrolling: 
• Sophisticated computations in   with two learnable parameter matrices 

(motivated by [Liu et al. ICML’ 23]).

• Modeling:
• Generate 𝐖𝐿 and 𝐖𝑅 from 𝐕 and 𝐇.
• Construct powerful neural network models.

𝐖𝐿 𝐖𝑅
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Dimension Expansion and Shrink in Learning-
Only Methods
• Observation: Benefits of solving problem in a higher dimensional space

• The problem is trivially solvable in a higher dimensional space.
• More transmitting antennas facilitates solvability: Use distinct antenna to serve each user.

• Increase number of learnable parameters in neural network.

• Workflow
• Round-trip (neural network) mapping: Get solution of original space.

Expansion
(NN) Mapping

Original solution 𝑽 A higher dimensional solution 𝑽′

Shrinking
(NN) Mapping
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Requirement of Round-trip Mapping

• Equivalence between 𝑽 and 𝑽′
• [Ideal] On optimality: Solution of 𝑽′ (<=) => solution of 𝑽

• Optimality of 𝑽′ is also non-deterministic (rely on training) in learning-only framework.

• [Relaxed] On feasibility: 𝑽′ is feasible (<=) => 𝑽 is feasible

Expansion
(NN) Mapping

Original solution 𝑽 A higher dimensional solution 𝑽′

Shrinking
(NN) Mapping

Learning-based 
method to "solve" 

𝑽′
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Existing Mapping Methods in Learning-only Framework

• Normalization after Neural Network Mapping
• Since the constraints are quadratic
• No equivalence between 𝑽 and 𝑽′

• Weakness
• No equivalence <=> Black-box model <=> 𝑽′ is infeasible.

• We propose a learnable unitary matrix
•  𝑽′ is infeasible - > 𝑽 is infeasible
• Shared among all iterations

Expansion
(NN) Mapping

Original solution 𝑽 A higher dimensional solution 𝑽′

Shrinking
(NN) Mapping

Learning-based 
method to "solve" 

𝑽′

Black-box NN
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Learn from Sum Rate Maximization Problem:
Learnable Unitary Matrix

• Lemma (Lemma 1 in paper): Any unitary matrix ensures feasibility of 
SINR maximization problem.
• Proved by von Neumann’s trace inequality.

• Workflow: with a learnable 𝑫

𝑯𝑏,𝑢𝑽𝑏,𝑢 = 𝑯𝑏,𝑢𝑫𝑫𝑯𝑽𝑏,𝑢, if 𝑫𝑫𝑯 = 𝑰, ∀𝑏, 𝑢 

𝑯′ = 𝑯𝑫
𝑽′ = 𝑫𝑯𝑽

Original solution 𝑽 
and 𝑯

A higher dimensional solution 𝑽′

𝑽 = 𝑫𝑽′

Learning-based 
method to "solve" 

𝑽′
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System Overview

• Two main modules:
• Update

• Dimension Transformation: Expand and Shrink

• Fixed-Number (𝑇) Iterations
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Models Construction: Overview

• Multi-agent System: 
• Users (equipment) are regarded as agents.

• Channel 𝐇 are shared among users.

• Feature selection from optimization problem:
• Sum rate maximization with per-cell power budget constraints

• For each user 𝑏, 𝑢, we choose 𝐕 and 𝐇𝐕.
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Encoder-Decoder Framework

• Different models for 𝐕 and 𝐇𝐕 features extractions
• Group features by physical meaning:

• Target, intra-cell interference, inter-cell interference, interference to intra-cell users, 
interference to inter-cell users.
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Decoder Model: Message Passing Neural Network

• A graph neural network on complete graph
• Explicit feature exchange among users.
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Overal Complexity Analysis

• Workflow
• Calculate all matrix multiplications: 𝐇𝐕 computation and neural networks.

• Basic result (after parallelism over all users): 𝒪 3𝑑 ∗ 𝑁𝑟 ∗ 𝑁𝑡
3

• 𝑑 is a hyperparameter (related to the width of neural networks), 
• 𝑁𝑟 𝑁𝑡 are numbers of receiving antenna (one user) and transmitting antenna (one base 

station), respectively.

• 𝑁𝑟 ≪ 𝑁𝑡

• Complexity of WMMSE: 𝒪 𝐵𝑈 2 ∗ 𝑁𝑡
3

• After parallelism: 𝒪 𝐵𝑈 ∗ 𝑁𝑡
3

• Improved efficiency: 𝒪 3𝑑 ∗ 𝑁𝑟 ∗ 𝑁𝑡
3 < 𝒪 𝐵𝑈 2 ∗ 𝑁𝑡

3

• 𝑁𝑟 ≪ 𝐵𝑈
• 𝑑 is set to be 2 in all simulations.
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Implementation and Simulation Construction

• Complex Neural Network
• Two models for real part and imaginary part

• Use zero-forcing scheme for initialization

• Competitors:
• WMMSE
• Learning-related baselines: 

• Two learning-assisted WMMSE
• One learning-only graph neural network model

• Environment configuration:
• Synthetic cellular network, randomly sampled user positions
• Randomly sampled channel with path loss
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Three Scenarios

• 𝐵: Number of base station

• 𝑈: Number of user

• 𝑁𝑡: Number of transmitting antenna

• 𝑁𝑟: Number of receiving antenna
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Results: Optimality

• Sum rate over WMMSE
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Results: Efficiency

• Speedup over WMMSE



Learnable Unitary Matrix on An Existing Work

• Backbone learning-assisted WMMSE: IAIDNN [IEEE TWC’ 21]
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Conclusion

• First learning-only approach for MIMO sum rate maximization.

• We propose two schemes:
• Structural update

• Dimension transformation

• Achievement:
• Up to 98% optimality.

• Up to 47x acceleration.
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Thank You!
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