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Abstract—Solving the sum rate maximization problem for
interference reduction in multi-cell multi-user multiple-input
multiple-output (MIMO) wireless communication systems has
been investigated for a decade. Several machine learning-assisted
methods have been proposed under conventional sum rate max-
imization frameworks, such as the Weighted Minimum Mean
Square Error (WMMSE) framework. However, existing learning-
assisted methods suffer from a deficiency in parallelization, and
their performance is intrinsically bounded by WMMSE. In con-
trast, we propose a structural learning-only framework from the
abstraction of WMMSE. Our proposed framework increases the
solvability of the original MIMO sum rate maximization problem
by dimension expansion via a unitary learnable parameter matrix
to create an equivalent problem in a higher dimension. We
then propose a structural solution updating method to solve
the higher dimensional problem, utilizing neural networks to
generate the learnable matrix-multiplication parameters. We
show that the proposed structural learning framework achieves
lower complexity than WMMSE thanks to its parallel imple-
mentation. Simulation results under practical communication
network settings demonstrate that our proposed learning-only
framework achieves up to 98% optimality over state-of-the-art
algorithms while providing up to 47× acceleration in various
scenarios.

I. INTRODUCTION

Multi-input and multi-output (MIMO) is a fundamental
technique in current and future wireless communication sys-
tems [1], where multiple base stations (BSs) and multiple user
equipment (UEs) transmit and receive data signals from each
other with multiple antennas. In downlink data transmission,
where signals are transmitted from the BSs to the UEs, one UE
may receive signals transmitted to other UEs, causing inter-UE
interference. A classical way to reduce such interference is to
solve a sum rate maximization problem under a power budget,
which requires beamforming design and transmit power alloca-
tion to maximize the total throughput of the UEs. However, the
MIMO sum rate maximization problem has been demonstrated
to be non-convex and NP-hard [1]. In the past decade, many
conventional algorithms have been proposed for MIMO sum
rate maximization, such as the zero-forcing precoding [2] and
the gradient projection method [3].

In terms of optimality, an iterative algorithm known as the
Weighted Minimum Mean Square Error (WMMSE) algorithm
[4] is widely regarded as the state-of-the-art (SOTA) method.
The WMMSE algorithm formulates an equivalent dual prob-
lem of the original MIMO sum rate maximization problem,
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by introducing two auxiliary beamforming variables. It then
applies the standard block coordinate descent (BCD) method
to iteratively update the auxiliary beamforming variables and
a power allocation variable. However, WMMSE suffers from
low efficiency as it generally requires a large number of
iterations to converge, especially when the numbers of users
and antennas are large [5]. Moreover, it is hard to accelerate
WMMSE using modern parallel-computing hardware such as
GPU since WMMSE requires serial variable updates.

Learning to optimize (L2O) has emerged as a promising
solution to various optimization problems, by leveraging mod-
ern machine learning methods to improve the solutions’ effi-
ciency and optimality. L2O can improve efficiency since many
matrix-multiplication-based methods, such as neural networks,
are hardware-acceleratable with GPU or TPU. Furthermore,
some studies on L2O theoretically show their optimality by
approximating sophisticated matrix operations with learnable
matrices [6]. Existing L2O works on MIMO sum rate maxi-
mization can be categorized as the learning-assisted approach
and the learning-only approach.

The learning-assisted approach utilizes learning-based
methods to approximate the time-consuming operations of
WMMSE. For instance, Schynol and Pesavento [5] approx-
imate the beamforming update steps in WMMSE with graph
convolutional neural networks. Motivated by Taylor’s expan-
sion of matrix inversion, Hu et al. [7] employ two learnable
parameter matrices to approximate each matrix inversion in
WMMSE, which reduces the computational complexity by
matrix multiplication. Both methods set the number of iter-
ations in WMMSE as a pre-defined constant. Their numerical
results achieve more than 90% optimality of WMMSE and
demonstrate salient speedup, especially for large-scale prob-
lems with many users and antennas. Nonetheless, the learning-
assisted methods inherit the same serial solving process of
WMMSE (or other conventional optimization algorithms).
Thus, the deficiency in parallelization still remains. In terms
of optimality, their performance is intrinsically upper bounded
by WMMSE.

The learning-only approach does not follow any existing
algorithms’ frameworks. It uses a black-box model to approxi-
mate the solutions directly. Various neural network techniques,
such as vanilla deep neural network (DNN) [8] and graph
neural networks (GNNs) [9, 10], have been employed to
solve the MIMO sum rate maximization problem. In [8],
distance-based metrics, such as mean-squared error and cosine



similarity, are employed to directly approximate the solutions
generated by a given conventional sum rate maximization
algorithm. In [9, 10], negative sum rates are constructed as
the loss function to achieve maximization. These learning-only
methods enable parallel implementation, achieving hundreds
to thousands of times acceleration with GPU [8, 9, 10].

However, all the above learning-only methods tackle a
degenerated version of the original sum rate maximization
problem, named the power allocation problem without beam-
forming design. Furthermore, these works focus on the single-
input single-output (SISO) scenario where the BS and the UE
are equipped with only one antenna. In this case, the decision
variable space degenerates from a large complex number ma-
trix space to a small real number scalar space. Applying their
solutions to the original matrix-based optimization problem
can lead to significant performance deterioration. For instance,
in our experiments, the method proposed in [10] only achieves
less than 20% optimality to WMMSE for MIMO sum rate
maximization.

In this work, we take advantage of both the learning-assisted
and learning-only approaches. We fix the number of solution
iterations to reduce the run time similar to the learning-assisted
models in [9, 10, 11]. Meanwhile, we propose a learning-only
structural framework and a solution updating method based on
the key insight drawn from the zero-forcing scheme [2].

The main contributions of this work are as follows:
• We propose an efficient structural learning framework

to solve the MIMO sum rate maximization problem.
Inspired by the WMMSE algorithm that constructs an
equivalent dual problem by introducing two auxiliary
parameter matrices, we introduce a learnable unitary
matrix to construct an equivalent higher dimensional
problem of the original sum rate maximization problem.
Such a learnable unitary matrix improves the solvability
of the original problem in high-dimensional space. After
obtaining a higher dimensional precoding solution, we
use the learnable unitary matrix to project it back to the
original solution space.

• We propose a learning-only structural solution updating
method to iteratively update our precoding solutions.
We abstract the WMMSE algorithm updates [4] into
two parameter matrices and construct a left and right
matrix-multiplication-based solution updating module.
Moreover, we propose a learning-based model named,
Encoder-Decoder model, to efficiently learn the parameter
matrices. We extract key features from the objective of
the MIMO sum rate maximization problem, and use a
message-passing neural network (MPNN) to coordinate
and aggregate the features of all UEs. Our proposed
solution updating method enables parallelization and
achieves significantly lower computational complexity
than WMMSE.

• Simulation results under practical communication net-
work settings show that our proposed learning-only
method achieves up to 98% optimality while significantly
improves the computational efficiency with up to 47×

speedup compared to the WMMSE algorithm. To the best
of our knowledge, our proposed learning-only method is
the first to achieve comparable optimality performance
and much better acceleration than the current SOTA
learning-assisted methods for MIMO sum rate maximiza-
tion.

The rest of this paper is organized as follows. In Section II,
we present the related work. Section III describes the system
model and the MIMO sum rate maximization problem. In
Section IV, we present our structural learning framework.
Then, we discuss our structural solution updating method with
computational complexity analysis in Section V. Simulation
results are presented in Section VI, followed by concluding
remarks in Section VII.

Notations: The Hermitian transpose, inverse, trace, and
determinant of a matrix A are denoted by AH , A−1, Tr(A),
and det(A), respectively. The Hadamard product between two
matrices A and B is denoted by A � B. A positive semi-
definite matrix is denoted as A � 0. The notation I denotes
an identity matrix. For a vector g, g ∼ CN (0, σ2I) means that
g is a circular complex Gaussian random vector with mean 0
and variance σ2I. The complex space is denoted as C.

II. RELATED WORK

A. Conventional Frameworks

The studies of sum rate maximization problem have kept
a decade. In the conventional optimization category, two
flourishing methods are zero-forcing [2] and WMMSE [4].
The zero-forcing method utilizes singular value decomposition
to construct orthogonal vectors to interference channel state
information (CSI) matrices as solutions, and the optimality is
achievable when there are enough BS antennas. The WMMSE
algorithm directly constructs an equivalent weighted sum-MSE
minimization problem with an MMSE receiver U and weight
matrix W for each decision variable V [4]. The problem is
convex in each of U, W, and V [4]. Then the BCD method
is sufficient to find a stationary solution [4].

B. Learning-Only Approach

Deep learning methods have emerged as a promising ap-
proach in recent years. One of the earliest approaches in 2018
[8] uses vanilla deep neural networks to solve a degenerated
SISO power allocation problem. This approach has achieved
over 90% optimality of the WMMSE algorithm while sig-
nificantly reducing the execution time by hundreds of times.
The model uses a black box architecture with an L2-norm
loss function to approximate the solutions of the WMMSE
algorithm by training. For the same power allocation prob-
lem, several machine learning techniques are employed, such
as assembling DNN and unsupervised learning [12], GNN
with on heterogeneous graph [13], message passing neural
networks with channel [9, 10], and reinforcement learning
algorithms like Deep Deterministic Policy Gradient method
and Deep Q-learning Network [14]. Notably, Shen et al. [9]
demonstrate that the permutation equivalent GNN yields a
distributed message passing algorithm, which is theoretically



representable of the WMMSE algorithm. However, in our
practice, such sophisticated neural network designs perform
poorly on MIMO sum rate maximization.

C. Learning-Assisted Approach

Learning-assisted unfolding methods for solving matrix
space optimization problems have been proposed in [5, 7, 11].
These works follow a consistent workflow that utilizes ma-
chine learning techniques to replace some components of a
given algorithm to improve efficiency. For example, using
recurrent neural networks to approximate the step size and
gradient vectors in gradient projection algorithm [11], using
multi-layer perceptions to approximate the Taylor decompo-
sition of matrix inverse in WMMSE [7], and using graph
convolutional neural networks to approximate the auxiliary
variable updating in WMMSE [5]. The SOTA work in [5] can
achieve 100% optimality and several times accelerations over
WMMSE. However, its efficiency is still limited by WMMSE
since solution variables are serially updated one after another.

III. MIMO SUM RATE MAXIMIZATION

We consider a multi-cell multi-user system with B BSs,
each equipped with Nt transmitting antennas. Each BS serves
U UEs, each is equipped with Nr receiving antennas. Let
B = {1, . . . , B} and U = {1, . . . , U}. The CSI between UE u
and BS b is denoted by matrix Hb,u ∈ CNr×Nt , b ∈ B, u ∈ U ,
and the corresponding precoding matrix (decision variable) is
denoted by Vb,u ∈ CNt×Nr . Denote the signal sent from BS b
to UE u as sb,u ∈ CNr×1. The received signal at UE u served
by BS b is given by

Hb,uVb,usb,u +
∑

ũ∈U,ũ6=u

Hb,uVb,ũsb,ũ︸ ︷︷ ︸
intra-cell interference

+
∑

b̃∈B,b̃ 6=b

∑
ũ∈U

Hb̃,uVb̃,ũsb̃,ũ︸ ︷︷ ︸
inter-cell interference

+ nb,u,
(1)

where the second term is the intra-cell interference caused
by signals sent from BS b to the other UEs served by BS b,
the third term is the inter-cell interference caused by signals
sent from all other BSs b̃ 6= b to all other UEs, and nb,u ∈
CN

(
0, σ2

ik
I
)

is the white Gaussian noise [4].
Our goal is to design the global precoding matrix V =

{Vb,u ∈ CNt×Nr} based on the global CSI H = {Hb,u ∈
CNr×Nt}, to maximize the sum data rate of all UEs, subject
to per-BS maximum transmit power limits P ∈ R. This
leads to the following multi-cell multi-user MIMO sum rate

maximization problem, given by

P : max
V

∑
u∈U

∑
b∈B

log2 det

(
I +

(
Hb,uVb,u

)(
Hb,uVb,u

)H
( ∑

b̃∈B,ũ∈U
(b̃,ũ) 6=(b,u)

(
Hb̃,uVb̃,ũ

)(
Hb̃,uVb̃,ũ

)H
+ σ2

b,uI
)−1)

s.t.
∑
u∈U

Tr
(
Vb,uV

H
b,u

)
≤ P, b ∈ B (2)

problem P is known to be non-convex, and NP-hard [1].

IV. STRUCTURAL LEARNING FRAMEWORK

In this section, we propose a general structural learning
framework to solve the MIMO sum rate maximization prob-
lem P. We first construct a higher dimensional problem by
matrix multiplications on a learnable unitary matrix. Such a
learnable unitary matrix improves the solvability of the origi-
nal MIMO sum rate maximization problem P by introducing
more learnable parameters in the framework. After obtaining
the solution in higher dimensional space (to be discussed in
Section V), we utilize the learnable unitary matrix to project
it back to the original solution space.

A. Higher-Dimensional Feasibility-Equivalent Problem

When the total number of receiving antennas is fixed, the
zero-forcing scheme tells that if more transmitting antennas
are available, the MIMO sum rate maximization problem is
more solvable since the BSs have more degrees of freedom to
cancel interference. Inspired by this, we first construct a higher
dimensional problem to the original MIMO sum rate maxi-
mization problem P by increasing the number of transmitting
antennas at each BS N ′t ≥ Nt. Denote {V′b,u ∈ CN ′

t×Nr}
as the new precoding variables in the higher dimensional
space. Let D ∈ CNt×N ′

t be a learnable unitary matrix with
DDH = I. The following lemma shows that for any feasible
precoding solution {V′b,u} to P in the higher dimensional
space, {DV′b,u} is a feasible precoding solution to P in the
original space.

Lemma 1. If {V′b,u, u ∈ U , b ∈ B} is a feasible solution to

P, i.e.,
∑

u∈U tr
(
V′b,uV

′
b,u

H
)
≤ P , then {Vb,u = DV′b,u ∈

CNt×Nr} is also a feasible solution to P.

Proof: From the trace cyclic property and the von Neu-
mann’s trace inequality [15], we have∑

u∈U
tr
(
Vb,uV

H
b,u

)
=
∑
u∈U

tr
(
DV′b,uV

′H
b,uD

H
)

=
∑
u∈U

tr
(
V′b,uV

′H
b,uD

HD
)
≤
∑
u∈U

tr
(
V′b,uV

′H
b,u

)
tr
(
DHD

)
=
∑
u∈U

tr
(
V′b,uV

′H
b,u

)
tr
(
DDH

)
=
∑
u∈U

tr
(
V′b,uV

′H
b,u

)
≤ P.

Utilizing the results in Lemma 1, instead of directly finding
the precoding solution to P, we introduce more learnable



parameters in our structural solution update framework to find
a precoding solution to P in a higher dimensional space. Note
that the learning ability of our framework also improves as the
number of learnable parameters increases.

With the equivalent solution construction method, we pro-
pose a general learning framework. As shown in Figure 1, start
from the original problem P to achieve initialization, we utilize
the learnable matrix D to construct a new higher dimensional
problem, named Dimension Expansion. We use a structural
solution updating method (to be introduced in Section V)
to solve the new problem. Then we project each iteration’s
solutions back to the original space of P with D.

B. Dimension Expansion and Shrink

We construct a virtual new problem by increasing the
dimensionality of CSI {H′b,u} via the learnable unitary matrix
D. As introduced in Section IV-A, we obtain the solution of
P in its original solution space by multiplying the learnable
unitary matrix D with the higher dimensional solution {V′b,u},
i.e., {DV′b,u}.

In the objective function of P, every Vb,u is multiplied
with a channel matrix, for example Hb,uDV′b,u. Have another
look at Hb,uDV′b,u, we combine Hb,uD and regard it as a
new channel matrix, denoted as H′b,u. Hence, D increases the
dimensionality of P and gets a higher dimensional problem.
Denote the new global CSI as {H′b,u}, we calculate {H′b,u}
by

H′b,u = Hb,uD, u ∈ U , b ∈ B. (3)

For the initialization of the new problem, we propose to
initialize from the feasible solution of the original problem
P. Denote the initial solution of the new problem as {V0′

b,u}.
Suppose we have an initial solution {V0

b,u} to P, we utilize the
learnable unitary matrix D to expand it to a higher dimensional
space by

V0′

b,u = DHV0
b,u, u ∈ U , b ∈ B. (4)

There are many strategies to generate an initial solution to
the original problem P, such as the normalized maximum-
ratio combining method [5] and the zero-forcing scheme [2].
Then, we construct a higher dimensional problem with {H′}
and {V0′}. However, since DHD is not unitary by nature,
the calculation will violate the power constraints. We add a
normalization process to protect the violated solutions to the
boundary of the transmit power constraints of P by

Vb,u =
Vb,u∑

u∈U

√
tr(Vb,uVH

b,u)
·
√
P , u ∈ U , b ∈ B. (5)

After solving the problem in higher dimensional space, we
apply our proposed feasible solution construction method in
Section IV-A to construct a feasible solution to P by

Vb,u = DV′b,u, u ∈ U , b ∈ B. (6)

C. Solving Problem in Higher Dimensional Space
After the Dimension Expansion, we solve an equivalent

higher dimensional problem. Since our learnable matrix D
should be trained with a specific algorithm, any differentiable
methods can be employed. Both conventional algorithms and
learning-based are applicable. For example, a learning-assisted
WMMSE algorithm named GCNWMMSE [5] is a feasible
learning-based method. Non-differentiable methods, such as
the zero-forcing scheme [2], can not be applied in our frame-
work since the desired gradient value at singular vectors with
zero singular values reaches infinity.

In the next section, we propose a structural solution updating
method with higher efficiency than WMMSE. We utilize our
proposed method as the update module to improve the solution
in higher dimensional space for T iteration. In an iteration t,
we propose an Encoder-Decoder model that takes the CSI H′

and solution of the last iteration V′t−1 (V′0 for first iteration)
as the input to generate two learnable parameter matrices WL

and WR. The Encoder-Decoder model will be introduced
later. We update the solution as Vt = Wt

L · Vt−1 ·Wt
R.

After each iteration, we apply the normalization method to
keep the solution feasible.

V. STRUCTURAL SOLUTION UPDATING METHOD

In this section, we present details of our structural solution
updating method, which introduces two learnable parameter
matrices to approximate the solution to P. Our encoder-
decoder extracts key features from the objective of P to train
a MPNN for updating the two learnable parameter matrices.
We further show that the proposed structural solution updat-
ing method achieves a lower computational complexity than
WMMSE after parallelization.

A. Left and Right Learnable Parameter Matrices
Liu et al. [6] derive a solution framework for gradient

descent-based LASSO regression problem from the first-order
optimal condition on convergence. Then, a simple learnable
parameter matrix generated by a long short-term memory
(LSTM) model is employed to approximate sophisticated
matrix operations. Our structural solution updating framework
differentiates the one in [6] in several aspects. First, our
framework introduces two tailored (left and right) learnable
parameter matrices inspired by the WMMSE updates for
solving P. Second, we efficiently extract the key features from
the objective function of P. Third, we use a more powerful
Encoder-Decoder model to update our learnable parameter
matrices.

We first introduce the classic WMMSE solution updates,
which inspire us to adopt two learnable parameter matrices to
approximate the solution to P. From Theorem 1 in [4], we can
derive the following equivalent problem of P by introducing
two auxiliary matrices U = {Ub,u} and W = {Wb,u � 0}:

min
W,U,V

∑
u∈U

∑
b∈B

(Tr (Wb,uEb,u)− log det (Wb,u))

s.t.
∑
u∈U

Tr
(
Vb,uV

H
b,u

)
≤ P, b ∈ B
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Fig. 1: Training workflow of our proposed model.∑
(b,u)

HH
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H
b,uHb,u + µ∗kI

−1 HH
b,u

∑
(b,u)

Hb,uVb,uV
H
b,uH

H
b,u + σ2

b,uI

−1 Hb,u︸ ︷︷ ︸
1©

Vb,u Wb,u︸ ︷︷ ︸
2©

, u ∈ U , b ∈ B.

(10)

where

Eb,u =
(
I−UH

b,uHb,uVb,u

) (
I−UH

b,uHb,uVb,u

)H
+

∑
b̃∈B,ũ∈U

(b̃,ũ)6=(b,u)

Ub,uHb̃,uVb̃,ũV
H
b̃,ũ

HH
b̃,u

UH
b,u + σ2

b,uU
H
b,uUb,u.

Then, {Ub,u}, {Wb,u}, and {Vb,u} are sequentially up-
dated using the BCD method as follows:

Ub,u = (
∑
(b,u)

Hb,uVb,uV
H
b,uH

H
b,u + σ2

b,uI)
−1Hb,uVb,u, (7)

Wb,u = (I−UH
b,uHb,uVb,u)−1, (8)

Vb,u =
( ∑
(b,u)

HH
b,uUb,uWb,uU

H
b,uHb,u + µ∗kI

)−1
HH

b,uUb,uWb,u, (9)

where µ∗k is the optimal solution of the Lagrangian multiplier.
Note that the BCD method sequentially updates Ub,u,

Wb,u, and Vb,u in each iteration. In contrast, our solution
directly learns and updates Vb,u in parallel among UEs to
save the run time. Substitute Ub,u in (7) and Wb,u in (8) to
the equation of Vb,u in (9), we have a complete formulation
of Vb,u-update in equation (10). Theorem 1 in [6] shows
that matrix operations are representable by a single parameter
matrix as a preconditioner with some constraints. Hence, we
utilize a left learnable parameter matrix WL to represent
the operations in formula 1© before Vb,u and another right
learnable parameter matrix WR after Vb,u to represent the
operations in formula 2©. We then have a new learnable
Vb,u-update formulation WLVb,uWR. Other algorithms are
also representable with such formulation [6]. For example,
we can update Vb,u via gradient descent by letting WL =
(I + α∇f(Vb,u)V+

b,u) and WR = I, where α is a gradient
descent step size, ∇f(Vb,u) is the gradient of Vb,u in P, and
V+

b,u is the pseudoinverse of Vb,u.
Although WMMSE is guaranteed by the classic convergence

theory of the BCD method to converge to a stationary point

of the original sum rate maximization problem P, its iterative
and serial updates are computationally costly. Modern parallel
computing toolkits, such as CUDA [16], support matrix opera-
tion accelerations and can execute independent calculations in
parallel [17]. However, in WMMSE, Ub,u, Wb,u, and Vb,u

are serially updated. We propose an efficient learning-based
Encoder-Decoder model in the next section.

B. Encoder-Decoder Model

Several efficient learning-only architectures using modern
neural networks have been proposed [9, 10, 13]. For instance,
Shen et al. [10] propose a communication-based feature trans-
mission method among the UEs and the BSs using several
MPNNs [18]. However, it requires massive communications
on high dimensional feature vectors and redundant CSI {H}
among UEs. We employ the Encoder-Decoder structure to
achieve an efficient model with fewer communications, where
we only transmit {V} before encoding and the feature vectors
with refined information after encoding in each iteration.
Moreover, we apply an extra communication to share {H}
among UEs.

The overall architecture of our proposed Encoder-Decoder
model is shown in Figure 2. In the following, we introduce
the detailed workflow from the perspective of one UE (b, u).
The encoder first takes the input features from the objective
function in P and outputs a feature vector with integrated
information from the V and HV models (to be introduced in
Section V-C). Then, the decoder exchanges the feature vector
with an MPNN and combines the feature of UE (b, u) and the
features of all other UEs. After that, we use two linear models
to generate WL and WR separately.

Note that the Encoder-Decoder model is constructed as a
multi-agent system with message passing and aggregation,
where the solution updates of different UEs are executed in
parallel. We further analyze the computational complexity of
our solution and compare it with WMMSE in Section V-D.
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C. Feature Extraction Module Design
Our encoder is under a hierarchical architecture, employing

several linear models to encode the raw channel and precoding
information. Two kinds of features are selected from the
objective function of P, i.e., the V feature and the HV feature.
We eliminate the {(HV)(HV)H} feature from P to improve
efficiency. The output dimensions of encoding models are set
as multiples of a fixed integer of the corresponding inputs. For
example, the output dimensions for each HV feature module
4N2

t is four times its input dimension in a flattened vector
shape. The expanding ratio is set as two for the V feature
module, i.e., the output dimension 2NtNr is two times its
input dimension NtNr.

Note that the output feature vectors are the concatenation
of the two feature modules’ output vectors. Such an encoding
process enables parallel feature extraction among all UEs. The
output of the encoder is feature vectors for all UEs. In the
following, we introduce the two feature module designs and
the MPNN architecture from the perspective of a single UE
(b, u).

a) V Feature Module: As in shown Figure 3, we choose
three types of V:
• Precoding Vb,u, the desired precoding at BS b to serve

UE u.
• Intra-cell precoding {Vb,ũ|ũ ∈ U ; ũ 6= u}, the precoding

at BS b to other UEs ũ ∈ U .
• Inter-cell precoding {Vb̃,ũ|ũ ∈ U , b̃ ∈ B, b̃ 6= b}, the

precoding at all other BSs b̃ ∈ B to serve all other UEs
(b̃, ũ) ∈ B,U .
b) HV Feature Module: We take a similar workflow to

select features for HV, as shown in Figure 4. We consider two
characteristics of each UE, i.e., a selfish UE that only considers
information related to the data rate itself and a moral UE that
further considers its effect on other UEs. In total, there are
five types of HV:
• Hb,uVb,u, the desired signals transmitted from BS b to

serve UE u.
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Fig. 4: HV models’ architecture.
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Fig. 5: Message Passing Neural Network’s architecture.

• Intra-cell interference {Hb,ũVb,ũ|ũ ∈ U , ũ 6= u}, the
signal transmitted from BS b to other UEs ũ ∈ U .

• Inter-cell interference {Hb̃,uVb̃,ũ|ũ ∈ U , b̃ ∈ B, b̃ 6= b},
the signal transmitted from all other BSs b̃ ∈ B to serve
all other UEs (b̃, ũ) ∈ B,U .

• Interference to intra-cell UEs {Hb,ũVb,u|ũ ∈ U , ũ 6= u},
the signal transmitted from BS b to UE u that interfering
other UEs ũ ∈ U .

• Interference to inter-cell UEs {Hb̃,ũVb,u|ũ ∈ U , ũ 6= u},
the signal transmitted from BS b to UE u that interfering
other UEs ũ ∈ U at BSs b̃ ∈ B.
c) MPNN Structure: In the encoder, we mix all related

information of one UE in P with the above two feature extrac-
tion models. However, in the MIMO sum rate maximization
problem P, all UEs compete with each other for beamforming
and power resources to achieve a better throughput. An explicit
coordinative strategy is necessary for the precoding solution to
converge. On the contrary, the selfish single-user water-filing
method without coordination fails to converge [19].

We facilitate coordination by utilizing an MPNN [18].
Our MPNN architecture is illustrated in Figure 5. From the
perspective of a single UE, the MPNN collects the feature
vectors from all other UEs, i.e., both intra-cell UEs and inter-
cell UEs. Then, it aggregates the features with a mean-pooling
method. Moreover, we utilize two fully connected layers with a
GELU activation function to enhance such feature aggregation



by learning. In the output layer, we construct two linear models
to take the feature vectors of the encoder output as input
and generate two vectors, respectively. We reshape the output
vectors to generate the parameters of our proposed workflow,
i.e., left matrix WL and right matrix WR.

D. Computational Complexity Analysis

In this section, we demonstrate the efficiency of our pro-
posed structural solution updating method by computational
complexity analysis. We show that our method achieves lower
computational complexity than WMMSE after parallelization.

As introduced in Section V-B, our structural solution updat-
ing method is based on neural networks. Therefore, we analyze
the computational complexity of matrix multiplications and
activation functions. As introduced above, our framework
processes all the UEs’ features in parallel. Such parallel
computing reduces the time-consuming of multiple UEs to a
unit computational complexity of one UE [17].

For the GELU activation function GELU(V) = V ∗Φ(V),
where Φ is the Cumulative Distribution Function of Gaussian
Distribution [20], its empirical complexity is O(1). Counting
the number of utilization in three modules in Figure 3, 4, and 5,
the overall complexity is O(10). Then, we calculate the matrix
multiplication complexities, including the HV calculation in
feature pre-processing, all matrix multiplications in neural
networks, and the calculation of WLVWR. The results are
listed in Table I.

We directly calculate the complexities of HV calculation in
pre-processing period and complexities of WLVWR in the
end of each iteration as O(NtN

2
r ) and O(N2

t Nr + NtN
2
r )

respectively. Since processing multiple UEs within the neural
network model is also concurrently executed, we count the
complexity of one execution after such parallelization. For
example, Linear 2 in V model of Figure 3 encodes the intra-
cell UEs’ {Vb,ũ} in parallel. The time-consuming is equivalent
to encoding one Vb,ũ.

As introduced in Section V-C, for the V feature module
and HV feature module, we set the output dimensions to be
integer multiples of their input dimensions. We denote the
integers for V and HV as d1 and d2. For linear models 1, 2,
and 3 in the V model, the input data is the flattened feature
vector of V. The overall complexity is O(3d1N

2
t N

2
r ). For five

linear models in the HV model, the input data is the flattened
HV. The overall complexity is O(5d2N

4
r ).

In the MPNN module, we take the concatenated feature
vector of all outputs of V model and HV model and generate
a feature vector with the same dimension as output. Notably,
we have two linear models within the MPNN. The overall time
complexity is O(18d21N

2
t N

2
r + 60d1d2NtN

3
r + 50d22NtN

4
r ).

By summing up all results and merging similar terms in
Table I, we get our proposed model’s overall time complexity
of one iteration as

O
(
(3d1Nr)N3

t + (18d21N
2
r + 5d2N

2
r + 3d1N

2
r +Nr)N2

t

+ (60d1d2N
3
r + 3d1N

3
r + 2N2

r )Nt + (50d22 + 10d2)N4
r

)
.

(10)

From [4], we get WMMSE’s complexity of one iteration as

O
(
(BU)2N3

t +(BU)2NrN
2
t +(BU)2N2

rNt+(BU)N3
r

)
. (11)

We focus on the Nt terms and compare the coefficients of
different terms. Our model achieves a constant time complex-
ity increase with only respect to the number of receiving anten-
nas. However, the time complexity of WMMSE exponentially
increases with the number of BS and UE. Take the example
of 2 BSs, 8 UEs, Nt = 8, and Nr = 2, the WMMSE has a
O (172160) complexity while our model achieves O(64212)
complexity with d1 = 2, d2 = 4. Our model achieves 2.7×
speedup in this case. Considering a large-scale problem with
2 BSs, 32 UEs, Nt = 32, and Nr = 2, the speedup will
increase to 92× with d1 = 2, d2 = 16.

VI. SIMULATION

In this section, we numerically evaluate our proposed struc-
tural learning framework in section IV and our proposed solu-
tion updating method in section V. We conduct experiments on
Python 3.9 and PyTorch 1.10.0 on Ubuntu 18.04 with 128GB
memory, Intel Xeon Gold 5320 CPU @ 2.2 GHz, and one
NVIDIA RTX 3090 GPU.

A. Simulation Configurations
We construct three scenarios of problem P with different

numbers of UEs U and different numbers of transmitting
antennas Nt, including small scale, moderate scale, and large
scale. The detailed settings are shown in Table II. We split
the datasets with a ratio of 8:1:1 for training, evaluation, and
testing. The evaluation dataset is for high-parameter tuning.
We evaluate performance on the testing set.

To generate data (CSI {Hb,u} and σb,u in P), we follow
the configurations outlined in the latest WMMSE paper [21].
We first generate the coordinates of BSs in a cellular network.
We set the first BS at the origin as the central BS. Then,
we set the following BSs at the center of cellulars around
the central BS. We consider two scenarios with distinct inter-
cell interference levels based on inter-BS distances. We set
the inter-BS distance for the small inter-cell interference
scenario as 2.8 km [21]. For the scenario with large inter-
cell interference, we set it as 0.5 km. We randomly sample U
coordinates within the [0.1, 0.3] km range of each base station
as the positions of user equipment.

We follow [21] to calculate {Hb,u}. We randomly sample
UE coordinates within the range of 0.1 km to 0.3 km to the
BS that serves it. We apply a path loss model upon circularly-
symmetric standard complex Gaussian distribution to generate
{Hb,u}. Then, we calculate the distance between UE (b, u)
to BS b as ωb,u and path loss attenuation is calculated by
Gb,u = 128.1+37.6 log10(ωb,u)[dB]. The path loss is linearly
applied by 10−Gb,u/20 �Hu,b.

We set the noise power for each BS to be correlated with
target CSI Hb,u, u ∈ U with a constant signal-to-noise value
(SNR). The noise power on each BS b is calculated by σ2

b =

10
1
U

∑
u log10

1
Nr
‖Hb,u‖2F × 10−

SNR
10 [21], where the SNR is set

as 5[dB]. The maximum transmit power limit in P is set as
P = 10[W].



TABLE I: Layer wise matrix multiplication complexities of one iteration in our structural solution updating method.

Module & Operation Input Dimension Output Dimension Time Complexity
HV − − O(NtN2

r )
V Linear 1 2 3 Nt ∗Nr Nt ∗Nr ∗ d1 O(3d1N2

t N
2
r )

HV Linear 1 2 3 4 5 Nr ∗Nr Nr ∗Nr ∗ d2 O(5d2N4
r )

MPNN Module Nt ∗Nr ∗ d1 ∗ 3 +N2
r ∗ d2 ∗ 5 Nt ∗Nr ∗ d1 ∗ 3 +N2

r ∗ d2 ∗ 5 O(18d21N2
t N

2
r + 60d1d2NtN3

r + 50d22N
4
r )

Linear WL Nt ∗Nr ∗ d1 ∗ 3 +N2
r ∗ d2 ∗ 5 Nt ∗Nt O(3d1N3

t Nr + 5d2N2
t N

2
r )

Linear WR Nt ∗Nr ∗ d1 ∗ 3 +N2
r ∗ d2 ∗ 5 Nr ∗Nr O(3d1NtN3

r + 5d2N4
r )

WL ·V ·WR − − O(N2
t Nr +NtN2

r )

TABLE II: Scenarios Settings

Properties Small Scale Moderate Scale Large Scale
B 2 2 2
U 4 8 16
Nt 8 16 32
Nr 2 2 2

Data Size 100,000 120,000 180,000

B. Implementations

Since the CSI matrices {Hb,u} and the precoding matrices
{Vb,u} in problem P are in complex domain. We implement
complex-number neural networks based on an open-source
code base developed in [22]. We implement two linear models
for each complex-number tensor for its real and imaginary
parts. We follow the complex number algebra to manipulate
the outputs, feeding the input tensor’s real and imaginary
parts into the ‘real’ model and summing up their outputs as
real parts. We use a similar method to generate the output’s
imaginary part by the ‘imaginary’ model. In our structural
framework, we utilize one structural solution updating model
to update {Vb,u} for five iterations.

In our structural solution updating model, we incorporate
the constant parameter σ into H to avoid superfluous inputs
in neural networks. Based on the noise power configuration
in section VI-A, the UEs from the same BS have an identical
noise power value. We use this value to normalize each Hb,u

on the same base station by Hb,u/σb. This manipulation keeps
the same objective value in P and slightly increases the value
of Hb,u to avoid numeric overflow.

We evaluate the performances of following methods:

1) StructualMPNN, our proposed model with the structural
framework and structural solution updating method. We
train our model for 400 epochs. We set different values
for the multiplier d1 in the V feature module and the
multiplier d2 in the HV feature module. They are set
as 2 and 4 for small-scale and moderate-scale scenarios
and 2 and 16 for the large-scale scenario. We run five
iterations and share parameters among them.

2) WMMSE [4], SOTA conventional optimization algo-
rithm. We set the stopping threshold to 0.01 and the
max iterations to 50. We use a zero-forcing scheme and
identical power allocation method to get initial {Vb,u}.

3) GCNWMMSE [5], SOTA learning-assisted WMMSE. It
utilizes graph convolutional networks (GCN) to approx-
imate weight {Wb,u} calculation and precoding {Vb,u}
calculation. However, the official implementation only

utilizes GCN to approximate the inversion in {Vb,u},
which is almost WMMSE.

4) IAIDNN [7], learning-assisted WMMSE. It utilizes learn-
able parameter matrix to approximate matrix inversion.

5) PCGNN [10], an MPNN-based learning-only method.
Note that the original model is only for SISO power allo-
cation. We implement a MIMO version model following
the HetGNN model in [10]. We add an extra message-
passing flow from UEs to BSs. The overall message-
passing flow is UEs → BSs → UEs → UEs.

6) StructualMPNN-B. We replace our proposed left-right
matrix-multiplication-based solution updating method
with a black-box neural network.

7) StructualMPNN-O. We remove our proposed learnable
unitary matrix, where we directly solve the original
problem P with our structural solution updating method.

We implement GCNWMMSE and IAIDNN with 32-bit
float numbers and train them for 100 epochs, which spends
a similar time cost to training our model for 400 epochs. Both
models update {Vb,u} for seven iterations and use different
parameters in different iterations. We set the loss function as
the summation of sum rates in all iterations. The mini-batches
for training our model in three scales are 256, 512, and 512.
The basic training configurations are in Table III.
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Fig. 6: Empirical cumulative distribution function of sum rate
over WMMSE.



TABLE III: Training Configurations

Item Value
Optimizer AdamW [23], momentum: [0.9, 0.999]

Initial Learning Rate 0.001
Learning Rate Decay Cosine, minimal: 0.00001

Weight Decay (L1-norm) Rate 0.01

TABLE IV: Sum rate over WMMSE.

Models Small Moderate Large
StructuralMPNN 98.6% 96.9% 96.9% 95.7% 93.0% 91.5%
GCNWMMSE[5] 100.4% 100.5% 100.2% 100.5% 100.2% 100.3%
IAIDNN[7] 93.2% 94.0% 91.2% 87.9% 92.0% 89.7%
PCGNN[10] 12.7% 12.7% 6.5% 6.5% -
StructualMPNN-B 58.7% 60.7% 46.9% 48.7% -
StructualMPNN-O 88.3% 86.8% 78.8% 78.6% -

C. Overall Optimality and Efficiency Comparison

We first compare the sum rate yielded by our method with
WMMSE and other baselines. We plot the empirical cumula-
tive distribution functions of the sum rates on the testing sets.
As shown in Figure 6, our methods are close to WMMSE.
We further collect the sum rates of different methods over
the sum rates of WMMSE. As listed in Table IV, in small-
scale scenarios, our methods achieve up to 98% optimality
of WMMSE. Although our method is slightly worse than
GCNWMMSE on accuracy, its efficiency performance shown
below significantly outperforms all baselines. Moreover, the
deficiencies in StructuralMPNN-B and StructuralMPNN-O
demonstrate the effectiveness of our design. The learning-only
PCGNN for SISO fails to solve the MIMO problem.

To evaluate the empirical efficiency of our proposed method,
we quantify the execution time of serially solving one hundred
randomly generated problems P with different CSI {H}. We
collect the time costs of solving the problems on CPU and
GPU and normalize them by the time costs of WMMSE to get
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TABLE V: Speedup over WMMSE on CPU.

Scale: Small Moderate Large
Interference: Small Large Small Large Small Large
StructuralMPNN 3.16 4.21 4.5 4.2 6.62 6.83
GCNWMMSE[5] 0.76 1.04 1.16 1.07 3.27 3.33
IAIDNN[7] 1.01 1.39 1.47 1.36 4.04 4.12

TABLE VI: Speedup over WMMSE on GPU.

Scale: Small Moderate Large
Interference: Small Large Small Large Small Large
StructuralMPNN 3.11 4.26 8.45 7.77 46.82 47.85
GCNWMMSE[5] 0.39 0.55 0.61 0.57 1.66 1.71
IAIDNN[7] 0.57 0.8 0.82 0.77 2.22 2.19

the relative acceleration over WMMSE. The results on CPU
and GPU are shown in Table V and Table VI. Our proposed
method outperforms GCNWMMSE and IAIDNN, achieving
47× acceleration on GPU. Although learning-assisted algo-
rithms achieve 100% optimality of WMMSE, they suffer
low efficiencies on small-scale problems, whose performance
deteriorates on GPU.

We further compare our proposed method with the truncated
WMMSE algorithm. We run WMMSE for six iterations. The
sum rates achieved by our method outperform WMMSE by
3.7% in small scale and 2.1% in moderate scale. Time costs
are shown in Figure 7. Our method achieves around 1.1×
acceleration on CPU and around 1.5× acceleration on GPU.

We further evaluate our proposed learnable unitary matrix
in Section IV-A over other algorithms. We add our proposed
learnable unitary parameter matrix to the IAIDNN [7]. We
jointly train our learnable unitary matrix with IAIDNN. The
sum rate curve of the evaluation set during training is shown
in Figure 8, where our structural learning framework leads to
better convergence than the original IAIDNN.

VII. CONCLUSION

In this paper, we propose a structured learning-only frame-
work to solve the multi-cell multi-user MIMO sum rate
maximization problem. We propose a learnable unitary matrix
to construct an equivalent higher-dimensional problem by
learning. The learnable unitary matrix increases the solvability
of the sum rate maximization problem. Our experimental
results demonstrate that a learning-assisted WMMSE algo-
rithm [5] can be improved to get faster convergence in training.
Moreover, we propose another structural solution-updating
method, where we make an abstraction of WMMSE [4] and
utilize two learnable matrices to update each precoding in
the left-right matrix-multiplication form. We further propose
an Encoder-Decoder neural network model to generate such
two learnable parameter matrices by learning. We propose
several models to encode different features from the objective
function and utilize an MPNN to achieve UE coordination.
We demonstrate that our model is more efficient than the
solution updating of WMMSE. We evaluate our proposed
methods under various communication network settings. Our
experimental results show up to 98% optimality of WMMSE
and up to 47× acceleration over WMMSE.
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