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Abstract

Network virtualization is one of the fundamental building blocks of cloud

computing, where computation, storage and networking resources are shared

through virtualization technologies. However, the complexity of virtualization

exposes additional security vulnerabilities, which can be taken advantage of

by malicious users. While traditional network security technologies can help

in virtualized environments, we argue that it is cost-effective to isolate virtual

resources with high security demands from the untrusted ones.

This paper attempts to tackle the security issue by offering physical isolation

during virtual network embedding, the process of allocating virtual networks on-

to physical nodes and links. We start from modelling the security demands in

virtualized environments by analysing typical security vulnerabilities. A sim-

ple abstracted concept of security demands is defined to capture the variations

of security requirements, based on which we formulate security-aware virtual

network embedding as an optimization problem. The proposed objective and

constraint functions involve both resource and security restrictions. Then, two

heuristic algorithms are developed to solve this problem with splittable or un-

splittable virtual links, respectively. Our simulation results demonstrate their
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efficiency and effectiveness.
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1. Introduction

Network virtualization is one of the most important technologies for cloud

computing. Infrastructure-as-a-Service providers exploit virtualization tech-

nologies to enable efficient utilization of computing and storage resources. It is

also considered a key technology to accelerate innovations and to provide more

stable services, by enabling new protocols and topologies to be rapidly imple-

mented upon existing network infrastructures [1]. For example, many research

testbeds rely on network virtualization to experiment new architectures [2].

Making efficient use of the substrate resources in virtualization requires effec-

tive techniques for virtual network embedding [3]. Virtual networks are usually

abstracted as an undirected graph, in which nodes represent Virtual Machines

(VMs) and links represent virtual network paths. Virtual network embedding

is essentially a resource allocation problem, where a new virtual network, with

constraints on the virtual nodes and links (e.g., VM computation resource de-

mands and dedicated link bandwidth), is mapped onto capable physical nodes

and paths in the substrate network. Because of the combination of node and

link constraints, and the diversity of virtual topologies, virtual network embed-

ding is NP-hard [4], and many heuristic and meta-heuristic algorithms have

been developed for specific formulations of the problem.

In this paper, we study virtual network embedding from a different per-

spective. We consider security, which is an important, yet largely overlooked

aspect in the literature. To protect all virtual networks from potential threats

and to guarantee information confidentiality and integrity, in many cases user-

s have specific security demands and requirements that have to be satisfied.

These requirements are two-fold. On the one hand, virtual networks need to
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be embedded onto physical nodes and links with a qualified set of protection

mechanisms. For example, each VM of a virtual network must be allocated

onto an end system with qualified firewalls, certain data encryption function-

s, etc. Security requirements intuitively make the problem even more difficult

due to the additional complexity of considering network resource sharing and

vulnerability of current virtualization architectures. On the other hand, studies

on virtualization technologies [5] show the possibility of attacks among VMs

hosted on the same substrate. We show that it is necessary to offer additional

physical isolation between trusted and untrusted virtual resources. However,

to the best of our knowledge, there is little work that focuses on the security

aspect of virtual network embedding thus far.

In order to make virtual network embedding security-aware, we make three

concrete contributions. First, we propose a taxonomy of abstractions to properly

model the security demands of virtual networks. A concept of security level is

introduced to capture the availability of different protection mechanisms in the

substrate. Then, the security demand of a virtual node or link is expressed in

terms of security levels, and can be satisfied with physical resources that can offer

the same or a higher security level. This simple abstraction is general enough

to embrace many distinct forms of security mechanisms and requirements.

Second, we develop an optimization framework for security-aware network

embedding, by considering both the resources and security demands of virtual

networks. We present three objective functions focusing on three different major

concerns of network operators: (i) the ratio of virtual networks being success-

fully embedded, (ii) the long-term revenue and (iii) the revenue to cost ratio

of the embedding operations, respectively. Moreover, apart from resource con-

straints, such as node computation capacity and link bandwidth consumptions,

we propose the security constraints, based on the analysis of vulnerabilities in

the current virtual network architecture.

Third, we propose two novel heuristic algorithms to solve the security-aware

network embedding problem. Given the conventional embedding formulation

without security constraints is NP-hard, our problem with security constraints is
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also NP-hard. Also, in practice with economical concerns, some virtual networks

may allow to split their virtual links [6], i.e., having several physical paths to

jointly satisfy its bandwidth needs. This relaxation of link mapping constraints

offers operators more flexibility.

Our two algorithms are designed for practical cases where splittable links are

applied or forbidden, respectively. Specifically, the algorithms are both based on

the same heuristic. The notion of the heuristic is to estimate the possibility and

capability of each physical node to host a given virtual node and its outgoing

bandwidth resources. It involves security satisfaction and node interconnection

relationship in the iterative computations. The difference between these two

algorithms is the coordination between node and link mapping. One algorithm

simplifies the problem by decoupling the node mapping and the link mapping

completely, which is known as an uncoordinated mapping [1] in the line of re-

search [7, 8, 9, 10]. We further argue that the uncoordinated method simplifies

the complexity at the cost of physical resource utilization, especially in cases

where virtual links are unsplittable. The other algorithm is proposed to address

this issue. Using the same heuristic, it integrates node and link mappings.

Numerical simulations indicate that our algorithms are both efficient and

effective. The uncoordinated algorithm works well where virtual networks allow

splittable links, with quite low computation complexity. The coordinated algo-

rithm, on the other hand, can achieve high physical resource utilization with

higher execution time, even when all virtual links are unsplittable. Synthesizing

them is a practical solution in large-scale real-time virtualization systems.

The rest of the paper is organized as follows. Sec. 2 summarizes related

works in the literature. In Sec. 3, the security threats and requirements of

virtual networks are discussed. Then, we introduce our abstraction of security

demands and formulation of the security-aware embedding problems. Sec. 5

proposes our algorithms and Sec. 6 discusses the simulation results. Finally,

Sec. 7 concludes the paper.
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2. Related Works

Virtual Network Embedding Problems As a resource allocation prob-

lem, it basically applies to various network systems with distinct environment

settings. In these cases, the formulation of the virtual network embedding prob-

lem will be slightly different with specific objectives or constraints. For example,

[11] and [12] represents the early attempts for virtual network embedding in the

optical and wireless domain, respectively. Soualah et al. study the problem in

the cloud backbone scenario [13]. Moreover, to apply the technology to systems

in practice, virtual network embedding with loosed or additional constraints are

studied. Yu et al. in [6] propose a seminal algorithm that enables link splitting

and migration. [14] studies a practical case where a virtual node can be mapped

onto several substrate nodes. Su et al. in [10] focus on the energy-aware virtual

network embedding problem. Cai et al., in [7], focus on redeploying virtual

resources and minimizing the upgrading cost in the scenario of evolving net-

works. [15] looses the constraints in a more practical way, considering also the

time-varying nature of the amount of demanded resources.

Virtual Network Embedding Algorithms A rich literature exists for

virtual network embedding. Most work focuses on the general embedding prob-

lem, with a similar problem formulation. These proposed algorithms are usually

heuristic or meta-heuristic [1], which can be categorized into two major lines.

One line of work simplifies the problem by decoupling the node and link em-

bedding process, such as in [6, 9, 14, 16, 17]. The other line, on the other

hand, employs special tricks in modeling or designing heuristics to coordinate

the node mapping and link mapping stages. The representative ones include

[18, 19, 20, 21], etc.

Security in Virtual Networks Security constraints for virtual network

embedding have been briefly discussed in the literature. However, to the best

of our knowledge, none of the existing works has proposed an effective and

applicable way of either formulating or solving the problem, as we explain below.

In [22], Fischer enumerate some security issues of end systems in a virtual
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network. Three security demands and constraints are concluded. Our paper

additionally take link security threats into consideration. Further, we formulate

the problem with the intuition of solving these problems during the process of

virtual network embedding.

Bays et al. make progress in modeling the security-aware resource allocation

in [23]. The authors enumerate several examples of security demands, such as

link encryption and exclusiveness among virtual resources. However, a brute-

force algorithm is proposed to solve this problem, because the security demands

are classified into exclusive sets. We, on the contrary, abstract the security

demands in a different way. Besides, the heuristic algorithm proposed herein

has much lower complexity, which is practical in production environments.

3. The Security-aware Virtual Network Embedding Problem

In this section, we first study the security issues in virtualized environments.

Then, the rationale for ensuring security during the process of virtual network

embedding is discussed.

3.1. Virtual Network Embedding Problem

Network virtualization is a powerful tool that enables multiple users to share

the same physical resources simultaneously and to exploit abstracted topologies

and functions. Due to the requirement of isolation and the limitation of phys-

ical resources, the naive way of allocating resources to virtualized components

may result in wasting resources. Hence, the virtual network embedding problem

arises, which studies the way of embedding virtual components to given physical

resources effectively and expediently.

Typically, virtual network embedding could be abstracted as a resource al-

location problem, to find the optimal mappings between a sequence of virtual

network requests and a given substrate network so that physical resources can

be fully utilized. A single virtual network request is defined by its life span and

virtual network topology. The life span indicates its demanding start and end
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time of occupying physical resources. The topology, including virtual nodes and

links, is annotated with constraints, representing their demands for host phys-

ical resources. Note that a virtual node is typically in the form of an isolated

VM, hosted by an end system that is usually abstracted as a substrate node. A

virtual link is usually mapped to a substrate path.

Virtual network embedding problems are challenging. On the one hand, em-

bedding operations shall be constrained according to the physical capabilities

and the demands of virtual network requests, which makes it an NP-hard prob-

lem [4]. QoS constraints are one of the typical forms. On the other hand, its

computation efficiency is a practical requirement for network operators due to

its real-time nature. Hence, designing heuristics is important.

3.2. Security Issue in Virtualized Networks

Network virtualization can be a two-edged sword in terms of security. As

an additional virtualization layer and multiple shared VMs are introduced into

the architecture of end systems, more complexity is incurred by network virtu-

alization. Network operators are able to get more flexibility of the network in

trade of potential attack vectors in addition [22].

Apart from traditional vulnerabilities, virtual networks suffer from addition-

al security issues in the following aspects: First, VMs would be easily attacked

if their physical host was occupied by attackers. The VMs being attacked would

not be able to defend themselves, because VMs are always supervised by their

hosts in all aspects. Second, an unauthorized VM may attack its host or another

VM on the same host. The attacking VM may escape from the rigid confinement

created by the virtualization process [22]. The first case can be achieved after

gaining administration privileges over the physical host. Third, the attackers

can perform side-channel attacks [5] or negatively influence the whole system,

e.g., launching Denial-of-Service attacks.

Both links and nodes suffer from additional security issues. Adversaries may

influence the physical links in a negative way. For example, if some of the devices

on a physical link are not managed by the operator itself, attackers may have
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the opportunity to perform a wide range of attacks on that link, such as replay

attacks and man-in-the-middle attacks. This issue cannot be ignored, as a virtu-

al link with high security demands may be embedded onto substrate resources

without adequate protection. As a consequence, it is a necessity to consider

security requirements of virtual networks during the process of embedding.

3.3. The Abstraction of Security Constraints

The concept of security level is introduced to reflect different levels of protec-

tion provided by the substrate resources. For example, a substrate node that is

not accessible from unverified sources will be considered to be better protected

than those nodes that are visible to anyone. As such, it should be assigned a

higher security level. Another example is that physical links under the direct

management of the network operation, e.g., private datacenter links, are likely

to have a higher security level compared with public network links. Note that

the security level is not necessarily scalar. It can also be formulated as a vector

parameter, so as to capture a more complex model of security guarantees.

The variance in security levels comes from two insights. First, due to the het-

erogeneous customer requirements, operators often deploy heterogeneous hard-

ware in the same substrate for the sake of cost. Second, each time of upgrade,

network operators can only upgrade their machines partially, either in hardware

or software, so that service is not interrupted. Therefore, a large scale substrate

network usually consists of several generations of machines and virtualization

softwares, and the latter generations can offer higher security guarantees. Our

definition of security levels is sufficient to abstract their difference theoretically.

Security demands then could be expressed in terms of security levels. A

certain demand would be satisfied by resources that have been assigned equal

or higher security levels, because they are capable of a larger set of protection

mechanisms. Higher security demands of a virtual network usually incur higher

rate of service fees.

Based on the assumptions above, we identify four abstracted security con-

straints below, including constraints proposed in [22]. Note that the security
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Figure 1: An example of virtual network embedding problems with security constraints.

level of a substrate path will be determined by the minimum level of all links

and nodes included:

1. A substrate node should guarantee a security level that is higher than the

demand of every guest node.

2. A virtual node should guarantee a security level that is higher than the

demand of its host node.

3. Each virtual node should provide all other virtual nodes of the same host

with an adequate security level.

4. A virtual link with a security demand d should be hosted by a substrate

path with a security level that is higher than d.

Figure 1 depicts a simple example of the security-aware virtual network em-

bedding problem. We assume an adequate computation capacity of every phys-

ical node, and we omit them in the figure to emphasize the security constraints.

In the figure, (D3, L4) at side of a node indicates that the corresponding re-

source ensure a security level of 4, and require its host or guest to offer a security

level not lower than 3. 5(D2) indicates that the annotated link require 5 unit

bandwidth and demand for a host path that offers a security level of at least 2.

Without the security constraints, the example virtual network request could
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be embedded onto any pair of physical nodes and any path with at least 10 units

of bandwidth between them in the figure. However, when considering security,

the mapping result is shown by the red dotted line. Virtual node a requires to be

mapped to a physical node with security level 3 or higher, but offers a security

level 3 only. Therefore, only nodes A, B and E are valid candidates. For a

similar reason, virtual node b can only be embedded to one of substrate C, F or

H. Considering the virtual link ab, which demands 10 units of bandwidth and

security level 2, candidate nodes C,F (for b) are thus eliminated because none

of the possible link mappings can satisfy such a demand. Finally, there exist

3 available mappings of the virtual network request ab: ADGH, BADGH and

EDGH. Obviously, ADGH is the one with the lowest cost, because BADGH

occupies one more physical link AB and ED is more costly than AD due to

higher security level. Above all, ADGH is the optimal mapping for virtual

network request ab.

4. Formulation of the Security-aware Virtual Network Embedding

Problem

In this section, we formulate the security-aware virtual network embedding

problem as an optimization problem. The optimizing objectives and constraints

are discussed individually.

4.1. Mathematical Definitions

We present a detailed definition of the network components and parameters

in a virtualized network. Based on the mathematical abstraction of the substrate

and the virtual networks, formulation of the embedding operation and its utility

functions are proposed.

4.1.1. Substrate Networks

A substrate network can be abstracted as a weighted undirected graph GS =

(NS , LS , ASN , A
S
L), where NS is the set of all substrate nodes and LS is the set

of all substrate links. ASN and ASL denote the attributes of substrate nodes and
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links, respectively. When discussing the security problem, it is reasonable to

simplify the distinct attributes to the following settings:

ASN = {{cpuS(n), demS(n), levS(n)}|n ∈ NS} ,

ASL = {{bwS(l), levS(l)}|l ∈ LS} .

For a given n ∈ NS , cpuS(n), demS(n) and levS(n) denote the computation

capacity (e.g., in terms of the available virtual CPUs), security demand and

security level of n, respectively. Similarly, bwS(l) and levS(l) are the available

bandwidth and the security level of each substrate link l (∀l ∈ LS). Additionally,

we use notation PS to represent the set of all paths in GS .

4.1.2. Virtual Network Requests

Virtual network requests are organized in order of arriving time:

GV = [GV1 , G
V
2 , . . . , G

V
k ] .

The No.i request can be described as another weighted undirected graph GVi =

(NV
i , L

V
i , T ime

V
i , Dur

V
i , C

V
i,N , C

V
i,L). It arrives at time TimeVi and lasts a time

period of DurVi . Similar to the description of substrate resource attributes, the

virtual network requirements are represented as follows:

CVi,N = {{cpuVi (n), demV
i (n), levVi (n)}|n ∈ NV

i } ,

CVi,L = {{bwVi (l), demV
i (l)}|l ∈ LVi } .

For a given n ∈ NV
i , cpuV (n), demV (n) and levV (n) denote the demanded

CPU, required security demand and security level, respectively. bwV (l) and

demV (l) are the bandwidth demand and the security demand of each virtual

link l (∀l ∈ LVi ).

4.1.3. The Embedding Operations

Based on the descriptions above, we can define the embedding operations as

a set of mappings:

M = {M1,M2, . . . ,Mi, . . .} .
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For all i ∈ {1, 2, 3, . . .}, Mi is the mapping of request GVi :

Mi : GVi → GSi = (Ni, Pi, Ai,N , Ai,L) ,

where Ni ⊆ NS , Pi ⊆ PS . Ai,N and Ai,L represent the attributes of substrate

nodes and links in GSi , the redundant network of GS at TimeVi , just before

trying to embed GVi .

As a consequence, the virtual network embedding problem is to find the best

M so that the objectives of the embedding are achieved when the constraints

of the problem are satisfied. Additionally, we use Mi,N : NV
i → (NS , Ai,N ) and

Mi,L : LVi → (PS , Ai,L) to describe the two stages of Mi, that is, node mapping

and link mapping, respectively.

4.1.4. Other Functions

In order to describe our model explicitly, a two-value function ρ(i) is defined

to indicate whether a single request is successfully embedded or not.

ρ(i) =

 1, if request No. i is accepted.

0, if request No. i is denied.
,∀i ∈ {1, 2, . . . , |M |} . (1)

Additionally, we define two sets of variables Xi = {xi,qr|nq ∈ NV
i , nr ∈ NS}

and Yi = {yi,qr|lq ∈ LVi , pr ∈ PS} to simplify the formulation. For a given

virtual network request GVi , we define xi,qr ∈ {0, 1} as an element of Xi to

indicate the node relationships. If a virtual node nq is mapped onto the substrate

node nr, then xi,qr = 1. Otherwise, xi,qr = 0. Moreover, yi,qr ∈ Yi is defined in a

similar way, indicating the ratio of bandwidth allocation, so we have yi,qr ∈ [0, 1].

For example, yi,qr = 0.5 means that half bandwidth of virtual link request lq is

mapped onto each substrate link of path pr.

4.2. The Objective Functions

Operators of virtual networks always try to maximize the long-term profit

of virtual network embedding operations, which involves both revenue and cost.
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4.2.1. The Revenue Functions

The revenue of a mapping Mi ∈M can be described as follows:

Rev(Mi) = ρ(i)×DurVi ×

 ∑
nV
i
∈NV

i

demV (nVi )× cpuV (nVi )

+
∑

lV
i
∈LV

i

demV (lVi )× bwV (lVi )

 .

(2)

Intuitively, a request with higher security demands achieves a higher revenue.

Therefore, we take both node and link security demands into account, as is

shown in the equation. Note that the function ρ(i) is included, since it is

natural to achieve no revenue when the corresponding request is denied.

The overall revenue of virtual network embedding results M = {M1,M2, . . . ,Mn}

is the sum of revenues of all mappings, i.e.,

Rev(M) =

n∑
i=1

Rev(Mi)

.

4.2.2. The Cost Functions

The cost of a mapping Mi ∈M can be described as follows:

Cost(Mi) =ρ(i)×DurVi ×

 ∑
nV
i
∈NV

i

levS(Mi,N (nVi ))× cpuV (nVi )

+
∑

lV
i
∈LV

i

levS(Mi,L(lVi ))× len(Mi,L(lVi ))× bwV (lVi )

 .

(3)

The function len(p) in the equation indicates the number of hops through the

path p ∈ PS . Obviously, it would be a waste and would cost more to occupy

substrate resources with an unnecessarily long path and an exorbitant security

level. Again, the overall cost of mapping sequence M = {M1,M2, . . . ,Mn} is

Cost(M) =

n∑
i=1

Cost(Mi) .
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4.2.3. The Objectives

Based on the assumptions above, three different objectives of the security-

aware virtual network embedding problem can be enumerated as follows:

1. to maximize the request acceptance ratio, that is, the ratio of virtual

network requests being successfully embedded;

2. to maximize the long-term revenue of the network;

3. to maximize the long-term Revenue to Cost Ratio (R/C Ratio) of the

network.

Generally, to evaluate the embedding results, all of the three objectives are

considered with different priorities, which vary among different practical situ-

ations. In this paper, we highlight the long-term average revenue as a major

consideration, since it is the prioritized objected for most network operators.

which has directed our design of the heuristic in Sec. 5.

4.3. The Model of the Security-aware Virtual Network Embedding Problem

Described as an optimization problem, the security-aware virtual network

embedding problem is formulated with specific objectives and constraints. The

objectives are

max lim
n→∞

∑n
i=1 ρ(i)

n
,whereρ(i) =

 1, ifVNRi accepted.

0, ifVNRi denied.
, (4)

max lim
T→∞

∑|M|
i=1 Rev(Mi)

T
, (5)

max lim
T→∞

Rev(M)

T
/ lim
T→∞

Cost(M)

T
. (6)

We define two arrays of variables, xi,qr and yi,qr, in order to clearly formulate

the constraints:

xi,qr ∈ {0, 1}, if xi,qr = 1 =⇒ nSr = Mi,N (nVq ) ,

yi,qr ∈ [0, 1], if yi,qr > 0 =⇒ pSr ∈Mi,L(lVq ) .

The constraints are
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|NS |∑
r=1

xi,qr = 1 , ∀ni,q ∈ NV
i , (7)

|PS |∑
r=1

yi,qr = 1 , ∀li,q ∈ LVi , (8)

|N |∑
i=1

xi,qrcpu
V
i (ni,q) ≤ cpuS(nr) , ∀ni,q∈NV

i , nr∈NS , (9)

|N |∑
i=1

yi,qrbw
V
i (li,q) ≤ min

lj∈pr
bwS(lj) , ∀li,q∈LVi , pr∈PS , (10)

xqrdem
S(nr) ≤ levV (nq) , ∀nq∈NV

i , nr∈NS , (11)

xqrdem
V (nq) ≤ levS(nr) , ∀nq∈NV

i , nr∈NS , (12)

max{demS(nr),max
xqr=1

demV(nq)}

≤min{levS(nr), min
xqr=1

levV(nq)}
, ∀nq∈NV

i , nr∈NS , (13)

demV (lq) ≤ min
li∈pr,yqr>0

levS(li) , ∀lq∈LVi , pr∈PS . (14)

The equation (5) is the formulation of the revenue objective addressed in

Sec. 4.2.3. The constraint (7) restricts each virtual node to be mapped onto

a single substrate node, while (8) ensures that the bandwidth demand of each

virtual link is shared by several substrate paths. The constraint (9) ensures that

the host of virtual nodes can satisfy the computation demands of the guests. The

constraint (10) ensures that the bandwidth of each substrate link is not over-

subscribed. Constraints (11) to (14) correspond to the four security constraints,

related with the constraint list in Sec. 3.3.

5. Algorithm Design

In this section, we propose two heuristic algorithms to solve the optimization

problem formulated in Sec. 4.3. The embedding problem can be decomposed

into a sequence of sub-problems, that is, to embed one single virtual network

request onto the redundant substrate. In the following description, we first
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focus on solving a single sub-problem for simplicity. Subsequently, the method

for combining the two algorithms is given.

Both algorithms are based on the same heuristic function, which will be

given in Sec. 5.1 along with the intuition analysis. The uncoordinated two-

stage algorithm (uSAV) will be presented prior to the one-stage one (cSAV)

which is a variable involving node and link mapping coordination.

5.1. The Heuristic

The principle of our algorithms is to design a heuristic for each substrate

node to estimate its availability of hosting a given virtual node, so as to guide

the node mapping operations. Based on this estimated value, we are able to

sort the substrate nodes in a reasonable order and then to perform a best-first

search. Apparently, a more precise estimation will result in a better result, i.e.,

more optimized objectives. The heuristics not only simplify the problem, but

also help to avoid bad results in the second stage. By using suitable heuristics,

we are able to map the nodes of a virtual network request more efficiently and

to achieve a higher success rate as well as lower mapping cost during the link

mapping stage. Also, the complexity of calculating this value cannot be too

high to enable it to adapt to the frequent redundant network update.

Our idea is a bit similar to the notion of NodeRanking in [8], but with more

detailed refinement. Intuitively, a substrate node with more computation ca-

pacity and broader outgoing bandwidth would be more available to host virtual

nodes. Offering a higher security level would also contribute, but, to avoid high

cost based on equation (3), it would be the best to exactly match the security

demands. For example, it is a waste to allocate a virtual node whose security

demand is low onto a high-security-level substrate node. As a result, the es-

timated value varies with different levels of security demands, and we need to

compute each for different requests.

For a given security demand k, we design two variables to properly model

the factors mentioned above. In particular, let n be the substrate node we are

focusing on, and Link(n) denote the set of outgoing links of n, so Link(n) ⊆ LS .
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∀l ∈ Link(n), we define the uniformed bandwidth bw uk:

bw u(l, k) =

 bw(l)elev(l)−k, if lev(l) ≥ k .

0, if lev(l) < k .

Similarly, the uniformed computation capacity of a substrate node n is defined

by:

cpu u(n, k) =

 cpu(n) 1−(lev(n)−k)2
δ , if lev(n) ≥ k .

0, if lev(n) < k .

δ is the coefficient to ensure the positive value of the uniformed computation

capacity. For example, that ensures levS(nS) ∈ [lev1, lev2], and node mapping

requests that demV (nV ) ∈ [dem1, dem2](∀nV ∈ GV ) is satisfied, we get δ ≥

(lev2 − dem1)2.

As in [6], we model the intuitive estimated value of a given substrate node n

at certain security demand k by using the product of its uniformed computation

capacity and collective bandwidth of outgoing links, that is,

H(0)(n, k) = cpu u(n, k)
∑

l∈Link(n)

bw u(l, k) . (15)

The result of H(0) is called basic estimation, depending on the related resources

of a single node.

Furthermore, to make the estimation more accurate, additional information

should be included. We take both virtual and substrate global topologies into

consideration. Neighboring nodes interconnection factors in both virtual and

physical networks are introduced after analyzing the following examples. First,

assume that a virtual node a has already been embedded onto substrate node

A. For virtual node b, which connects directly to a in the same virtual network

request, the availability of the neighbors of A would undoubtedly get a promo-

tion. The second case is that a substrate node B with little basic estimated

value would seem to be more available, only if B had a neighboring C with

a high rank of estimation. Moreover, with broader interconnection bandwidth

and a higher link security level, B would be more influenced by its neighbor,

because the additional cost of link BC would be less.
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Thus, an iterative mechanism is introduced. We propose a variable named

propagation coefficient of each substrate link, to measure the influence of neigh-

bouring nodes on each other. For the nodes at both end of link l, PC(l, k) is

defined to evaluate propagation coefficient at the given security level k:

PC(l, k) =
bw u(l, k)

Max Prob BW
.

The constant Max_Prob_BW denotes the maximum probable bandwidth of all

links. The iterative computation process of the heuristic is defined as follows:

H(t+1)(n, k) = λ
∑

(m,n)∈Link(n)

PC((m,n), k)H(t)(m, k) + (1− λ)H(t)(n, k) , (16)

where t = 0, 1, 2, . . . , MaxIte−1. λ is a bias factor. A greater λ will require more

iterations until it converges, which indicates higher algorithm complexity. A

smaller λ might avoid the iteration from convergence. We typically set λ to 0.15

which shows a better trade-off to ensure both convergence and low complexity

in our experiments. Additionally, we take the uniformed link bandwidth into

account, instead of just focusing on neighboring node resources in [8]. MaxIte

defines the maximum number of iteration rounds, and we set it to b
√
|NS |c,

the square root of the number of substrate nodes, so that topology information

would be able to spread out the network.

Typically, the iteration will not stop until the MaxIte is reached or the

heuristic convergences, e.g., when |H(t+1)(n, k) −Ht(n, k)| < 0.1. It is easy to

see that if only one node and its adjacent links change their redundant resources,

the heuristic recalculation will convergence fast enough. It is a key characteristic

of our design, making the heuristic value update procedure less complex.

5.2. uSAV: the uncoordinated Algorithm

We propose a two-stage, uncoordinated Security-Aware Virtual network em-

bedding (uSAV) algorithm. The two stages of the algorithm correspond to the

problem decomposition of node mapping stage and link mapping stage. The

separation of two stages simplifies the problem, but bad results can be avoided

with our heuristic design.
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5.2.1. Node Mapping Algorithm

The first stage of uSAV, node mapping algorithm, is described in Algorithm

1. The algorithm is executed to properly embed all virtual nodes of a single

virtual network request GVi to the redundant substrate GSi , while ensuring high

revenue and low cost during the second stage of link mapping. That is, for a

given request GVi , Algorithm 1 aims at getting a proper mapping Mi,N based

on the heuristic H(MaxIte). H(MaxIte) is calculated by using equations (15) and

(16) in terms of current security demand k. Note that if all virtual nodes are

successfully allocated, the algorithm will return a state of NODE_MAP_SUCCESS;

otherwise, it will return a state of MAP_FAILED.

Algorithm 1 Node Mapping Algorithm

1: For each possible security demand k, sort all substrate nodes in a candidate

node queue queue(k) in descending order of heuristic value H.

2: For all nodes m ∈ GSi , initialize their state by setting Occupied(m) =

FALSE.

3: repeat

4: Get an unmapped node n randomly from GVi .

5: k = demV (n).

6: if ∃ node m ∈ queue(k) s.t. Occupied(m) = FALSE and demS(m) ≤

levV (n) and cpuS(m) ≥ cpuV (n) then

7: Occupied(m) = TRUE.

8: Map the virtual node n onto the substrate node m.

9: else

10: Release all resources occupied by GVi .

11: return MAP FAILED.

12: until all nodes in GVi are mapped successfully.

13: return NODE MAP SUCCESS.

19



5.2.2. Link Mapping Algorithm

If node mapping stage ends up with a success, we turn to map the virtual

links, using Algorithm 2. As virtual nodes have become fixed in the substrate,

what we need to do is to find out the available substrate paths among those

hosts. Many 2-stage virtual network embedding algorithms make use of k-

shortest path algorithm [24] to get the substrate path with least hops, such as

[6]. Our algorithm inherits this principle, but presents the following differences:

our goal is to get the substrate path between virtual nodes with the lowest cost

instead of smallest number of paths hops. To this end, a variable named Path

Cost Coefficient (PCC) is designed in the place of paths hops. Considering link

security demand k, the Path Cost Coefficient of a substrate path p ∈ PS is

defined by following equation:

PCC(p, k) =
∑

l∈LS ,l∈p

[levS(l)− k + 1] .

The prerequisite of link mapping algorithm is that the state of current re-

quest is already NODE_MAP_SUCCESS. The constant MAX_SPLIT_TIME, which in-

dicates the upper limit of link split times, is defined to avoid the fragmentation

of splittable link mapping and to limit the algorithm complexity. The flag

parameter is an indicator of overall link mapping state.

5.2.3. The uSAV Algorithm

To be applied in a real-time scenario, dealing with both new-coming and

suspended requests, our algorithm is designed to be called once in every fixed

time interval. The time interval should be long enough for the process to finish

the embedding work of the last process, and be short enough to avoid short-life-

span virtual network requests being ignored.

The detailed procedure of uSAV is described in Algorithm 3. First, uSAV

scans all of the online virtual network requests. Second, these requests are

sorted in descending order of their revenues. This process is the preparing work

of greedily deciding embedding priorities. Third, the sub-algorithms of both

node and link mapping are called in turn, to try embedding the awaiting virtual
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Algorithm 2 Link Mapping Algorithm

1: for each unmapped virtual link l ∈ GVi do

2: bwr = bwV (l), k = levV (l), f lag = 0.

3: if l is splittable then

4: split = 1.

5: else

6: split = MAX SPLIT TIME.

7: Let m1,m2 ∈ GS be the hosts of both ends of l.

8: repeat

9: if ∃p ∈ PS s.t. p : m1 → m2 has the minimum PCC(p, k) then

10: bwS(p) = mint∈p bw
S(t), t ∈ LS .

11: Map the remaining resources of l onto p.

12: bwr = bwr − bwS(p).

13: if bwr ≥ 0 then

14: flag = 1.

15: else

16: split = MAX SPLIT TIME + 1.

17: until flag = 1 or split > MAX SPLIT TIME

18: if flag = 0 then

19: return MAP FAILED.

20: return MAP SUCCESS.

network request with the maximum revenue and then to refresh the redundant

networks. Finally, after trying all requests, the procedure is terminated.

5.3. cSAV: the coordinated Algorithm

uSAV is an uncoordinated algorithm which decouples the node mapping

and the link mapping completely. However, it is possible that the optimal

node mapping results can lead to high-cost link mappings, despite how well our

heuristic is designed. Things get worse when virtual links cannot be split: virtual

nodes that are fixed in the substrate would compel the link mapping failure, even
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Algorithm 3 The uSAV Algorithm

1: For all requests in the time window, set the ones that did not expire yet but

classified with MAP FAILED to NEW.

2: Release the substrate resources that were occupied by DONE requests. Re-

fresh the redundant network.

3: repeat

4: Get GVi that has the maximum revenue from all NEW requests in the time

window.

5: Map the nodes of GVi using the node mapping algorithm.

6: if MAP NODE SUCCESS then

7: Map the links of GVi using the link mapping algorithm.

8: if MAP SUCCESS then

9: Occupy the substrate resources. Refresh the redundant network.

10: Set the state of GVi to MAP SUCCESS.

11: return

12: Set the state of GVi to MAP FAILED.

13: Release the occupied resources of GVi .

14: until There is no more NEW requests in the time window

15: return

if the corresponding substrate nodes had rich aggregation bandwidth.

To tackle this issue, we propose another coordinated Security-Aware Virtual

network embedding (cSAV) algorithm, which jointly considers node and link

mappings. By construction, cSAV can lead to more optimal embedding objec-

tives compared with uSAV, at the cost of higher time and space complexity.

Algorithm 4 describes the cSAV algorithm in brief, using a single virtual net-

work request as input for simplicity. Note that both cSAV and uSAV use the

same heuristic presented in Equation (16).
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Algorithm 4 The cSAV Algorithm: for a single virtual network request

Input: The redundant substrate network as GS . The current interested virtual

network request as GV .

1: Initialize variables: N for maximum back-off times; two empty stacks S (for

mapped nodes) and Q (for unmapped nodes).

2: Apply the heuristic computation in the virtual network. Find the virtual

node m with the highest heuristic value H(m). Let node m′ = m.

3: repeat

4: Try to map m to n ∈ GS , starting from substrate node with higher

heuristic value.

5: if No applicable substrate node n to host virtual node m and correspond-

ing virtual link mm′ then

6: if N == 0 then

7: return MAP FAILED

8: else

9: N ← N − 1

10: Q.push(m), m = S.pop().

11: S.push(m).

12: Update the redundant network, recalculating heuristics.

13: for all Virtual node m′ ∈ Adj(m) in the decreasing order of H(m′) do

14: Q.push(m′)

15: m′ = m. m = Q.pop().

16: until Empty(Q) == true

17: return MAP SUCCESS

5.4. Time Complexity Analysis

uSAV: As a sub-process to embed a single virtual network request onto the

redundant substrate network, both node and link mapping algorithms need to

be called once. Based on the descriptions above, we conclude that node map-

ping is a polynomial-time algorithm. The sub-process of calculating estimated

value and sorting has the time complexity of O(|NS |
3
2 ), while node mapping is
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O(|NS | · |NV |). Also, link mapping can be solved in O(|NS |3 · |LV |). Final-

ly, considering that the procedures of detecting request states and allocating,

releasing resources have linear complexity, the uSAV algorithm is a polynomial-

time algorithm in terms of |NS |, |NV |, |LV | and the number of virtual request-

s. Specifically, the time complexity of embedding a single virtual request is

O(|NS |
3
2 + |NS | · |NV |+ |NS |3 · |LV |).

cSAV: In order to calculate the heuristic, O(|NS |
3
2 ) time is required for

each update, and the substrate information will be updated once after suc-

cessfully embedding a virtual node. Also, the link mapping in between will

consume O(|NS |3) amount of time. Hence, the cSAV algorithm is polynomial

in time complexity in terms of |NS |, |NV |, |LV | and the number of virtual re-

quests. Specifically, the time complexity of embedding a single virtual request

is O(|NS |
3
2 · |NV | + |NS |3 · |LV |). Compared with uSAV, the degree of time

complexity is relatively higher, which leads to longer execution time.

6. Performance Evaluation

In this section, the performance of the two security-aware virtual network

embedding algorithms, uSAV and cSAV, is evaluated. We first describe the

different simulation settings, and then present the result of our evaluation. The

results show that uSAV works quite well for virtual network requests whose

links are splittable. cSAV works even better in all cases; however, the algorithm

needs more time to execute.

6.1. Evaluation Environments

We evaluate the uSAV and cSAV algorithms with similar methodologies of

previous work. Here we propose the general parameter settings in our simu-

lation, including techniques to generate network topologies and objectives in

comparison.
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6.1.1. Network Settings

We generate all virtual network requests and substrate network topologies

by using the GT-ITM tool [25], using values similar to ones used in [6].

The substrate is set to have 100 nodes and around 500 links, a scale that

corresponds to a medium sized ISP. The computation and bandwidth capability

of the substrate nodes and links are real numbers uniformly distributed between

50 and 100. The security level of both nodes and links are integer numbers

uniformly distributed between 0 and 4. The security demands of substrate

nodes are also integers varying from 0 to 4. Note that they are not distributed

uniformly because the security demand of a single node cannot be higher than

its security level. We generate the security demands as uniformly distributed

integers, then normalize all demands that are unreasonably high to be equal to

their corresponding security levels.

The number of nodes in each request topology is uniformly distributed be-

tween 2 and 20. The average link connectivity rate is 50%, which is determined

by the α parameter of GT-ITM. The computation resource and bandwidth re-

quirements of virtual nodes and links are real numbers uniformly distributed

between 0 and 50. The virtual network requests are reconfigured by an exten-

sion to the GT-ITM tool, which arranges the topologies into a sequence and

gives each of them a request time and duration. We assume that requests arrive

following a Poisson process with an average arrival rate of 5 requests per 100

time units. The duration of each follows an exponential distribution with an

average of 500 time units. Our simulation involves 1500 requests per instance,

so that the total time of simulation would be about 30000 time units.

6.1.2. Comparison and Objectives

The three algorithms listed below are included in our evaluation to test the

performances. We will compare the evaluation results of all three objectives

listed in Sec. 4.2.3, based on the same hardware and software platform.

uSAV: Our uncoordinated Security-Aware Virtual network embedding al-

gorithm, with detailed description in Algorithm 3. The two-stage algorithm is
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based on the heuristic H, which is calculated by using Equation (15) and (16).

cSAV: Our coordinated Security-Aware Virtual network embedding algo-

rithm, with detailed description in Algorithm 4.

BL: The Baseline algorithm. It is an extension to the project published in

[6]. We have simply revised it by adding constraints and updating the compu-

tation of embedding revenue and cost, using Equation (2) and (3).

6.2. Evaluation Results and Discussion

In our evaluation, we simulate the on-line virtual network embedding by

assigning each virtual network request an initiation time. We use Link Splittable

Ratio (LSR) to measure the proportion of virtual network requests which allow

splittable virtual links.

6.2.1. Objectives Comparison with High LSR

We generate 6 different test sets of virtual network requests (with Link Split-

table Ratio at 80%) and substrate networks to evaluate performance on all of

the three optimization objectives. Figure 2 depicts that our algorithms (uSAV

and cSAV) achieve much higher R/C Ratio (Figure 2 (a)), request acceptance

ratio (Figure 2 (b)) and long-term average revenue (Figure 2 (c)), than the

BaseLine algorithm. Compared with uSAV, cSAV can achieve better results,

but the advantage (approximately 1 % in terms of request acceptance ratio) is

ignorable.

Figure 3 shows the mean algorithm execution time comparison. uSAV ex-

hibits the smaller computational complexity: it takes about 55.9% and 49.5%

less time than cSAV and BL, respectively. Provided that its embedding result

is near-optimal, uSAV is the most practical of the algorithms under analysis.

6.2.2. Objectives Comparison with Low LSR

With low Link Splittable Ratio (20%) settings, we generate another 6 differ-

ent test sets of virtual network requests and corresponding substrate networks

to evaluate the performance. Figure 4 depicts the comparison of results achieved
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Figure 2: Simulation results of 6 data sets at high Link Splittable Ratio (80%).
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Figure 3: Average execution time comparison for 6 high Link Splittable Ratio data sets.
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Figure 4: Simulation results of 6 data sets at low Link Splittable Ratio (20%).
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Figure 5: Average execution time comparison for 6 low Link Splittable Ratio data sets.

by the three schemes, which are different from the results in Figure 2. cSAV

still achieves better resource mappings here, but the performance of uSAV is

the worst, which is about 10.1% lower than cSAV in terms of long-term aver-

age R/C ratio. Nonetheless, both our algorithms still outperform the baseline

significantly.

In Figure 5, the mean algorithm execution time is listed. Similar to Figure

3, uSAV convergences fast because of low complexity. However, considering its

less-optimal performance, cSAV seems a better choice in low link splittable ratio

cases.

6.2.3. Performance with Varied Splittable Ratio

In order to evaluate the influence of splittable link ratio on the algorithm

process, we generated another 11 sets of requests, with splittable ratios ranging

from 0% to 100%. The simulation results are shown in Figure 6. The figure

indicates the poor performance of uSAV when few virtual link allows splitting.

When less links are splittable, cSAV performs much better because of the coor-

dination of node and link mappings. The conclusion is similar to the one of the

above experiments.

Note that both uSAV and cSAV have a slightly lower request acceptance

ratio and long-term average revenue when the splittable ratio is very high (>

80%), as compared to medium splittable ratios (∼ 60%). We think the cause
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Figure 6: Algorithm performance under varied Link Splittable Ratio.

of this phenomenon is that with almost all virtual links splittable, substrate

link resources can be utilized in a fragmented way. In other words, a virtual

link tend to be mapped to multiple substrate paths. However, the constant

MAX_SPLIT_TIME, which is set to 3 as in [8], limits this trend and results in

mapping failures. Increasing the value of MAX_SPLIT_TIME might be a solution,

but it is not practical as virtual link fragmentation may lead to severe out-

of-order packets and difficulties in network management. Therefore, it is an

acceptable result since an acceptance ratio at ∼80% is good enough in common

practice.

7. Concluding Remarks

In this paper, we address the security requirements of virtual network em-

bedding by analyzing the need for physical isolation between trusted and un-

trusted virtual resources. The numerical concept of security levels and security

demands are proposed to properly abstract the security requirements. We for-

mulate the problem as an optimization problem, proposing three objectives with

both resource and security constraints. In our heuristic, the innovation of in-
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curring global topologies and interconnection information is highlighted. Two

algorithms are designed for virtual network requests with or without splittable

links, respectively. The evaluation results demonstrate their effectiveness and

practicality.

The computational complexity and effectiveness of the algorithms make of

them good candidates for real deployments by network operators. A possible

direction of future work is to make the parameter tuning adaptive. The algo-

rithm parameters (e.g., number of iterations, maximum times of link split) is

statically chosen to balance the complexity and the optimality. In online cases,

we might be able to dynamically adapt these settings to the birth rate of virtual

network requests, so as to achieve a higher revenue for network operators.
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