
Multi-Resource Load Balancing for
Virtual Network Functions

Tao Wang1 Hong Xu2 Fangming Liu∗1
1Key Laboratory of Services Computing Technology and System, Ministry of Education,

School of Computer Science and Technology, Huazhong University of Science and Technology
2NetX Lab @ City University of Hong Kong

Abstract—Middleboxes are widely deployed to perform various
network functions to ensure security and improve performance.
The recent trend of Network Function Virtualization (NFV)
makes it easy for operators to deploy software implementations
of these network functions on commodity servers. However,
virtual network functions consume different amounts of resources
when processing packets. Thus a multi-resource load balancing
(MRLB) mechanism is needed to efficiently utilize server re-
sources. MRLB problem in the context of NFV is fundamentally
different from multi-resource allocation problems, as well as
traditional single-resource load balancing and multi-resource
load balancing problems in task scheduling. In this paper, we
tackle the MRLB problem in NFV by first proposing dominant
load—the load of the most stressed resource on a server—as the
load balancing metric. We then formulate the MRLB problem
as an optimization to minimize the maximum dominant load of
all NFV servers given the demand. Based on proximal Jacobian
ADMM, we propose an efficient algorithm to solve the problem in
large scale settings. Through extensive trace-driven simulations
and prototype experiments on a testbed, we show that our MRLB
algorithm with dominant load performs significantly better and
faster than benchmarking algorithms.

I. INTRODUCTION

Middleboxes are prevalent in networks. A recent study [29]
indicates that the number of middleboxes is comparable to
that of forwarding devices. Middleboxes perform a wide range
of critical network functions, e.g. intrusion detection systems
(IDS), firewalls, VPN, WAN optimization, etc.

There is a growing trend of replacing dedicated hardware
middleboxes with software instances of network functions on
commodity servers, which is known as Network Function
Virtualization (NFV). Just like other virtualization technolo-
gies, NFV enables elastic resource provisioning: Network
functions can be deployed on a server cluster; an operator
can dynamically increase the scale for a specific function
when traffic hikes, or shut down idle virtual instances during
demand valleys. Therefore, together with Software Defined
Networking (SDN) [32], NFV holds great promises to reduce
the network management cost and facilitate rapid deployment
of new network functions [18].

For scalability, performance, and fault-tolerance, an operator
usually deploys many virtual instances for the same network

*This work was supported in part by the National Key Research &
Development (R&D) Plan under grant 2016YFB1000500, the National 973
Basic Research Program under Grant 2014CB347800, NSFC under Grant
61520106005, and by Hong Kong RGC GRF-11202315 and CRF-C7036-
15G. (Corresponding author: Fangming Liu)

function (NF) across multiple servers [18]. Thus how to
steer the traffic among these servers, that is load balancing,
becomes a fundamental task for operating the NFV cluster.
Load balancing is important because high utilization often
leads to unstable packet processing performance and makes
the NFV server prone to faults [20], [26]. As we show in
Sec. II-A, some software implementations use 100% CPU with
only ∼700Mbps incoming traffic, and suffer from more than
20% packet loss.

Traditionally, load balancing just distributes traffic evenly
among the middleboxes running the same NF. It becomes
more challenging in the context of NFV. Different NFs are
now consolidated on the same physical server. Further, they
entail different resource demands: IDS and security encryption
bottleneck on CPU, while software routers bottleneck on
memory or network I/O depending on the packet size [19].
We also verify the heterogeneity of resource consumptions
through measurements in Sec. II-B. Simply balancing the load
of one resource may lead to poor efficiency of other hardware
resources, which limits the processing capacity of the entire
NFV cluster. Thus the problem is inherently multi-resource
and fundamentally different from traditional load balancing
with a single resource (most commonly bandwidth) [10], [31].

An immediate challenge in multi-resource load balancing is,
how shall we define the problem? Clearly the objective is to
balance the utilization of the servers. However, with multiple
resources now, the definition of a server’s utilization, or load, is
unclear. One may use the average load across all resources as a
solution. This does not capture the actual resource limitation of
the server. For example, for a server with two resources—CPU
and bandwidth, consider two cases: (1) its CPU and bandwidth
loads are 0.1 and 0.9, respectively; and (2) the loads are 0.5
and 0.5, respectively. The average load is the same, yet the
server is clearly more stressed in the first case as it is running
out of bandwidth.

Thus we propose to use a server’s dominant load—the
maximum load of all resource types—for multi-resource load
balancing. The concept is similar to dominant resource share in
multi-resource allocation problem [19]. In the above example,
the server’s dominant load is 0.9 in the first case and 0.5 in the
second, indicating that it is more stressed with less capability
in the first case. A desirable property of dominant load is that
servers naturally prefer traffic whose demands help balance
their load, which is instrumental to our problem. With this

definition, the multi-resource load balancing problem is then
to distribute traffic of different NFs among servers in order to
minimize the maximum dominant load.

Cluster Resource Sharing

Single Resource Multiple Resources

SIGCOMM’14[9], etc.

Job-centric

Resource Allocation

Server-centric

Load Balancing

Packet-level VM-level Network-level Flow-levelTask-level

CoNEXT’14[31],

NSDI’11[18], etc.
TPDS’13[33], etc. NSDI’16[13], etc. Our WorkSAC’13[20], etc.

Fig. 1. Design space of cluster resource sharing.

Fig. 1 surveys the design space of cluster resource shar-
ing and the thick line places our work in the context of
multi-resource load balancing. Note that though related, our
problem is different in nature from multi-resource allocation
problem of various granularities (i.e. packet-level [19], [22],
[33], VM-level [35] and flow-level [14]), which emerges from
job scheduling in large-scale clusters. These need to assign
workload (jobs or traffic of NFs) to servers. The allocation
problem focuses on jobs, and it is to decide the amounts of
resources for each job in a fair and efficient way. As long
as the allocation is fair across jobs, which server ends up
running them is irrelevant. On the contrary, load balancing
focuses on servers, and strives to balance their loads given the
total traffic volume. That is, the total workload is exogenous,
mainly driven by applications, in load balancing, whereas in
allocation it is the decision variable. Also, inherently different
from the multi-resource load balancing problem in the context
of task scheduling where the tasks are atomic and unsplittable
[21], we assume that the aggregate flows in network can be
arbitrarily split among servers, which is commonly used in the
literature [36].

We make the following contributions towards solving the
multi-resource load balancing problem in NFV.

• Based on dominant load, we present a simple yet general
formulation of the problem in the offline setting as the
first step. We consider a time period of minutes (e.g.
10 minutes), for which the total traffic demand of the
NFV cluster can be predicted accurately as supported by
a recent measurement of Facebook’s internal data center
network traffic [28].

• Given the increasing variety of NFs, the number of flows
and their volume, and the number of servers involved, a
fast and efficient solution is required to derive a load
balancing scheme for a large-scale NFV deployment.
Rather than using standard centralized solvers, we blend
the advantages of the auxiliary variable method and
proximal Jacobian Alternating Direction Method of Mul-

TABLE I
VIRTUAL NETWORK FUNCTIONS USED IN MEASUREMENT

VNF Description
Bro [9] A comprehensive traffic analysis platform.
Snort [7] A network intrusion prevention system, capable of

performing real-time traffic analysis.
Squid [8] A web cache proxy, supporting HTTP, HTTPS,

FTP, etc.
PRADS [6] A passive packet sniffer to collect traffic statistics.

tipliers (ADMM) to devise an algorithm that addresses
the scalability challenge.

• Our third contribution is an extensive performance eval-
uation using trace-driven simulations and testbed experi-
ments. We show that our approach reduces the maximum
dominant load of the NFV cluster by up to 62.7%. Our
algorithm is able to converge within 34 iterations for large
problem sizes, demonstrating its potential for practical
use. We also develop a prototype of our algorithm using
the Floodlight controller [3]. Experimental results show
that our algorithm outperforms alternative schemes by up
to 1.22×.

II. MOTIVATION

In this section, we first motivate multi-resource load bal-
ancing using an empirical measurement study of common
virtual network functions (VNFs). Our measurement involves
four widely used software NFs in the literature [18]—Bro
[9], Snort [7], Squid [8], and PRADS [6], as summarized in
Table I. Then, we present examples that describes challenges
of multi-resource load balancing in detail.

A. Why Load Balancing?

The first motivation question we must answer is, why
bother considering load balancing? Can we just pack VNFs
to achieve high utilizations of resources and reduce operating
costs for operators? We show through measurements that high
utilization severely degrades performance in the context of
NFV, and thus it is necessary to consider load balancing.

We use a small testbed consisting of two commodity servers
each with an Intel quad-core Xeon E5620 2.4GHz CPU and
two 1GbE NICs. The measurements here use Bro and Snort
only. We deploy them on one server as two Intrusion Detection
Systems (IDS) that perform different packet filtering functions.
Specifically, we configure Bro to filter every packet with a
particular source IP address, and configure Snort to log any
packet that matches a predefined list of source IP addresses.
We generate traffic at different rates using another server to see
how the VNFs perform. Each VNF is pinned to a unique core
and measurements are carried out for 10 independent runs.
Results are shown with error bars in Figs. 2 and 3.

We make the following observations. Fig. 2 shows that the
CPU usage of Bro increases steadily with traffic. It reaches
100% when the traffic is over 700Mbps, which results in
20.9%–73.7% traffic loss as depicted in Fig. 3. For Snort,
its CPU usage stabilizes at about 28% as shown in Fig. 2.

Speed (Mbits/s)
0 100 300 500 700 900

C
P

U
 U

ti
liz

a
ti
o
n
 (

%
)

0

20

40

60

80

100
Bro
Snort

Fig. 2. CPU utilization comparison of
Bro and Snort.

Speed (Mbits/s)
0 100 300 500 700 900L

o
s
t/
B

u
ff
e
re

d
 P

k
ts

 (
%

)

0

20

40

60

80

100

Bro Snort

Fig. 3. Dropped/outstanding packets
of Bro and Snort.

Number of HTTP Requests
0 200 400 600 800

C
P

U
 U

ti
liz

a
ti
o
n
 (

%
)

0

2

4

6

8

10
Squid
PRADS

Fig. 4. CPU utilization comparison of
Squid and PRADS.

Number of HTTP Requests
0 200 400 600 800

M
a
x
im

a
l
R

e
s
id

e
n
t

M
e
m

o
ry

 (
K

B
y
te

s
)

×10
5

0

0.5

1

1.5

2
Squid
PRADS

Fig. 5. Maximal resident memory of
Squid and PRADS.

Middlebox 1 Middlebox 2

(1) <4, 8>

(2) <1, 5>

(3) <5, 1>

(4) <10, 4>

Demands:

Capacity:
CPU Mem.
20 20 20 20

Process (1), (2), (3) Process (4)

10/20

14/20

10/20

4/20

CPU Mem.

Fig. 6. A motivating example of multi-resource load balancing,
where we only consider load balancing on CPU.

Middlebox 1 Middlebox 2

CPU Mem.
20 20 20 20

Process (1) and (2) Process (3) and (4)

5/20

13/20
15/20

5/20

CPU Mem.

Fig. 7. Considering average load still leads to
utilization imbalance within a VNF.

Middlebox 1 Middlebox 2

CPU Mem.
20 20 20 20

Process (1) and (3) Process (2) and (4)

9/20 9/20
11/20

9/20

CPU Mem.

Fig. 8. Considering dominant load gives the
best load balancing performance.

We believe this is due to its implementation that caps the
CPU usage to avoid hogging the resource and the packet
logging process indeed consumes less CPU compared with
packet filtering which needs to search and match strings. As
shown in Fig. 3, though Bro’s percentage of buffered packets
is stable when traffic ranges from 300Mbps to 700Mbps,
buffered packets may be lost and result in long-tail flow
completion time, inflating latency for real-time processing.
Further, as traffic increases, the percentage of outstanding
packets buffered for processing increases to over 70%.

The measurements show that, in data centers where traffic
exhibits significant spatial and temporal variations [11], high
utilization easily leads to overload and performance degra-
dations. Our finding is consistent with some existing work
that also reports unstable packet processing performance when
server resource is heavily used [26]. It is important to load
balance the VNFs and servers when operating the NFV cluster.

B. Why Multi-Resource Load Balancing?

Next we motivate the need of considering multiple resources
for load balancing, again using empirical measurements. We
focus on assessing the CPU and memory usages of Squid
and PRADS now. We configure Squid as a web cache proxy to
cache and reuse web pages for a Firefox browser. For PRADS,
we configure it to passively listen on the NIC and record
the TCP SYN packets received. We use HttpClient [5] to
generate HTTP requests for different websites. For Squid,
we direct all the HTTP requests through the Squid proxy,
while for PRADS we directly send the HTTP requests to the
external websites. We vary the number of HTTP requests to
see their performances under different traffic loads. Consistent
with previous section, each VNF is pinned to a unique core

TABLE II
CONFIGURATIONS OF MACHINES IN ONE OF THE GOOGLE CLUSTERS [4],

[27], THE CPUS AND MEMORY ARE NORMALIZED TO THE MAXIMUM
MACHINE

CPUs Memory Number of Machines
0.5 0.5 11616
0.5 0.25 6152
0.5 0.75 1919
1.0 1.0 1411
0.25 0.25 224
0.5 0.124 74
0.5 0.03 5
0.5 0.96 5
1.0 0.5 3
0.5 0.06 2

and measurements are carried out independently for 10 runs.
The results are depicted with error bars in Figs. 4 and 5.

We observe that the multi-resource usage of NFs exhibits
salient heterogeneity. CPU and memory usages of both Squid
and PRADS increase proportionally with the number of re-
quests.1 PRADS is more CPU-bound: it uses ∼9% CPU when
the number of TCP requests is 800 while Squid’s CPU usage
is only ∼3.4%. Squid, on the other hand, is memory-bound:
its memory consumption is an order of magnitude larger than
PRADS. Given the fact that the NFV cluster hosts different
types of NFs [18] which may consume significantly hetero-
geneous amounts of different resources, one must consider
multiple resources for NFV load balancing.

1The memory usage of PRADS does increase linearly. As it uses much less
memory than Squid, this trend is not seen clearly in Fig. 5.

Middlebox 1 Middlebox 2

(1) <5, 8>

(2) <7, 4>

Demands:

Capacity:
CPU Mem.
10 20 20 10

6/10 6/20 6/20 6/10

CPU Mem.

Fig. 9. Evenly splitting requests
among two servers.

Middlebox 1 Middlebox 2

CPU Mem.

10 20 20 10

4.6/10

7.4/20 7.4/20

4.6/10

CPU Mem.

Fig. 10. Splitting requests con-
sidering dominant load.

C. Challenges of Multi-Resource Load Balancing

We now discuss the unique challenge of multi-resource
load balancing, and why using the concept of dominant load
can resolve it. Consider two identical middleboxes, each with
two resources, CPU and memory, as shown in Fig. 6. The
capacity is 20 units for each resource. There are 4 flows
with equal bandwidth demand, and the per-packet processing
demands of each flow are 〈4, 8〉, 〈1, 5〉, 〈5, 1〉, and 〈10, 4〉 as
in 〈CPU,memory〉, respectively. For simplicity here the flows
are unsplittable, while in general they are splittable, since in
practice we consider a flow as an aggregate of individual flows
between the same end-points.

We first show that traditional single resource load balancing
does not apply to the multi-resource setting. Suppose load bal-
ancing only concerns CPU. This results in the solution shown
in Fig. 6, where flows 1, 2, and 3 are routed to middlebox 1.
The CPU utilization of both is the same. However, memory
usage of middlebox 2 is much lower than middlebox 1. Only
considering one resource clearly cannot balance the loads of
multiple resources.

To consider multiple resources, one must scalarize the multi-
dimensional utilization vector [22]. A natural idea is to use the
average utilization of all resources, and equalize this metric
across the middleboxes. Applying average load to the same
example yields the solution depicted in Fig. 7, where flows
1 and 2 are directed to middlebox 1 and other two are
directed to middlebox 2. This roughly equalizes the average
load of both middleboxes. Yet for each middlebox, different
resources are not utilized evenly. For middlebox 1, its CPU
is well under-utilized while for middlebox 2, its memory is
under-utilized. Thus average load cannot balance the loads of
multiple resource well, either.

Finally, let us consider dominant load, i.e. the load of the
most utilized resource on the middlebox, as the load balancing
metric. This leads to flows 1 and 3 being directed to middlebox
1, as shown in Fig. 8. For middlebox 1 its CPU and memory
are equally utilized, and for middlebox 2 its CPU load is just
slightly higher than memory, significantly better than the two
solutions before. Further, the dominant loads of the two (45%
and 55%, respectively) are also balanced, and are much lower
than the dominant loads in Fig. 6 and Fig. 7. Thus we rely on
dominant load as the load balancing metric in this paper.

Further, in the splittable case, one may consider distributing
the flows proportional to each server’s processing capacity as

an effective strategy. Note that the heterogeneity of servers
exists in the cluster, as illustrated in Table II which lists the
configurations of machines in one of Google clusters [4], [27].
We consider an example as shown in Figs. 9 and 10 where
each middlebox has a total capacity of 30 units and those two
have different capacities of 〈10, 20〉 and 〈20, 10〉 units for CPU
and memory, respectively. Evenly splitting the requests results
in 60% dominant load on both servers as shown in Fig. 9.
However, the optimal solution is depicted in Fig. 10 with only
46% dominant load, which demonstrates that equally splitting
requests is not desirable in the multi-resource context.

III. MULTI-RESOURCE LOAD BALANCING PROBLEM

We now introduce our model and optimization framework
for Multi-Resource Load Balancing (MRLB) in NFV.

A. Model

We consider a provider that deploys its NFs on a cluster.
To overcome the limits of single-point failure and scalability,
the provider deploys an NF across M commodity servers,
and one server may host multiple NFs as shown in Fig. 11.
An NF can have multiple instances of VNFs deployed on
different commodity servers, performing the same processing
for different flows. The cluster consists of P distinct NFs.
Since the VNF placement problem has been studied [24], we
assume that these M servers and P NFs are static. Each server
j hosts a subset of VNFs denoted as Sj and has R different
hardware resources.

Commodity

Server

Middlebox

Load:
NFV

Firewall
NAT

IDS

WAN

Acceleration

Hardware

M1

M2

Flows

CPU Memory

Load:

a1p1

a2p1

a3p2

Legend:

Fig. 11. An NFV cluster where flows are directed through a network to the
virtual network functions (VNFs) deployed on the commodity servers.

Flows are directed to the NFV cluster to undergo packet
processing which consumes multiple resources. The set of
VNFs that a flow i needs to hit is Fi [17]. Flows have
different per-packet processing demands. For the purpose of
load balancing, we define a flow as an aggregate of traffic
that has the same processing demands. The provider is able
to collect statistics and enforce policies of network functions
[29]. Thus, rather than arbitrarily changing the NFs processing
online, which may violate the flow affinity requirement, we
consider an offline setting where the traffic demand (in packet
size or Gb) and Fi (set by the operator) of an aggregate
flow are known, and the load balancing decision needs to be

TABLE III
KEY NOTATIONS

Symbol Semantics
i ∈ [1, N] flow i
j ∈ [1,M] server j
k ∈ [1, R] resource k
Fi set of NFs flow i needs to be processed by
Fip whether NF p is in FF (i)
Sj set of deployed NFs on server j
Sjp whether NF p is in FS(j)
Dipk flow i’s demand of p type NF on resource k
Cjk server j’s capacity of resource k
aipj fraction of flow i’s traffic routed to j for NF

p to process
lj dominant load of server j

made periodically say every 10 minutes. Recent measurements
of production data center traffic also confirm that traffic is
quite stable in the time scale of minutes to days [28] and
recent technique achieves accurate traffic prediction [30]. We
assume that full-bisection bandwidth network is available in
the cluster, and do not consider the bandwidth footprint. Since
a flow is an aggregate of many TCP flows, we assume it can
be arbitrarily split among the servers, which is commonly used
in the literature [36].

B. Problem Formulation

We summarize some useful notations in Table III before
formulating our problem. Flow i’s resource demand vector for
NF p, obtained by multiplying its bandwidth demand (in pack-
ets/s) by per-packet processing demands (in resource/packet)
is denoted as 〈Dip1, Dip2, . . . , DipR〉, and server j’s capacity
vector is 〈Cj1, Cj2, . . . , CjR〉. Let aipj denote the fraction of
flow i’s traffic routed to server j for NF p to process.

The dominant load of server j is defined as:

lj = max
k

{
N∑
i=1

P∑
p=1

aipjDipk · FipSjp
Cjk

}
. (1)

Now, we rigorously formulate the MRLB problem. Our
objective is to balance the loads across all servers while
keeping the utilization of each resource low:

min max
j

lj (2)

s.t. (1),
M∑
j=1

aipj = 1, ∀ i, p : Fip 6= 0, (3)

N∑
i=1

P∑
p=1

aipjDipk · FipSjp ≤ Cjk, ∀ j, k, (4)

aipj ∈ [0, 1] , ∀ i, p, j, (5)
var. {aipj}.

The objective function is intuitive: We have to minimize
the maximum dominant load of M servers, which is similar
to single resource load balancing that minimizes the maxi-
mum link congestion for example. Constraint (3) is the usual
flow conservation constraint which ensures all the flows are
processed by the necessary NFs. The inequality (4) constrains
the usages of resources in all dimensions of a server by its
capacities.

Problem (2) is a classical minimax optimization, and can be
solved by the classical minimax solver. Though the classical
solver has polynomial time complexity, the number of itera-
tions it requires is directly related to the size of problem [15].
In our problem, the number of flows (with identical processing
demands) and number of servers can be O(102)–O(103), and
the number of NFs can be O(10)–O(102). Thus problem (2)
is a large-scale problem for which the conventional solver
incurs a large number of iterations. Yet the problem needs
to be solved within minutes in practice. Motivated by this ob-
servation, in the following we develop an efficient distributed
solution algorithm.

IV. ADMM-BASED ALGORITHM DESIGN

In this section, we present a new distributed algorithm to
solve large-scale MRLB problems efficiently. The algorithm
is based on the alternating direction method of multipliers
(ADMM), a simple yet effective method for solving large-
scale convex optimization problems [12]. We give a detailed
overview of ADMM is in our online appendix [1] and our
method falls into the category of proximal Jacobian ADMM
[16].

A. Transforming to the ADMM Form

Before we transform the MRLB problem to the ADMM
form, we simplify the problem formulation in (2). If a flow i
does not need NF p, the variables {aipj | ∀ j} and the constants
{Dipk | ∀ k} are immaterial to the problem. Thus we use âqj
and D̂qk to substitute aiqj and Dipk where q stands for a
unique pair of flow i and NF p that flow i must be processed
by (i.e. q → i, p). The row dimension of the newly introduced
variables is Q. Then, problem (2) can be expressed as:

min max
j

lj (6)

s.t. lj = max
k

{
Q∑
q=1

âqjD̂qk

Cjk

}
, ∀ j, (7)

M∑
j=1

âqj = 1, ∀ q, (8)

Q∑
q=1

âqjD̂qk ≤ Cjk, ∀ j, k, (9)

âqj ∈ [0, 1] , ∀ q, j, (10)
âqj = 0, ∀ q, j : FSjq→p = 0, (11)

var. {âqj}.

where the new constraint (11) indicates that if the server j
does not run NF p, we cannot route flows that need NF p
processing to this server.

To handle the minimax optimization (6), we introduce an
auxiliary variable L and reformulate the problem:

min L (12)

s.t. L ≥
Q∑
q=1

âqjD̂qk

Cjk
, ∀ j, k, (13)

(8), (9), (10), (11),
var. L, {âqj}.

Is ADMM directly applicable? Our problem (12) cannot
be direclty solved using ADMM. First, the constraints (13)
are inequalities, rather than the equality constraints required
by ADMM. Second, constraints (8) and (9) couple all variables
together, while in ADMM problems constraints are separable
for each set of variables. Moreover, this coupling happens
on two orthogonal dimensions simultaneously: The per-flow
demand conservation constraint (8) couples â across all servers
while the per-resource capacity constraint (9) couples â across
all flows.

The inequality constraints can be transformed to equality
constraints by introducing slack variables. For the second
challenge, the coupling prevents (12) from being solved dis-
tributively. To this end, we introduce another set of auxiliary
variables γqj = âqj , ∀ q, j, and reformulate the problem as
follows:

min L (14)

s.t. L−
Q∑
q=1

âqjD̂qk

Cjk
− δjk = 0, ∀ j, k (15)

M∑
j=1

γqj = 1, ∀ q, (16)

γqj = âqj , ∀ q, j, (17)
γqj ∈ [0, 1] , ∀ q, j, (18)
δjk ≥ 0,∀ i, j, (19)
(9), (10), (11),

var. L, {âqj}, {γqj}, {δjk}.

Remark: Problem (14) is obviously equivalent to the origi-
nal problem (2). In (16), γqj guarantees that the traffic demand
of a flow is fully processed while âqj ensures that all the
servers are not overloaded in any of the resources.

The augmented Lagrangian Lρ of (14) can be obtained as
follows:

Lρ = L+

M∑
j=1

R∑
k=1

ϑjk(L−
Q∑
q=1

âqjD̂qk

Cjk
− δjk)

+
ρ

2

M∑
j=1

R∑
k=1

(L−
Q∑
q=1

âqjD̂qk

Cjk
− δjk)2

+

Q∑
q=1

M∑
j=1

ϕqj(γqj − âqj) +
Q∑
q=1

M∑
j=1

ρ

2
(γqj − âqj)2 (20)

where ϑjk, ϕqj are dual variables for constraints (15) and (17),
respectively.

B. A Distributed ADMM Algorithm

Basically, ADMM solves the dual problem iteratively:
xt+1
u = argminxu

Lρ(xt1, · · · , xu, · · · , xtm, λt) for each vari-
able xu’s update in iteration t, where λ is the dual variable.
However, applying this classical Gauss-Seidel update method
[12] is not desirable, since it is only convergent for 2 blocks
of variables while our transformed formulation (14) has 4
blocks of variables. By splitting variables, m-block (m ≥ 3)
ADMM can be converted to the 2-block form [34]. However,
this method introduces too many auxiliary variables which
results in high computation time. The sequential updates of
Gauss-Seidel are also hard to implement in a distributed way
as discussed in our online appendix [1].

In order to develop an efficient algorithm with provable
convergence, we choose to rely on proximal Jacobian ADMM
[16]. Proximal Jacobian ADMM introduces a proximal term
1
2 ‖xu − x

t
u‖

2
Hu

of variable xu to the augmented Lagrangian
Lρ, where Hu is a symmetric and positive semi-definite
matrix and we let ‖xu‖2Hu

:= xTuHuxu. The proximal term
1
2 ‖xu − x

t
u‖

2
Hu

makes the subproblem strongly convex and
more stable.

Now we present our algorithm design. First, we initialize
the variables L, δ, â, γ and the multipliers ϑ, ϕ to 0. We set
the matrices Hu = ωI,∀u (ω > 0) in the proximal term. In
each iteration t+ 1, we perform five updates distributively.

1. L-update: The update of L can be obtained by solving
the following subproblem2:

min L+
ρ

2

M∑
j=1

R∑
k=1

(L−
Q∑
q=1

âtqjD̂qk

Cjk
− δtjk)2

+

M∑
j=1

R∑
k=1

ϑtjkL+
ω

2
(L− Lt)2 (21)

s.t. 0 ≤ L ≤ 1.

This problem has only one variable L and can be quickly
solved with standard solvers.

2. δ-update: Each server j solves the following subproblem
for obtaining δt+1

j := (δt+1
j1 , δt+1

j2 , · · · , δt+1
jR):

min
ρ

2

R∑
k=1

(
Lt −

Q∑
q=1

âtqjD̂qk

Cjk
− δjk

)2

2This can be easily derived from Lρ as in (20) by directly regarding
irrelevant variables as constants.

+

R∑
k=1

ϑtjkδjk +
ω

2

(
δj − δtj

)2
(22)

s.t. (19).

This problem has only R variables and can be easily solved
by any solvers for the quadratic program.

3. â-update: Each server j solves the following subproblem
for ât+1

j := (ât+1
1j , ât+1

2j , · · · , ât+1
Qj)

T:

min −
R∑
k=1

ϑtjk

Q∑
q=1

âqjD̂qk

Cjk
+
ω

2
(âj − âtj)2

+
ρ

2

R∑
k=1

(
Lt −

Q∑
q=1

âqjD̂qk

Cjk
− δtjk

)2

+

Q∑
q=1

(
−ϕtqj âqj +

ρ

2
(γtqj − âqj)2

)
(23)

s.t. (10).

This per-server subproblem, just like (22), is again a small-
scale quadratic problem which can be solved efficiently.

4. γ-update: Each generated q of the corresponding flow i
assigned to NF p solves the following subproblem for γt+1

q :=

(γt+1
q1 , γt+1

q2 , · · · , γt+1
qM):

min

M∑
j=1

(
ϕtijγqj +

ρ

2
(γqj − âtqj)2

)
+
ω

2

(
γq − γtq

)2
(24)

s.t. (16), (18).

The γ-update is performed for each flow assigned to the
specific NF, whereas the â-update is done for each server. This
demonstrates the necessity to introduce auxiliary variables γ
to break the coupling between variables.

5. Dual updates: Each server j updates ϑ for the con-
straint (15):

ϑt+1
jk = ϑtjk + τρ

(
Lt+1 −

Q∑
q=1

ât+1
qj D̂qk

Cjk
− δt+1

jk

)
(25)

while each flow i assigned to NF p updates ϕ for the
constraint (17):

ϕt+1
qj = ϕtqj + τρ(γt+1

qj − â
t+1
qj) (26)

Remark: As discussed above, {âqj} decides the fractions of
flow i that needs NF p processing routed to jth server. The use
of auxiliary variables {γqj} enables the separation of per-flow
and per-server constraints. The L-update proceeds towards the
lower maximal dominant load. The â-update guarantees the
distribution of all loads does not exceed the servers’ capacities
across all resources as in (9), while the γ-update ensures flow
conservation constraints in (8).

The distributed nature of proximal Jacobian ADMM allows
for a parallel implementation. In step 1, some machines can
be tasked with performing L-, δ-, and â-updates for each NFV
server, and some for γ-update for each flow at the same time,
which can be done in parallel. In step 2, the new results of
step 1 are broadcast for the dual variable updates before the
next iteration starts.

C. Optimality Analysis

We now analyze the optimality of our proposed ADMM-
based algorithm. Lemma 1 shows that our algorithm solves
the problem (2) optimally.

Lemma 1. Our proposed algorithm based on proximal Jaco-
bian ADMM converges to an optimal solution at the rate of
o(1/t) for (2).

The proof can be constructed along the same line as the
proof in [16], and is omitted here.

V. EVALUATION

We conduct trace-driven simulations to extensively evaluate
our algorithms for solving MRLB. According to [29], we set
the number of servers M to 100, the number of aggregated
flows N to 500, and the number of NFs P to 3.

A. Simulation Setup

Traces and Topology: Due to the lack of real-world data
about the processing demands of different network functions,
we use the Google cluster workload traces [27] which record
the resource consumptions of different jobs in a Google data
center to emulate the multi-resource demands of traffic. The
traces contain job demands for three resources, CPU, memory,
and local disk space, whose CDFs are depicted in Fig. 12. In
our simulation, we just use the CPU and memory demands,
which are more relevant to packet processing than disk I/O.
Though not ideal, this is arguably the only feasible evaluation
methodology and existing work [33] resorts to the same
approach.

We consider two settings of server configuration: (1) Ho-
mogeneous setting. The capacity of each resource on every
server is set to 1, which is the maximum normalized capacity
in Fig. 12 and Table II. (2) Heterogeneous setting. The
configuration of servers is generated according to the capacity
distribution shown in Table II. The experiments are conducted
in discrete time slots. In each slot, we generate the demand
vectors for each flow according to the distributions in Fig. 12.
The set of VNFs flow i needs to hit Fi and the set of VNFs
hosted by server j, Sj , are randomly chosen.

Scheme compared: We evaluate the following schemes.
• MRLBA: Our proposed ADMM-based multi-resource

load balancing algorithm. The parameters settings are
discussed below.

• Backfill Balance (BB): A commonly used greedy heuris-
tic for task scheduling in the multi-resource setting [23].
Here we apply BB with dominant load, referred to as

Normalized Demand
0 0.2 0.4 0.6 0.8 1

C
D

F

0

0.2

0.4

0.6

0.8

1

CPU Cores
RAM
Local Disk Space

Fig. 12. The resource demands in
Google’s cluster [27], which are nor-
malized to the maximal capacities.

Time Slot
1 2 3 4 5 6 7 8 9 10

 M
a

x
im

a
l

D

o
m

in
a

n
t

L
o

a
d

 (
%

)

20

30

40

50

60
MRLBA BBD BBA PB MM

Fig. 13. The comparison of maximum
dominant load of all resources on all
servers in the homogeneous setting.

Time Slot
1 2 3 4 5 6 7 8 9 10

 M
a

x
im

a
l

D

o
m

in
a

n
t

L
o

a
d

 (
%

)

40

60

80

100
MRLBA BBD BBA PB MM

Fig. 14. The comparison of maximum
dominant load of all resources on all
servers in the heterogeneous setting.

Time Slot

1 2 3 4 5 6 7 8 9 10

J
a

in
's

 F
a

ir
n

e
s
s
 I

n
d

e
x

0.87

0.9

0.95

1

MRLBA BBD BBA PB MM

Fig. 15. The comparison of Jain’s
fairness index of dominant loads of all
servers in the homogeneous setting.

Time Slot

1 2 3 4 5 6 7 8 9 10

J
a

in
's

 F
a

ir
n

e
s
s
 I

n
d

e
x

0.85

0.9

0.95

1

MRLBA BBD BBA PB MM

Fig. 16. The comparison of Jain’s
fairness index of dominant loads of all
servers in the heterogeneous setting.

Time Slot

1 2 3 4 5 6 7 8 9 10

J
a

in
's

 F
a

ir
n

e
s
s
 I

n
d

e
x

0.8

0.85

0.9

0.95

1

MRLBA BBD BBA PB MM

Fig. 17. The comparison of Jain’s
fairness index of CPU loads of all
servers in the homogeneous setting.

Time Slot

1 2 3 4 5 6 7 8 9 10

J
a

in
's

 F
a

ir
n

e
s
s
 I

n
d

e
x

0.8

0.85

0.9

0.95

1

MRLBA BBD BBA PB MM

Fig. 18. The comparison of Jain’s
fairness index of CPU loads of all
servers in the heterogeneous setting.

Time Slot

1 2 3 4 5 6 7 8 9 10

J
a

in
's

 F
a

ir
n

e
s
s
 I

n
d

e
x

0.85

0.9

0.95

1

MRLBA BBD BBA PB MM

Fig. 19. The comparison of Jain’s
fairness index of memory loads of all
servers in the homogeneous setting.

BBD, and also with average load as discussed in Sec. II,
denoted as BBA.

• Priority Based (PB): Different weights are given to the
individual resources based on their load distributions. The
load of a server is defined as the weighted average of each
resource’s load [21]. PB aims at minimizing the standard
deviation of all the servers’ loads.

• Market Mechanism (MM): A market mechanism policy
is introduced in [37] to balance multi-resource loads. In
MM, job i selects the server j with lowest cost which is
defined as

∑R
k Jik·Ljk∑R

k Jik
, where Jik is task i’s demand on

resource k and Ljk is server j’s load on resource k.
• fminimax: A function provided by MATLAB which

internally implements the classical sequential quadratic
programming (SQP) solver [2]. This is used for compar-
ison of the convergence time.

ADMM Parameters: In ADMM algorithm, three parame-
ters need to be tuned: the penalty parameter ρ, the damping
parameter τ , and ω in the quadratic form in (21), (22), (23),
(24), (25), and (26). According to the empirical study in [16],
proximal Jacobian ADMM performs better with ρ = 0.1,
τ = 1, and ω = 0.1(m − 1)ρ where m is the number of
blocks (i.e. m = 4). We follow these guidelines here. We also
adaptively update parameters according to [16]. The stopping
criterion is that the relative error of the objective value between
two consecutive iterations is less than 10−3.

Performance metrics: The main performance metric is the
maximum dominant load of servers, i.e. the objective of
(2) in Sec. III. It shows the worst-case performance in the
system. We also use the Jain’s fairness index to evaluate the
load balancing performance across servers. The Jain’s fairness
index,

J (x1, x2, · · · , xn) =
(
∑n
i=1 xi)

2

n ·
∑n
i=1 x

2
i

,

is a value between 1
n and 1, where n is the number of elements.

A value closer to 1 means the elements are more similar, i.e.

all servers have roughly the same dominant load. We calculate
this index by treating the dominant loads of each server as
{xi}. We also investigate Jain’s index of individual resource
usage.

B. Performance Evaluation
Load balancing among servers. Fig. 13 and 14 depict the

maximum dominant load comparison of all schemes in both
server configuration settings, which reflects the worst-case
load among servers. We observe the following: (1) MRLBA
offers the best performance with the lowest maximum load. It
outperforms BBA, PB, and MM by 2.19×, 1.66×, and 1.38×,
respectively on average in homogeneous setting, by 2.25×,
2.24×, and 1.79×, respectively on average in heterogeneous
setting, which demonstrates its ability to balance load in
multi-resource environments. (2) Compared with BBA, PB,
and MM, the performance variation of MBLRA is smaller,
indicating that MRLBA better adapts to traffic variations.

Further, Fig. 15 and 16 leverage the Jain’s fairness index
to show MRLBA’s load balancing performance among the
servers. On average, MRLBA is 1.04×, 1.18× and 1.04×
better. This shows that MRLBA results in a more balanced
load distribution among all the servers. As observed in Fig. 15,
though PB and MM can sometimes outperform BBD consid-
ering Jain’s fairness index, BBD indeed obtain a distribution
with lower maximum dominant load in Fig. 13, especially
in heterogeneous setting as shown in Fig. 14. The reason
behind is that PB and MM are designed to achieve balanced
load distribution while BBD is devised for minimizing the
maximum dominant load, which is a more important metric
as we have shown in the Sec. II. Moreover, with respect to
the individual resource, Figs. 17, 18, 19 and 20 plot the Jain’s
fairness index of CPU and memory in both settings. It can be
seen that MRLBA outperforms other algorithms.

Impact of traffic load. Next we investigate the performance
of our algorithm in different traffic load conditions. We intro-
duce a traffic load factor φ to scale the total resource demands
of all flows relative to the baseline setting.

Time Slot

1 2 3 4 5 6 7 8 9 10

J
a

in
's

 F
a

ir
n

e
s
s
 I

n
d

e
x

0.8

0.9

1

MRLBA BBD BBA PB MM

Fig. 20. The comparison of Jain’s
fairness index of memory loads of all
servers in the heterogeneous setting.

Load Parameterφ
0.8 0.9 1.0 1.1 1.2

 M
a

x
im

a
l

D

o
m

in
a

n
t

L
o

a
d

 (
%

)

20

40

60

80
MRLBA BBD BBA PB MM

Fig. 21. The comparison of maximum
dominant load with varying traffic
load factors in homogeneous setting.

Load Parameter φ
0.8 0.9 1.0 1.1 1.2

 M
a

x
im

a
l

D

o
m

in
a

n
t

L
o

a
d

 (
%

)

20

40

60

80

100

MRLBA BBD BBA PB MM

Fig. 22. The comparison of maximum
dominant load with varying traffic
load factors in heterogeneous setting.

Load Parameter φ
0.8 0.9 1.0 1.1 1.2

J
a

in
's

 F
a

ir
n

e
s
s
 I

n
d

e
x

0.85

0.9

0.95

1

MRLBA BBD BBA PB MM

Fig. 23. The comparison of Jain’s
fairness index of dominant load with
varying traffic load factors in homo-
geneous setting.

Load Parameter φ
0.8 0.9 1.0 1.1 1.2

J
a

in
's

 F
a

ir
n

e
s
s
 I

n
d

e
x

0.85

0.9

0.95

1

MRLBA BBD BBA PB MM

Fig. 24. The comparison of Jain’s
fairness index of dominant load with
varying traffic load factors in hetero-
geneous setting.

Load Parameter φ
0.8 0.9 1.0 1.1 1.2

J
a

in
's

 F
a

ir
n

e
s
s
 I

n
d

e
x

0.8

0.85

0.9

0.95

1

MRLBA BBD BBA PB MM

Fig. 25. The comparison of Jain’s
fairness index of CPU with varying
traffic load factors in homogeneous
setting.

Load Parameter φ
0.8 0.9 1.0 1.1 1.2

J
a

in
's

 F
a

ir
n

e
s
s
 I

n
d

e
x

0.8

0.85

0.9

0.95

1

MRLBA BBD BBA PB MM

Fig. 26. The comparison of Jain’s
fairness index of CPU with varying
traffic load factors in heterogeneous
setting.

Number of Iterations

0 20 40 60 80 100

C
D

F

0

0.2

0.4

0.6

0.8

1

MRLBA

80% runs are under

34 iterations

Fig. 27. Through over 300 runs, the
MRLBA is able to converge within 34
iterations in most of the time.

The higher the φ is, the higher the resource contention
is. We look at both the maximum dominant load and the
Jain’s fairness index. Fig. 21 and 22 show that the utilization
of each resource on each server increases when the traffic
load increases since each server needs to handle more traffic.
Moreover, we can observe that the slope of the MRLBA curve
is smaller compared with other schemes, which demonstrates
the scalability of MRLBA to handle increasing traffic. Further-
more, in Fig. 23, 24, 25, 26, compared with BBA, PB, and
MM, MRLBA results in a more balanced load distribution.
Specifically, it brings 1.09×, 1.17× and 1.01× improvements
in Jain’s fairness index, respectively, as shown in Fig. 24.

Comparison of load balancing objectives. Recall that
BBD uses dominant load as the criteria while BBA uses
average load. From Fig. 13, 14, 15, 16, 21, 22, 23 and 24,
it can be observed that in most runs, BBD outperforms BBA
in both maximum dominant load and Jain’s index considering
dominant loads of all servers. This confirms that dominant
load is a better load balancing objective than average load.
However, as shown in Fig. 19, BBA results in a more balanced
situation considering memory resource. This may be due to the
demand distribution in Fig. 12 where the demand for CPU is
higher compared with the demand for memory. Thus, BBD
tries to lower the CPU usage which is relatively more stressed
in the homogeneous setting. From Fig. 20, we can observe that
this load imbalance problem of individual memory resource
is mitigated. The reason behind is that the memory capacity
of the NFV cluster in the heterogeneous setting is lower
compared with it in the homogeneous setting, as shown in
Table II. Therefore, in the heterogeneous setting, the memory
may become the more stressed resource.

Convergence of our algorithm. At last, we experimentally
examine the actual convergence speed of our MRLBA. Fig. 27
plots the CDF of the number of iterations that our algorithm
needs to converge for over 100 runs with the same scale.
Our algorithm is able to converge within 34 iterations for

TABLE IV
AVERAGE RUNTIME OF MRLBA AND fminimax

Method

Runtime Scale
MRLBA fminimax

N=50, M=20 0.066s 5.996s
N=100, M=25 0.126s 57.501s
N=200, M=50 0.449s 8971.113s

N=500, M=100 5.594s -
N=1000, M=200 31.544s -

80% of the runs. The fastest run only takes 15 iterations,
and the slowest takes 96 iterations. Further, we examine the
runtime of MRLBA as well as fminimax. The experiments are
done on a server with Intel quad-core Xeon E5620 2.4GHz
CPU and are carried out in 10 unique runs. The average
runtime under different scales is shown in Table IV. Compared
with fminimax solver, MRLBA converges in much less time,
especially for large-scale problems. Note fminimax does
not converge after one day for large-scale problems. This
demonstrates that MRLBA is suitable for the time scale of
load balancing in production networks.

VI. IMPLEMENTATION

Besides simulations, we develop a prototype of our ADMM-
based MRLB solver and conduct testbed experiments. As
shown in Fig. 28, the prototype has four main components
implemented in the controller: policy enforcer, MRLB solver,
flow entries installer, and demand collector. The policy en-
forcer is used by the operator to specify which VNFs are
needed for different flows. The demand collector is responsible
for collecting and analyzing multi-resource usages for deciding
the demand input to the MRLB solver. We use the atop tool
to log the resource usages on each VNF server and send these
logs to the controller. The MRLB solver takes input from
the policy enforcer and demand collector to generate the load

Control Plane

Policy

Enforcer

Data Plane

Flow Entry

Installer

Centralized Controller

MRLB

Solver

Commodity Server

Physical

Switch

Demand

Collector

VM
S
 1:

TCP traffic

VM
S
 2: HTTP

request

vSwitch

Flow Table

SrcIP DstIP …... Actions

VM
R
 1: Bro

and Squid

vSwitch

Commodity Server

Flow Table

SrcIP …... Actions

VM
R
 2: Bro

and Squid

Fig. 28. The design of our MRLB solver in practice.

VM
R

 1 VM
R

 2

U
s
a
g
e
 (

%
)

0

20

40

60

80 MRLBA
BBA

(a) CPU

VM
R

 1 VM
R

 2

U
s
a
g
e
 (

%
)

0

20

40

60

80 MRLBA
BBA

(b) Resident memory

Fig. 29. Resource usages on the two receiver VMs.

balancing decisions based on Sec. IV, which is distributively
implemented. Given the load balancing results, the flow entries
installer enforces them by inserting QoS rules to host server
vSwitch and physical switches.

We also conduct experiments on the testbed in a setting
similar to that in Sec. II. On one server, we set 2 VMs each
with 3 logical cores and 1GB memory as the traffic generator.
One VM generates TCP traffic at 500Mbps which needs packet
filtering by Bro, and the other VM sends 800 HTTP requests
which are directed to the Squid. On the other machine, we set
up another 2 VMs with the same configuration that host both
Bro and Squid. The two VMs are pinned to a unique logical
core. All VMs run OVS which connect to the Floodlight
controller [3] on the host server.

Here we take the resource usages measured in Sec. II
as the input to the MRLB solver. Fig. 29 plots the results.
We observe that MRLBA achieves a more balanced load
distribution between 2 VMs and outperforms BBA by 1.22×
in terms of dominant load.

VII. RELATED WORK

In this section, we briefly review existing work on multi-
resource allocation and multi-resource load balancing problem
in the context of task scheduling, as well as max-min fairness
and ADMM.

Multi-resource allocation. Multi-resource fair allocation is
first discussed in [19] in the context of cluster job allocation.
Ghodsi et al. propose the notation of Dominant Resource Fair-
ness (DRF) and allocation algorithms [19], and soon extend to
considering multi-resource packet scheduling on middleboxes.
The follow-up work (e.g. [25]) proposes methods for reducing
the complexity of such a multi-resource scheduler. Wang et
al. [33] explore the trade-off between fairness and throughput
and propose a new DRF-based scheduler. As discussed in

Sec. I, allocation problems (including VM-level [35] and flow-
level [14] scheduling) are related to but different from load
balancing: the former focuses on jobs and the fairness among
them, while the latter focuses on servers given resources
demands.

Multi-resource load balancing. Load balancing problem in
the multi-resource setting has been studied in task scheduling,
cache system and cloud system [21], [23], [37]. William et
al. define average load of all resources as the server’s load
[23], while in [21], a server’s load is defined as the weighted
average of different resources where the weights are based on
the runtime loads. And a market mechanism is proposed to
schedule jobs in the multi-resource setting [37]. Those works
are inherently a variant of multi-dimensional bin packing
problem [13], where the task (job or request) is atomic and
unsplittable. As disscused in Sec. I, our work distinguishes
from multi-resource task scheduling: flow is splittable among
servers and our objective is to minimize the dominant load
rather than achieving balanced load distribution.

Max-min fairness. The MRLB problem formulation is
closely related to max-min fairness, which has been exten-
sively studied in the literature. To solve max-min problems,
classical methods try to maximize the lowest allocation iter-
atively by leveraging LP solvers in each iteration, which has
been proved inefficient and slow in [15]. Addressing the issue,
Danna et al. use the idea of binary search to find saturated
vertices and edges, which is shown experimentally to be faster
[15]. In this paper, we resort to another technique, ADMM,
to deal with the inefficiency.

ADMM. Firstly proposed in the 1970s, great advances in
ADMM have been made in the field of statistics, machine
learning and related areas [12]. In the field of networking,
Xu et al. [36] derive the routing decisions for geo-distributed
cloud services by using ADMM. Several recent works [16],
[34], [38] extend the classical 2-Block ADMM [12] to the
general m-Block (m ≥ 3) case with convergence guarantees.
In this paper, we introduce auxiliary variables based on [16],
which falls into the category of proximal Jacobian ADMM.

VIII. CONCLUSION

In this paper, we presented the study on NFV load balancing
in the multi-resource setting and motivated it through empirical
measurements. Based on the notion of dominant load, we
formally presented our multi-resource load balancing problem
which considers both resource and server dimensions. Lever-
aging proximal Jacobian ADMM, we devised a distributed
algorithm by introducing auxiliary variables to decompose the
origin problem into a series of small-scale subproblems which
can be solved efficiently. Extensive trace-driven simulations of
both homogeneous and heterogeneous configuration settings
show that our proposed algorithm outperforms greedy heuris-
tics by ∼2.23× on average. Further, our proposed algorithm
performs significantly faster than the benchmarking algorithm
and it converges within 34 iterations for 80% of the time.
Experimental results on testbed also demonstrated our algo-
rithm’s effectiveness.

REFERENCES

[1] https://www.dropbox.com/s/mlvdtqvgwet0dxi/p-appendix.pdf?dl=0.
[2] http://www.mathworks.com/help/optim/ug/

constrained-nonlinear-optimization-algorithms.html#f26684.
[3] Floodlight Project. http://www.projectfloodlight.org/floodlight/.
[4] Google cluster workload trace. https://github.com/google/cluster-data.
[5] HttpComponents Client. http://hc.apache.org/httpcomponents-client-ga/

index.html.
[6] PRADS. http://gamelinux.github.io/prads/.
[7] Snort Network Intrusion Prevention System. http://www.snort.org/.
[8] Squid: Optimising Web Delivery. http://www.squid-cache.org/.
[9] The Bro Network Security Monitor. http://www.bro.org/.

[10] M. Alizadeh, T. Edsall, S. Dharmapurikar, R. Vaidyanathan, K. Chu,
A. Fingerhut, V. T. Lam, F. Matus, R. Pan, N. Yadav, and G. Varghese.
CONGA: Distributed Congestion-aware Load Balancing for Datacenters.
In Proc. of ACM SIGCOMM, 2014.

[11] T. Benson, A. Akella, and D. A. Maltz. Network Traffic Characteristics
of Data Centers in the Wild. In Proc. of ACM IMC, 2010.

[12] S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein. Distributed
optimization and statistical learning via the alternating direction method
of multipliers. Foundations and Trends in Machine Learning, 2011.

[13] C. Chekuri and S. Khanna. On multidimensional packing problems.
SIAM Journal on Computing, 2004.

[14] M. Chowdhury, Z. Liu, A. Ghodsi, and I. Stoica. HUG: Multi-Resource
Fairness for Correlated and Elastic Demands. In Proc. of USENIX NSDI,
2016.

[15] E. Danna, S. Mandal, and A. Singh. A practical algorithm for balancing
the max-min fairness and throughput objectives in traffic engineering.
In Proc. of IEEE INFOCOM, 2012.

[16] W. Deng, M.-J. Lai, Z. Peng, and W. Yin. Parallel multi-block ADMM
with O (1/k) convergence. arXiv preprint arXiv:1312.3040, 2013.

[17] S. K. Fayazbakhsh, L. Chiang, V. Sekar, M. Yu, and J. C. Mogul.
Enforcing network-wide policies in the presence of dynamic middlebox
actions using flowtags. In Proc. of USENIX NSDI, 2014.

[18] A. Gember-Jacobson, R. Viswanathan, C. Prakash, R. Grandl, J. Khalid,
S. Das, and A. Akella. OpenNF: Enabling Innovation in Network
Function Control. In Proc. of ACM SIGCOMM, 2014.

[19] A. Ghodsi, M. Zaharia, B. Hindman, A. Konwinski, S. Shenker, and
I. Stoica. Dominant resource fairness: Fair allocation of multiple
resource types. In Proc. of USENIX NSDI, 2011.

[20] P. Gill, N. Jain, and N. Nagappan. Understanding network failures in
data centers: Measurement, analysis, and implications. In Proc. of ACM
SIGCOMM, 2011.

[21] Y. Jia, I. Brondino, R. J. Peris, M. P. Martínez, and D. Ma. A multi-
resource load balancing algorithm for cloud cache systems. In Proc. of
ACM SAC, 2013.

[22] C. Joe-Wang et al. Multi-resource allocation: Fairness-efficiency trade-
offs in a unifying framework. In Proc. of IEEE INFOCOM, 2012.

[23] W. Leinberger, G. Karypis, and V. Kumar. Job scheduling in the presence
of multiple resource requirements. In Proc. of ACM/IEEE SC. ACM,
1999.

[24] L. Lewin-Eytan, J. Naor, R. Cohen, and D. Raz. Near Optimal Placement
of Virtual Network Functions. In Proc. of IEEE INFOCOM, 2015.

[25] X. Li and C. Qian. Low-complexity multi-resource packet scheduling
for network function virtualization. In Proc. of IEEE INFOCOM, 2015.

[26] R. Potharaju and N. Jain. Demystifying the Dark Side of the Middle:
A Field Study of Middlebox Failures in Datacenters. In Proc. of ACM
IMC, 2013.

[27] C. Reiss, A. Tumanov, G. R. Ganger, R. H. Katz, and M. A. Kozuch.
Heterogeneity and dynamicity of clouds at scale: Google trace analysis.
In Proc. of ACM SoCC, 2012.

[28] A. Roy, H. Zeng, J. Bagga, G. Porter, and A. C. Snoeren. Inside the
Social Network’s (Datacenter) Network. In Proc. of ACM SIGCOMM,
2015.

[29] J. Sherry, S. Hasan, C. Scott, A. Krishnamurthy, S. Ratnasamy, and
V. Sekar. Making Middleboxes Someone else’s Problem: Network
Processing As a Cloud Service. In Proc. of ACM SIGCOMM, 2012.

[30] H. Wang, L. Chen, K. Chen, Z. Li, Y. Zhang, H. Guan, Z. Qi, D. Li,
and Y. Geng. Flowprophet: Generic and accurate traffic prediction for
data-parallel cluster computing. In Proc. of IEEE ICDCS, 2015.

[31] P. Wang, H. Xu, Z. Niu, D. Han, and Y. Xiong. Expeditus: Congestion-
aware load balancing in clos data center networks. In Proc. of ACM
SoCC, 2016.

[32] T. Wang, F. Liu, J. Guo, and H. Xu. Dynamic sdn controller assignment
in data center networks: Stable matching with transfers. In Proc. of
IEEE INFOCOM, 2016.

[33] W. Wang, C. Feng, B. Li, and B. Liang. On the fairness-efficiency
tradeoff for packet processing with multiple resources. In Proc. of ACM
CoNEXT, 2014.

[34] X. Wang, M. Hong, S. Ma, and Z.-Q. Luo. Solving multiple-block
separable convex minimization problems using two-block alternating
direction method of multipliers. arXiv preprint arXiv:1308.5294, 2013.

[35] Z. Xiao, W. Song, and Q. Chen. Dynamic resource allocation using
virtual machines for cloud computing environment. IEEE Transactions
on Parallel and Distributed Systems, 2013.

[36] H. Xu and B. Li. Joint request mapping and response routing for geo-
distributed cloud services. In Proc. of IEEE INFOCOM, 2013.

[37] C. C. Yang, K. T. Chen, C. Chen, and J. Y. Chen. Market-based
load balancing for distributed heterogeneous multi-resource servers. In
Proc. of IEEE ICPADS, 2009.

[38] Z. Zhou, F. Liu, B. Li, B. Li, H. Jin, R. Zou, and Z. Liu. Fuel cell
generation in geo-distributed cloud services: A quantitative study. In
Proc. of IEEE ICDCS, 2014.

