
Fed2Com: Towards Efficient Compression
in Federated Learning

Yu Zhang1*, Wei Lin1*, Sisi Chen1, Qingyu Song1, Jiaxun Lu2, Yunfeng Shao2, Bei Yu1, and Hong Xu1
1Dept. of Computer Science and Engineering, The Chinese University of Hong Kong, Hong Kong.

2Huawei Technologies Noah’s Ark Lab, China.

Abstract—Federated learning (FL) is a distributed machine
learning system that enables multiple clients to collaboratively
train a machine learning model without sacrificing data privacy.
In the last few years, various biased compression techniques have
been proposed to alleviate the communication bottleneck in FL.
However, these approaches rely on an ideal setting where all
clients participate and continuously send their local errors to the
cloud server. In this paper, we design a communication-efficient
algorithmic framework called Fed2Com for FL with non-i.i.d
datasets. In particular, Fed2Com has a two-level structure: At
the client side, it leverages unbiased compression methods, e.g.,
rand-k sparsification, to compress the upload communication,
avoiding leaving errors at the client. Then on the server side,
Fed2Com applies biased compressors, e.g., top-k sparsification,
with error correction to compress the download communication
while stabilizing the training process. Fed2Com can achieve
high compression ratio while maintaining robust performance
against data heterogeneity. We conduct extensive experiments on
MNIST, CIFAR10, Sentiment140 and PersonaChat datasets, and
the evaluation results reveal the effectiveness of Fed2Com.

Index Terms—Federated learning, Communication compres-
sion, Non-i.i.d data

I. INTRODUCTION

Traditionally, the training of machine learning models relies
on a large data center to collect and process a vast amount
of client data, which incurs high latency, low bandwidth,
and privacy/security concerns. In this circumstance, federated
learning (FL) has emerged as a prevailing setting for training
machine learning models as it allows multiple clients to
collaboratively train a model without data sharing [1]. In the
federated learning settings, participating clients do not send
their local data to the cloud server. Instead, they perform
multiple epochs of SGD based on their local datasets and
communicate their models to the cloud. Then, the cloud server
coordinates an optimization procedure among the clients and
updates the global model parameters. By doing so, not only
can FL significantly alleviate the risk of compromising pri-
vacy/security, but it also reduces communication costs through
infrequent communication.

Despite the aforementioned advantages of FL, FL as it
stands now faces two dire challenges: high communication
overhead due to the ever-increasing sizes of learning mod-
els [2], and non-i.i.d data across clients that makes conver-
gence slow or even not possible. The two seem to be at odds
with each other, as intuitively sharing less data for training

* These authors contribute equally to this work.

means less potential or information to achieve convergence.
Some recent work suggests that sparsification schemes like
top-k can address these two challenges simultaneously [3].
The caveat is that error feedback is needed to ensure conver-
gence [3]. In particular, error feedback works by storing the
compression error in local memory and adding it to the global
updates in the next iteration. This assumes an ideal setting
where all clients participate and continuously send their local
errors in each round, which unfortunately does not hold in
practical FL settings. With a large number of clients, usually
just a small fraction of them are chosen randomly in each
round to send their local updates to the central server(s). The
seminal FedAvg [1] along with many other FL systems follow
this setup [2], [4], [5]. In this case, error feedback does not
work because very likely a client will not be chosen enough
times for its errors to be meaningfully accumulated [2], which
implies that top-k may even lead to divergence [6] (more
details in §III-A).

In this work, we propose a novel framework that can address
both the communication and convergence challenges in prac-
tical FL settings with sparse clients. Our framework, dubbed
Fed2Com, has a two-level structure: At the client side, a partic-
ipating client uses unbiased compression methods, e.g., rand-
k sparsification, to compress its local updates. Particularly,
unbiased compressors can reduce the amount of data to be
sent to the cloud, and combat the slow convergence effect that
biased methods such as top-k bring without error feedback.
Then at the server side in the cloud, to further reduce the com-
munication overhead, we apply biased compressors, e.g., top-k
sparsification, to dispatch only the most significantly updated
parameters to the clients. Since the biased compression is now
applied to the model parameters, the biased errors naturally
accumulate, and the error correction method can work now. We
do not use unbiased compressors here as it has been shown that
biased compression techniques with error correction are more
effective in stabilizing overall convergence [3]. Naturally, with
unbiased compressors at client side and biased compressors at
cloud side, Fed2Com can achieve both uplink and downlink
compression, thus solving the communication challenge.

We perform several numerical experiments which validate
the effectiveness of our proposed Fed2Com. Under the regime
of infrequent communication and non-i.i.d datasets, our pro-
posed Fed2Com could achieve a high compression ratio while
maintaining fast convergence, whereas FedAvg suffers from

severe performance deterioration or even failure of training.
In particular, we find the dual-compression module, i.e.,
unbiased compressors at client and biased compressors at
cloud, contributes to not only the bidirectional communication
compression but also the stabilization of the training process.

In general, our contribution can be summarized as follows:

• We find out that utilizing unbiased compression at the
client side and biased compression with error feedback
at the cloud side significantly enhances FL framework
convergence in the context of non-i.i.d settings, thus
offering a robust solution to data heterogeneity.

• We propose Fed2Com, a simple yet effective FL frame-
work, to achieve efficient communication and fast conver-
gence in the regime of small local data and heterogeneous
datasets.

• We empirically verify the effectiveness of our method
with two image recognition tasks and two language
modeling tasks. Particularly, we find that Fed2Com can
reduce up to 1

13000 of the uplink communication with
minimal impact on learning accuracy.

II. RELATED WORK

For communication-constrained environments, there are
many works on decreasing the communication overhead. In
general, these works can be categorized into two classes: one
is to reduce the communication rounds and the other is to
compress the uplink/downlink transmission in each commu-
nication round. Here, we briefly introduce the ones that are
close to our work.

Infrequent Communication: One notable algorithm to
reduce the total number of bytes transferred during training
is FedAvg [1], where clients carry out multiple steps of
stochastic gradients descent (SGD) locally before sending the
model update to the aggregator. However, one disadvantage of
FedAvg is that taking many local steps can result in degraded
convergence on non-i.i.d data. This makes intuitive sense
since taking many local steps on client datasets that are not
representative of the overall distribution would lead to local
overfitting, hence hindering global convergence [4]. In other
words, although FedAvg has a convergence guarantee for the
i.i.d setting [7], this guarantee can not be applied directly to
the non-i.i.d setting. Variants of FedAvg have been proposed
to improve its performance on non-i.i.d data. Sahu et al. [5]
propose FedProx to constrain the local gradient update steps
in FedAvg by penalizing the L2 distance between local models
and the current global model. Under the bounded dissimilarity
assumption, FedProx could recover the convergence rate of
SGD. Luping et al. [8] propose Communication-Mitigated
Federated Learning (CMFL) to dynamically identify the irrel-
evant updates made by clients and preclude them from being
uploaded in advance [8]. In this way, CMFL can substan-
tially reduce the communication overhead by decreasing the
communication rounds while still guaranteeing the learning
convergence on non-i.i.d setting [8].

Parameter Compression: Even with a satisfiable con-
vergence rate on non-i.i.d datasets, these methods require
local clients to upload or download an intact model. More
specifically, in each communication round, clients have to
download and upload the whole model parameters, which
would pose a heavy burden on local clients since clients
typically connect to the central aggregator over slow and
unreliable connections (∼1Mbps) [9]. One natural solution
to solve this problem is to compress the stochastic gradient
such that the result is still an unbiased estimate of the true
gradient, including stochastic quantization [10] and stochastic
gradient sparsification [11]. However, unbiased compressors
might introduce extra variance [12]. Combined with error feed-
back, biased compressor, such as top-k [13] sparsification and
signSGD [14], can often achieve superior performance when
compared to their unbiased counterparts, which is attributed
to their lower empirical variance [12]. Yang et al. [3] propose
to leverage biased compressor, i.e., top-k, with error feedback
at client side, which only slightly increases the local variance
constant and does not affect the overall convergence rate for
non-i.i.d. FL with infrequent communication. Nevertheless,
carrying out error feedback requires local client states, which
is often infeasible in federated learning since the local error
may not be able to be re-introduced due to random client
selection.

III. MOTIVATION

In this section, we motivate our work based on two
examples: Through the first, we illustrate the necessity to
perform unbiased compression at client side; and through the
second we demonstrate the superiority of carrying out biased
compression at cloud side.

A. Unbiased Compression at Client

Here we train a ResNet9 [15] model (with 6.5M parameters)
with CIFAR10 [16] in the FL framework with both i.i.d and
non-i.i.d datasets. In particular, although CIFAR10 is an i.i.d
dataset, we create a non-i.i.d dataset by assigning each client
images from only a single class without overlapping. We set
10,000 clients, each having 5 images, and one cloud server.
We train with 1% clients participating in each iteration, for a
total of 96 iterations. Besides, each selected client performs 4
local steps before sending updates to the cloud. We examine
both biased and unbiased compression methods on the client
side. Particularly, the biased compression method performed at
the client side is top-k with error feedback, and the unbiased
compression technique is rand-k. Note that in top-k, we do
not suppose clients will be selected enough times to upload
compression errors to the cloud. Since clients are chosen
randomly, chances are that they will not be able to upload
their local errors until the end of training. For rand-k, to
ensure unbiasedness, we randomly drop out coordinates of the
gradients and proportionally scale the remaining coordinates
by d

k [11].
Fig. 1 shows the training loss and accuracy of different FL

schemes. In the i.i.d setting in Fig. 1(a) and 1(b), all methods

0 25 50 75 100
Training Iterations

0.5

1.0

1.5

2.0
Tr
ai
n
Lo

ss
FedAvg
Top-K + EF
Rand-K

(a)

0 25 50 75 100
Training Iterations

0.2

0.4

0.6

0.8

Ac
cu
ra
cy

FedAvg
Top-K + EF
Rand-K

(b)

0 25 50 75 100
Training Iterations

0

1

2

3

4

5

Tr
ai
n
Lo

ss

FedAvg
Top-K + EF
Rand-K

(c)

0 25 50 75 100
Training Iterations

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu
ra
cy

FedAvg
Top-K + EF
Rand-K

(d)

Fig. 1. Comparison of top-k + EF and rand-k sparisification at client side. (a)
ResNet9 training loss curve under i.i.d setting. (b) ResNet9 training accuracy
rurve under i.i.d setting (c) ResNet9 training loss curve under non-i.i.d setting.
(d) ResNet9 training accuracy rurve under non-i.i.d setting.

show signs of convergence and reach good accuracy. Particu-
larly, rand-k enjoys comparable performance as uncompressed
FedAvg, and outperforms top-k with faster convergence and
higher accuracy. In the non-i.i.d setting in Fig. 1(c) and
1(d), both FedAvg and top-k suffer significant performance
degradation with poor convergence and diverging accuracy.
Rand-k, however, exhibits robustness and better performance,
potentially due to the stochasticity introduced by its compres-
sion, which could act as a form of regularization. This could
prevent overfitting to each client’s local data and promote
the learning of more universal features, thereby improving
learning robustness amidst data heterogeneity.

In general, the unbiased rand-k outperforms the biased top-
k with EF on both i.i.d and non-i.i.d datasets, demonstrating
the necessity of unbiased compressing at the client-side.

B. Biased Compression at Cloud

To further reduce the communication overhead, we also
wish to compress the downlink data from cloud side to
client side. Instead of using unbiased compressors, we choose
biased compression methods. This does not conflict with our
previous arguments about the limitations of error feedback on
biased compression. The rationale is that biased compression
is implemented at the cloud across the entire set of updated
model weights, and therefore, the error term naturally en-
velops all weights. As such, it doesn’t encounter the sparse
client problem when deployed to clients. Further, with error
feedback, biased compressors can stabilize framework con-
vergence with a lower variance of gradients in the regime of
small and non-i.i.d local datasets, and outperform unbiased
compressors [6], [12]. Observe from Fig. 2 that though top-k
with error feedback performs the worst in the i.i.d setting, it

0 25 50 75 100
Training Iterations

0.5

1.0

1.5

2.0

Tr
ai
n
Lo

ss

FedAvg
Rand-K
Top-K + EF

(a)

0 25 50 75 100
Training Iterations

0.2

0.4

0.6

0.8

Ac
cu
ra
cy

FedAvg
Rand-K
Top-K + EF

(b)

0 25 50 75 100
Training Iterations

0

1

2

3

4

5

Tr
ai
n
Lo

ss

FedAvg
Rand-K
Top-K + EF

(c)

0 25 50 75 100
Training Iterations

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu
ra
cy

FedAvg
Rand-K
Top-K + EF

(d)

Fig. 2. Comparison of top-k (with error feedback) and rand-k sparisification
at cloud side. (a) ResNet9 training loss curve under i.i.d setting. (b) ResNet9
training accuracy curve under i.i.d setting. (c) ResNet9 training loss curve
under non-i.i.d setting. (d) ResNet9 training accuracy curve under non-i.i.d
setting

demonstrates its superiority in stabilizing the training process
with better accuracy in the non-i.i.d setting as depicted in
Fig. 2(c) and 2(d).

In the non-i.i.d setting, each client is working with their
own subset of data, which may be quite different from each
other. Some of this variance could be considered as ’noise’
with respect to the overall learning task. By applying top-k
compression, the system might be focusing on the strongest
gradients, i.e., the most ’important’ learning signals. This
could inherently filter out some of the client-specific noise,
hence making the system more robust against data heterogene-
ity. In addition, the use of top-k compression could encourage
convergence by selectively updating the most relevant model
parameters. As each client will be updating and communicat-
ing only the most significant parameters, these global updates
will tend to be more consistent across clients, even in the
presence of heterogeneous data. Consequently, this can lead
to more stable and faster convergence.

Based on our motivating examples, we demonstrate the
necessity to perform unbiased compression at client side as
well as the effectiveness of biased compressors.

IV. DESIGN

We present the design of Fed2Com in this section.

A. Problem Setup

We first present the problem formulation along with the
notations used throughout this paper. Consider a federated
learning system with m clients who share the same loss
function and coordinately train a model with distributed data.
Each client i hosts a dataset with data distribution Di. In
practice, the client’s local dataset is generated from its own

Fig. 3. Fed2Com overview.

environment and hence non-i.i.d, i.e., Di ̸= Dj , if i ̸= j. To
train an ML model, we in fact solve the following optimization
problem:

min
x∈Rd

f(x) :=
1

m

m∑
i=1

fi(x),

where fi(x)
△
= Eψi∼Di

[fi(x, ψi)] denotes the local (possibly
non-convex) loss function and the random training samples
ψi follows the local data distribution Di. Note that the i.i.d
setting where each local dataset is sampled from the common
latent distribution, i.e., Di = D,∀i ∈ [m], can naturally be
viewed as a special case of the non-i.i.d setting. Hence, our
results for the non-i.i.d setting are directly applicable to i.i.d
setting.

B. Design

Fed2Com is a two-level framework as depicted in Fig. 3.
We aim to not only reduce the downlink and uplink commu-
nication overhead but also to guarantee good convergence on
non-i.i.d datasets. The framework contains three key stages:

1. Local Training: In Fed2Com, each selected client i first
performs several local steps and computes weight updates
based on local data (step 1 in Fig. 3). Then, the updates are
compressed with an unbiased compression method UC(·) (step
2), and uploaded to the server.

2. Global Update: Upon receiving all updates from clients,
the cloud server directly aggregates the local updates (step
3) to obtain global updates. It performs Polyak’s momentum,
which is known to achieve fast convergence and good gen-
eralization [17]. As biased compression introduces bias, the
server applies the error correction technique, which entails
that it adds to the global updates the difference between
the compressed and original update vectors calculated in the
previous round (step 4). Then we select the most significant
global updates, i.e., perform biased compression to global
updates, to update the parameters of the global model (step
5).

Algorithm 1: Fed2Com
Input: Initialize local weights x0i for each client

i ∈ {1, 2, ...,m}, error term e1 = 0, and
momentum buffer u0 = 0.

Input: Local learning rate γl > 0, global learning rate
γ > 0, momentum coefficient ρ ∈ [0, 1),
number of timesteps T , number of clients
selected per round n, local batchsize l, local
number of epochs K, unbiased compressor UC,
biased compressor BC.

Output: {xt}Tt=1

1 for t = 1, 2, ..., T do
2 Randomly select n clients c1, ..., cn out of m
3 do in parallel at each client
4 Download sparse weight update xt − x0

5 for local epoch p = 1, ...,K do
6 Compute an unbiased stochastic gradient

estimate ξti =
1
l

∑l
j=1 ▽fi(x

t, dj)

7 Local update: xt,p+1
i = xt,pi − γlξ

t
i

8 end
9 gti = UC(xt,K+1

i − xt,1i) // Unbiased

compression

10 Upload gti to the cloud
11 end
12 gt = 1

n

∑n
i=1 g

t
i // Aggregate updates

13 ut = ρut−1 + gt // Momentum

14 δt = γut + et // Error correction using

error up to the previous round

15 △t= BC(δt) // Biased compress

16 et+1 = δt− △t // Error accumulation

17 xt+1 = xt− △t // Update weights

18 end

Layer Type Size
Convolution + ReLu 5 × 5 × 32

Max Pooling 2 × 2
Convolution + ReLu 5 × 5 × 64

Max Pooling 2 × 2
Fully Connected + ReLu 7 × 7 × 64

Fully Connected 10 × 64

TABLE I
CNN architecture for MNIST

3. Model Distribution: Finally, Fed2Com updates the k
selected weights, and sends to the newly selected clients the
delta between the current and their initial models (step 6), thus
achieving the downlink compression.

Algorithm 1 summarizes the details of Fed2Com.

V. EVALUATION

In this section, we perform extensive experiments to evalu-
ate Fed2Com. In particular, our evaluation aims to answer the
following questions:

Model Dataset Method k in rand-k k in top-k Accuracy Download
Compression

Upload
Compression

Total
Compression

CNN MNIST
FedAvg - - 0.71 1x 1x 1x

Local rand-k 2e5 - 0.75 1x 10x 1.9x
Fed2Com 2e4 5e4 0.94 1.7x 103x 3.3x

ResNet9 CIFAR10
FedAvg - - 0.76 1x 1x 1x

Local rand-k 6.5e5 - 0.95 1x 10.1x 1.8x
Fed2Com 3e5 5e4 0.97 8.3x 131.4x 15.8x

DistilBERT Sentiment140
FedAvg - - 0.33 1x 1x 1x

Local rand-k 6.6e6 - 0.34 1x 10x 1.8x
Fed2Com 3e5 5e4 0.74 3.9x 1339x 7.7x

GPT2-Small PersonaChat
FedAvg - - 0.79 1x 1x 1x

Local rand-k 1.5e7 - 0.78 1x 7.8x 2x
Fed2Com 5e5 5e4 0.80 6x 2334x 13.3x

TABLE II
The accuracy and compression ratio of FedAvg, rand-k, and Fed2Com. A compression ratio of m means that the communication overhead reduces to one in

m of the original (FedAvg) communication overhead.

• Can Fed2Com achieve a high compression ratio while
maintaining good accuracy?

• How effective is biased compression with error feedback
(EF) at the cloud in stabilizing the training process for
non-i.i.d cases?

• How does local unbiased compression influence the
framework convergence?

• How does the compression ratio influence the model
convergence?

A. Experiment Setting

We use four distinct model-dataset combinations that cor-
respond to various problem domains of DNN: a custom CNN
with MNIST [18], ResNet9 [15] with CIFAR10 [16], Distil-
BERT [19] with Sentiment140 [20], and GPT2-Small [21] with
PersonaChat [22]. ResNet9 with CIFAR10 has been discussed
in §III-A, so here we introduce the other three.

CNN: We build our own CNN model as detailed in Table. I
with 2.1M parameters. To create a non-i.i.d version of MNIST,
we distribute the dataset to 30,000 clients such that each has
2 images of the same digit.

DistilBERT: DistilBERT is a fast and light transformer
model based on BERT with 66 million parameters [19]. We
fine-tune the pre-trained DistilBERT on the Sentiment140
dataset [20], which contains 1,600,498 tweets. Each tweet’s
sentiment has been annotated. This dataset is naturally non-
i.i.d with 660,120 users.

GPT2-Small: We fine-tune a small version of OpenAI’s
GPT2 text generation model [21] on PersonaChat [22], a chit-
chat dataset consisting of conversations between Amazon Me-
chanical Turk workers who were assigned faux personalities
to act out. There are a total of 17,568 clients based on the
personality that was assigned.

The proposed Fed2Com works with any current compres-
sion methods. Here for illustration, the unbiased and biased
compressors in Fed2Com are typical rand-k and top-k spar-
sification. Note that for local updates, we not only perform
unbiased compression, i.e., rand-k sparsification, but we also
leverage a compact data structure, i.e., count sketch, to achieve

dual compression for uplink communication. Meanwhile, the
top-k at cloud indicates that we select the top k significant
global updates to update the global parameters.

We set the hyperparameters as follows: number of selected
clients per round n = 100, global learning rate γ = 1, global
momentum ρ = 0.9, local batch size l = 4 for GPT2-Small
and l = 64 for DistilBERT, local epoch K = 4, and local
learning rate ρl = 2e−3. We run all experiments on four A100-
SXM-40G GPUs using PyTorch.

B. Effectiveness of Fed2Com

We now present the overall performance of Fed2Com. From
Table II, we can see that Fed2Com significantly outperforms
competing methods in the regime of very small local datasets
and non-i.i.d. data, since Fed2Com consistently reaches the
highest compression ratio while retaining the highest valida-
tion accuracy for all four models. In particular, we can see
severe performance degradation of FedAvg and local rand-k
on CIFAR10 and Sentiment140, which can be attributed to
the combined effect of unbalanced datasets and local steps.
To better illustrate this point, we present the loss curve of
the four models in Fig 4. From the loss curves of CNN
and ResNet9 trained from scratch (Fig. 4(a) and 4(b)), we
see that Fed2Com’s loss consistently lies lower than that of
the other two methods, demonstrating its better convergence.
Meanwhile, the loss curve of Fed2Com is smoother than
that of FedAvg and local rand-k, which confirms that our
proposed Fed2Com can withstand the influence of the dataset
heterogeneity.

DistilBERT and GPT2-Small are pre-trained models fine-
tuned on our datasets. We can observe that Fed2Com’s loss on
DistilBERT is consistently smaller than the other two methods.
For GPT2-Small, however, all three methods have very similar
loss curves as in Fig. 4(d). The reason is that, clients in
PersonaChat are categorized according to the personality they
were assigned, yielding a data distribution closer to i.i.d.
than other datasets we use. With i.i.d datasets then, Fed2Com
achieves comparable accuracy as FedAvg while enjoying much
less communication overhead.

(a) CNN on MNIST (b) ResNet9 on CIFAR10 (c) DistilBERT on Sentiment140 (d) GPT2-small on PersonaChat

Fig. 4. Comparison of the loss convergence of FedAvg, local rand-k and Fed2Com.

� �� ��
� �� ���
����������!���!���

���

��	

���

��	

���

��	

���

��	

���

��
��
��
��

������
"���������������
"���������������

(a) CNN’s loss curve

� �� ��
� �� ���
����������!���!���

���

��	

���

��	

���

��	

���

��	

���

��
��
��
��

������
"���������������
"���������������

(b) ResNet9’s loss curve

Fig. 5. Training process with different compression methods.

In addition, from Table II we observe that the upload
compression ratio is much larger than that of local rand-k,
demonstrating the effectiveness of our upload compression
method with the combination of rand-k and sketch. Indeed,
upload compression is more critical since typically a client’s
uplink bandwidth is more constrained than downlink.

C. Effectiveness of Biased Compression with Error Feedback

Based on our observation in §III-B, cloud top-k with error
correction contributes to the stabilization of the training pro-
cess since the biased compressor enjoys lower gradient vari-
ances while EF compensates for the error. Here we investigate
the Fed2Com’s performance without top-k at the cloud. From
Fig 4, we can see that in three of four models, Fed2Com
outperforms local rand-k, demonstrating the necessity of per-
forming top-k with EF at the cloud side. Fig 5 shows the
training loss curve with and without different compression
methods on the cloud’s and clients’ sides. To develop fair
compression, we keep local sketch in all settings. Here we use
CNN and ResNet9 as training models. Each client performs
local steps K = 4, and the total rounds T is 100. Compared
with Fed2Com, the one without global top-k will either can
not converge to an optimum, on CNN, or even fail to converge,
on ResNet9.

D. Influence of Unbiased Compression

We find in §III-A that rand-k helps to stabilize the train-
ing process as its learning curves are smoother than vanilla
FedAvg, particularly with non-i.i.d. datasets. In this section,
we evaluate and compare the convergence performance on
different compression settings.

0 25 50 75 100
Training Iterations

0.5

1.0

1.5

2.0

2.5

Tr
ai
n
Lo

ss

w/o Compression
Rand-k = 500
Rand-k = 1,000
Rand-k = 2,000

(a) CNN’s loss curve

0 25 50 75 100
Training Iterations

0.0

0.5

1.0

1.5

2.0

2.5

Tr
ai
n
Lo

ss

w/o Compression
Rand-k = 500
Rand-k = 1,000
Rand-k = 2,000

(b) ResNet9’s loss curve

0 100 200 300
Training Iterations

0.5

1.0

1.5

2.0
Tr
ai
n
Lo

ss

Top-k = 1000
Top-k = 10000
Top-k = 50000

(c) CNN’s loss curve

0 50 100 150
Training Iterations

0.5

1.0

1.5

2.0

Tr
ai
n
Lo

ss

Top-k = 1000
Top-k = 10000
Top-k = 50000

(d) ResNet9’s loss curve

Fig. 6. Training process under different compression ratio.

As demonstrated in Fig. 5, the training loss of ResNet9
model without local rand-k fluctuates dramatically, while the
loss value of our Fed2Com drops rapidly at the beginning
and is followed by a stable decrease. For the CNN model,
the loss curve of Fed2Com falls much faster and smoother
than the one without local rand-k. In general, the Fed2Com
outperforms others on both converging rate and stability.

E. Influence of Compression Ratio

In this section, we evaluate the impact of the upload
compression ratio on convergence performance to thoroughly
understand the overall influence of rand-k. The results are
shown in Fig. 5.

We first vary the number of uploaded parameters from 500
to 2,000. Observe that albeit merely uploading 500 parameters
per iteration, Fed2Com can still converge with relatively high
accuracy for both CNN and ResNet9. The upload compression
gain reaches 4,130 and 13,000 for two models, respectively.
In particular, for CNN, we can see from Fig. 6(a) that the loss
curve without local compression oscillates more wildly than
that with rand-k compression, demonstrating the necessity of
local compression. Yet, the compression ratio cannot be set
arbitrarily aggressive as we observe a sudden increase in the

CNN loss at the end of training when only 500 parameters
are uploaded. Meanwhile, when we set k to 300, training
does not converge for both models. Therefore, an appropriate
compression ratio can help stabilize the training process, as
long as it is not aggressively small.

Regarding biased compression in the cloud, we conducted
experiments by varying the number of parameters broadcasted
from 1000 to 50000. The results from Fig. 6(c) show that the
convergence process is slower for both small and large k val-
ues. This is because a small k value filters out too much useful
information, while a large k value cannot effectively remove
noise. In the case of ResNet, as show in Fig. 6(d), different
top-k values did not affect the convergence result. Higher top-
k values allowed for faster reaching of the optimum. This is
due to the fact that all top-k values tested remained below the
threshold that could negatively impact the training process,
since ResNet has significantly more parameters than CNN.

VI. CONCLUSION

In this paper, we propose Fed2Com, which performs unbi-
ased compression at clients and biased compression with error
feedback at the cloud. On the one hand, Fed2Com randomly
sparsifies the local updates to reduce uplink communication
and withstand the influence of heterogeneous distribution.
Since the local compression is unbiased, there is no need
to carry out error feedback on the client side. On the other
hand, biased compression with error accumulation can be
easily performed on the cloud side to stabilize training, and
non-participating clients can stay relatively up-to-date with
the current model, reducing the number of new parameters
that need to be downloaded. The effectiveness of Fed2Com
is verified on two image recognition tasks and two language
modeling tasks, and the results demonstrate that our proposed
Fed2Com outperforms FedAvg and local rand-k on both
compression ratio and validation accuracy for all four tasks.

VII. ACKNOWLEDGEMENT

This work is supported in part by funding from Huawei
(CUHK 7010691, 8601677)

REFERENCES

[1] B. McMahan, E. Moore, D. Ramage, S. Hampson, and B. A. y Arcas,
“Communication-efficient learning of deep networks from decentralized
data,” in Artificial intelligence and statistics. PMLR, 2017, pp. 1273–
1282.

[2] P. Kairouz, H. B. McMahan, B. Avent, A. Bellet, M. Bennis, A. N.
Bhagoji, K. Bonawitz, Z. Charles, G. Cormode, R. Cummings et al.,
“Advances and open problems in federated learning,” Foundations and
Trends® in Machine Learning, vol. 14, no. 1–2, pp. 1–210, 2021.

[3] H. Yang, J. Liu, and E. S. Bentley, “Cfedavg: achieving efficient
communication and fast convergence in non-iid federated learning,” in
2021 19th International Symposium on Modeling and Optimization in
Mobile, Ad hoc, and Wireless Networks (WiOpt). IEEE, 2021, pp. 1–8.

[4] S. P. Karimireddy, S. Kale, M. Mohri, S. J. Reddi, S. U. Stich, and
A. T. Suresh, “Scaffold: Stochastic controlled averaging for on-device
federated learning.” 2019.

[5] A. K. Sahu, T. Li, M. Sanjabi, M. Zaheer, A. Talwalkar, and V. Smith,
“On the convergence of federated optimization in heterogeneous net-
works,” arXiv preprint arXiv:1812.06127, vol. 3, p. 3, 2018.

[6] A. Beznosikov, S. Horváth, P. Richtárik, and M. Safaryan, “On biased
compression for distributed learning,” arXiv preprint arXiv:2002.12410,
2020.

[7] J. Wang and G. Joshi, “Cooperative sgd: A unified framework for the
design and analysis of communication-efficient sgd algorithms,” arXiv
preprint arXiv:1808.07576, 2018.

[8] W. Luping, W. Wei, and L. Bo, “Cmfl: Mitigating communication
overhead for federated learning,” in 2019 IEEE 39th International
Conference on Distributed Computing Systems (ICDCS). IEEE, 2019,
pp. 954–964.

[9] D. Rothchild, A. Panda, E. Ullah, N. Ivkin, I. Stoica, V. Braverman,
J. Gonzalez, and R. Arora, “Fetchsgd: Communication-efficient feder-
ated learning with sketching,” in International Conference on Machine
Learning. PMLR, 2020, pp. 8253–8265.

[10] D. Alistarh, D. Grubic, J. Li, R. Tomioka, and M. Vojnovic, “Qsgd:
Communication-efficient sgd via gradient quantization and encoding,”
Advances in neural information processing systems, vol. 30, 2017.

[11] J. Wangni, J. Wang, J. Liu, and T. Zhang, “Gradient sparsification for
communication-efficient distributed optimization,” Advances in Neural
Information Processing Systems, vol. 31, 2018.

[12] S. Horváth and P. Richtárik, “A better alternative to error feed-
back for communication-efficient distributed learning,” arXiv preprint
arXiv:2006.11077, 2020.

[13] Y. Lin, S. Han, H. Mao, Y. Wang, and W. J. Dally, “Deep gradient
compression: Reducing the communication bandwidth for distributed
training,” arXiv preprint arXiv:1712.01887, 2017.

[14] J. Bernstein, Y.-X. Wang, K. Azizzadenesheli, and A. Anandkumar,
“signsgd: Compressed optimisation for non-convex problems,” in Inter-
national Conference on Machine Learning. PMLR, 2018, pp. 560–569.

[15] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in Proceedings of the IEEE conference on computer vision
and pattern recognition, 2016, pp. 770–778.

[16] A. Krizhevsky, G. Hinton et al., “Learning multiple layers of features
from tiny images,” 2009.

[17] H. Yu, R. Jin, and S. Yang, “On the linear speedup analysis of communi-
cation efficient momentum sgd for distributed non-convex optimization,”
in International Conference on Machine Learning. PMLR, 2019, pp.
7184–7193.

[18] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning
applied to document recognition,” Proceedings of the IEEE, vol. 86,
no. 11, pp. 2278–2324, 1998.

[19] V. Sanh, L. Debut, J. Chaumond, and T. Wolf, “Distilbert, a distilled
version of bert: smaller, faster, cheaper and lighter,” arXiv preprint
arXiv:1910.01108, 2019.

[20] A. Go, R. Bhayani, and L. Huang, “Twitter sentiment classification using
distant supervision,” CS224N project report, Stanford, vol. 1, no. 12, p.
2009, 2009.

[21] A. Radford, J. Wu, R. Child, D. Luan, D. Amodei, I. Sutskever et al.,
“Language models are unsupervised multitask learners,” OpenAI blog,
vol. 1, no. 8, p. 9, 2019.

[22] S. Zhang, E. Dinan, J. Urbanek, A. Szlam, D. Kiela, and J. Weston,
“Personalizing dialogue agents: I have a dog, do you have pets too?”
arXiv preprint arXiv:1801.07243, 2018.

