
ABC: Automatic Bottom-up Construction of Configuration
Knowledge Base for Multi-Vendor Networks

Wenlong Ding∗ Libin Liu† Li Chen† Hong Xu∗
∗The Chinese University of Hong Kong †Zhongguancun Laboratory

Abstract—The Configuration Knowledge Base (CKB) facili-
tates network configuration management in multi-vendor envi-
ronments by storing configuration snippet templates and pa-
rameter settings for various vendors and intents, simplifying
the deployment of the same configuration intent across different
vendor devices. Current CKB construction methods follow a top-
down manner, which requires handcrafted parameter labeling
and snippet template creation for every new vendor or intent,
resulting in significant expert effort. We seek to reduce this heavy
human effort by leveraging our insights that different vendors
share similar underlying intents and corresponding parameter
types despite their different configuration languages, motivat-
ing bottom-up CKB construction manners which automatically
create and align snippet templates of the same intent across
all vendors by analyzing already existing device manuals and
network configuration files. More specifically, we introduce ABC,
an active-learning-based tool that utilizes NLP models to produce
snippet templates with manuals, extract labeled parameters in
existing configuration files, and align those templates with com-
mon configuration models by encoding and comparing manuals
of different vendors. We believe that creating such a tool would
be a significant step towards achieving highly automated network
configuration, which would also serve as a solid foundation for
future endeavors such as intent-based network configuration,
network configuration synthesis, and network device assimilation.

I. INTRODUCTION

Nowadays, large enterprises usually build their network in-
frastructures with devices from multiple vendors [6, 9, 13, 14].
This multi-vendor deployment provides notable benefits, in-
cluding cost savings through the availability of comparable
product options from diverse vendors, integration of unique
functionalities offered by different vendors’ devices, and risk
mitigation in case a vendor discontinues a specific type of
device. As enterprises grow and evolve, the need for differ-
ent network features at various stages drives the continuous
introduction of new vendors, emphasizing the importance of
effective configuration management and configuration settings
sharing across vendors.

Network operations (NetOps) teams from various enter-
prises have devoted considerable effort to establishing central-
ized multi-vendor network management platforms [4, 5, 16].
These platforms facilitate unified tools for operation, admin-
istration, and management tasks in the network. At their core,
these platforms incorporate a logically centralized repository
known as Configuration Knowledge Base (CKB), which serves
as a comprehensive storehouse maintaining configuration in-
formation for devices across multiple vendors. Specifically,
the CKB encompasses unified network parameters or settings
information, as well as vendor-specific configuration templates

Unified Config
Model

Config Snippet Templates
Intent

HuaweiCisco

Add
VLAN

Add
ACL

… …………

…

acl number <ACL number>
 rule <rule number>
 {permit|deny} <protocol>
 source <ip> <mask>
 destination <ip> <mask>

access-list <ACL number>
{permit|deny} <protocol>
 source <ip> <mask>
 destination <ip> <mask>

ACL Config

<protocol>

<rule number> rule
{permit|deny}dst src

<ip><mask> <ip><mask>

vlan <vlan_id> vlan branch <vlan_id>
Add Vlan

id
<vlan_id>

Fig. 1: Example of the configuration knowledge base (CKB). CKB contains
configuration snippet templates for different vendors and intents with a unified
configuration model to store parameter settings of each intent across vendors.

that can collaborate with the unified information to generate
specific configurations for any vendor or intent, as the example
shown in Fig. 1. Essentially, the CKB normalizes, organizes,
and stores configuration details for all devices from different
vendors within a given network autonomous domain.

Existing works propose unified configuration models to
store parameter settings and relationships in organized struc-
tures, such as FBNet in Robotron [16], configuration tree in
OpenConfig [5], and vendor parsing model in Nassim [8],
which can facilitate convenient configuration settings sharing
across different vendor devices. These works adopt a top-down
approach to construct CKB for diverse configuration languages
in different vendors. In this process, experts handcraft vendor-
specific configuration templates without parameter values
based on target high-level intents, identify and store parameter
settings in the unified model, and finally fill configuration
templates with these unified settings for low-level snippets of
a specified intent and vendor. This top-down approach requires
expert knowledge of various vendors’ configuration languages
and continuous human effort in handwriting templates for ev-
ery new vendor and intent throughout the network’s lifecycle.

We aim to automate CKB construction by reducing hu-
man effort in traditional top-down approaches. We believe
the main challenge lies in significant differences in vendor-
specific configuration languages, which cannot be fundamen-
tally eliminated because it stems from vendors intentionally
to discourage vendor-switching of customers [3]. However,
we recognize that different vendors share similar high-level
intents and parameter types of the same intent despite language
differences. Based on this insight, we propose ABC, a novel
Automatic Bottom-up Construction approach for CKB with
NLP models. It first learns parameter extraction rules to gen-
erate configuration templates from low-level example snippets
of different intents in device manuals, without focusing on

Intent Cisco Huawei Juniper
check vlan show vlan [vlanid] display vlan [vlanid] show vlan-id/vlans [vlanid]/[vlanname]

add/delete vlan vlan [vlanid]/no vlan [vlanid] vlan branch [vlanid]/undo vlan branch [vlanid] set vlan-id [vlanid]/delete vlan-id [vlanid]
configure spanning tree root bridge spanning tree vlan [vlanid] root primary stp instance [vlanid] root primary spanning-tree vlan-id [vlanid] root primary

TABLE I: Config syntax comparisons between three different vendors: Cisco, Huawei, and Juniper.

Intent Cisco IOS Cisco IOS XR

Assign IP address and subnet to interface ip address [ip/prefix] ipv4 address [ip] [submask]

Receive LLDP packets on an interface lldp receive lldp admin-status rx

Set the interface as an Ethernet trunk switchport mode trunk port link-type trunk

TABLE II: Configuration syntax comparisons between different OSs within
the same vendor (Cisco): Cisco IOS & Cisco IOS XR.

specific syntax rules of configuration languages. It then aligns
templates of the same intents across vendors with their intent
descriptions in manuals and finally fills them with extracted
parameters from the target configuration files, enabling consis-
tent deployment of high-level target intents across the network.

ABC comprises three modules: parameter parsing (PP),
template alignment by intent (ALIGN), and snippet extraction.
PP uses Named entity recognition (NER) models to extract
labeled parameters from example snippets and generates tem-
plates with parameter placeholders. ALIGN leverages BERT-
based models [17] to align snippet templates of the same
intents to a unified Common Configuration Tree (CCT) in
OpenConfig [5], based on the similarity of encoding results
of various templates and their intent descriptions. Snippet
extraction splits target configuration files into intent-specific
snippets, then use PP to extract labeled parameters and store
them in CCT. ABC has two workflows: Intent-Template-
CCT (ITC) mapping for producing aligned templates and
parameter extraction rules, and Target Configuration Storing
for extracting and storing labeled parameters of target intents.

Automated network configuration is a significant topic for
NetOps teams, aiming to generate low-level network configu-
ration across different vendors based on high-level human in-
tents, reducing human effort in learning different configuration
languages and determining parameter settings for specific in-
tents. ABC is a notable contribution in this field, automatically
constructing an intent-based CKB using learning methods,
reducing expert knowledge and handcrafted works compared
to traditional top-down approaches. Its success will be marked
as a milestone and inspire further research in this topic,
such as Intent-based Network Configuration and Network
Configuration Synthesis, which will analyze high-level intents
directly for parameter settings and synthesize configuration
files or templates across multiple intents, respectively. Further
insights into potential vision works can be found in §IV.

II. BACKGROUND AND MOTIVATION

In this section, we first introduce existing top-down CKB
construction methods, then motivate our bottom-up approach,
and finally highlight the background and uniqueness of the
knowledge extraction task in ABC.

A. Limitations of Top-down CKB Construction

CKB simplifies multi-vendor network management by stor-
ing configuration templates by intents across vendors with
parameter settings stored in a unified manner, as shown in

Fig. 1. Existing works propose unified configuration models to
store parameter settings and their relationships in an organized
structure. For example, Facebook’s Robotron [16] uses FBNet
with tables to store parameters and directed links to present the
relationship between parameters, while Google’s OpenCon-
fig [5] adopts a tree structure called common configuration tree
(CCT) to store settings and represent hierarchical relationships
in most configuration languages. Apstra [1] introduces a graph-
based representation for configuration storage, and Nassim [8]
builds a tree structure similar to CCT with a unified snippets
parsing model which has a set of rules allowing NetOps
teams to handcraft program functions to map vendor-specific
configurations to that tree structure.

However, these works take significant human effort to con-
struct CKB in a top-down manner: NetOps teams must prepare
vendor-specific templates (or parsing functions in Nassim [8])
for high-level intents, identify parameter settings or extract
them from target configuration files which will be stored in the
unified configuration model afterwards, and finally generate
low-level configuration snippets across different vendors with
templates and parameters. This demands expert knowledge of
various configuration languages and human effort to provide
snippet templates for new vendors or intents throughout the
network’s lifecycle. This effort involved is substantial in the
production network. For example, our experience with one of
the largest NetOps teams spent nearly two years developing
vendor-specific templates for O(105) routers for six vendors
based on CCT in OpenConfig [5]. Therefore, it is crucial to
develop an automated system for constructing the CKB.

B. Motivation for Bottom-up CKB Construction

We believe the key difficulty in top-down CKB construction
arises from intentionally different configuration languages and
patented syntax [3], preventing a clear configuration templates
mapping between vendors and requiring the creation of re-
peated templates for the same intent across vendors. We detail
the configuration language differences in two aspects:

• Syntax diversity across vendors. Different vendors use
varied wordings and organizations for the same con-
figuration intent [3, 8], as demonstrated in Table I for
Cisco, Huawei, and Juniper. This necessitates the cre-
ation of separate configuration templates for each vendor,
even for simple tasks. There are also unique statements
in vendor-specific configuration languages, such as the
disable-client-reflect statement in Cisco [3],
which does not exist in other vendor languages.

• Syntax drift for the same vendor. Even within the same
vendor, configuration snippets for the same intent may
differ across different operating system (OS) versions. For
instance, a comparison between Cisco IOS and IOS XR
in Table II reveals differences in wordings and statement

Unified Config
Model (CCT)

Config Snippet Templates
Intent

Vendor N…Vendor A

……………
Add ACL

Set VLAN ID

…

…

…

…

Target
Config Files

Device
Manuals

Parameter
Extraction

Model

Active-Learnig-
Based Template

Alignment (ALIGN)

Parameter
Parsing (PP)

Module

Snippet
Extraction

Module

Vendor-Specific
Configuration

Snippets

1 Intent-Template-CCT (ITC) Mapping
2 Target Configuration Storage

1

2

CCT Configuration Knowledge Base (CKB)

Intent-Snippet
Tuples

Intent-Template
Tuples

Intent
Snippets

Aligned
Templates

Extracted Parameters
by Intents

Parameter Storage

Templates
Filling

Fig. 2: ABC operational overview. It has two workflows: ITC mapping creates config templates of various intents and vendors by learning from manuals, while
Target Configuration Storage identifies and stores settings of existing config files and deploys them across multi-vendor network with produced templates.

organizations, even for simple tasks. This drift will be
more severe in more complex configuration snippets [2].

However, we have discovered a common ground among
vendors that they share similar high-level intents and cor-
responding parameter types, despite different configuration
languages. It motivates our novel bottom-up CKB construction
approach called ABC. By utilizing NLP models, we parse
example snippets from device manuals to extract labeled
parameters and generate configuration templates, without fo-
cusing on syntax variations in different configuration lan-
guages. Device manuals organize example snippets by intent
along with their intent descriptions, enabling alignment of the
produced templates to our unified configuration model (CCT
in our work) of a certain intent. Additionally, our learned pa-
rameter extraction rules can extract labeled parameter settings
from target configuration files, which are stored in CCT for
achieving their high-level target intents across all devices.

C. Knowledge Extraction and ABC

ABC learns from device manuals to generate configuration
templates and parameter extraction rules, which is similar to
existing knowledge extraction tasks [11, 12, 17]. These tasks
involve understanding the intent of an expression and perform-
ing Named Entity Recognition (NER) to identify entity types
about that intent within the expression. For instance, given the
intent expression “Block TCP traffic from A to B,” we identify
the intent as Block traffic and then extract key information of
that intent by recognizing traffic type, source, and destination
nodes as TCP, A, and B. State-of-the-art approaches employ
deep large language models like BERT [17] to efficiently
handle intent understanding and NER using labeled data for
intent types and corresponding entity types.

However, the knowledge extraction task in ABC is more
challenging due to the extensive human effort needed to label
intent and entity types for all vendors and intents in device
manuals. To automate the task while maintaining accuracy,
we propose an active-learning-based method with minimal
expert involvement during training process instead of heavy
pre-training labeling. We first just train one unified parameter
extraction model using rough entity types (e.g. PureNumber
and IPorMask) instead of refined types in a specific intent
(e.g. AS-number and SourceIP) and form configuration
templates with those rough types as parameter placeholders.
By encoding templates with intent descriptions and comparing

their learning-based similarity, we group templates of the same
intent across vendors and use minimal human effort in labeling
the intent of the most puzzling templates for alignment to CCT.
After alignment, specific entity types from CCT are used to
refine the parameter extraction model for improved accuracy.

III. ABC DESIGN

In this section, we first present the workflow of ABC, then
present a succinct introduction to technologies employed in its
core modules and corresponding challenges.

A. System Overview
Fig. 2 shows that ABC has two workflows, the first is ITC

mapping which involves learning NLP models for parameter
parsing (PP) to generate configuration templates and template
alignment based on intents and corresponding CCTs (ALIGN),
while the second is target configuration storing which splits
configuration files into intent-based snippets and extracts pa-
rameter settings from the snippets using trained models in PP.

The ITC mapping workflow is activated when a new vendor
or intent is introduced and ABC fine-tunes the NLP models
in PP and ALIGN module with the following steps:

• Device manuals are preprocessed to extract intent descrip-
tions and example configuration snippets, forming intent-
snippet tuples. The snippets serve as new training samples
to fine-tune the NLP model in PP.

• The fine-tuned model in PP extracts parameters in exam-
ple snippets and replaces them with their entity types as
placeholders, creating snippet templates (see Fig. 3).

• Snippet templates replace the snippets in intent-snippet
tuples, forming new training samples for ALIGN, which
uses NLP models to encode intent descriptions and tem-
plates, grouping templates with the same intent together
and aligning them to CCT with minimal human labeling.

• Template alignment causes a smaller entity set from CCT,
thus we further refine parameter extraction NLP model in
PP with reduced entity number for improved accuracy.

The target configuration storage workflow is triggered when
a new configuration file of an arbitrary vendor or intent needs
to be applied for all devices in the network. It has two
main steps: (1) The snippet extraction module analyzes the
configuration file and splits it into intent-based snippets. (2)
Each intent-based snippet is processed by NLP models in the
PP module to extract labeled parameters, which are then stored
in corresponding CCT within the CKB.

Configuration Snippet/File Corresponding Templates

access-list <ACL_number> <permit/deny> <source> <source_mask>
!
interface <interface_name>
 ip address <ip_address> <subnet_mask>
 ip ospf cost <cost_value>
 ip access-group <ACL_number> in

access-list 1 deny 1.0.1.0 0.0.0.1
!
interface GigabitEthernet0/0
 ip address 1.0.3.1
 ip ospf cost 1
 ip access-group 1 in

(a) Rough NER (before ALIGN)

(b) Refined NER (after ALIGN)

access-list 1 deny 1.0.1.0 0.0.0.1
!
interface GigabitEthernet0/0
 ip address 1.0.3.1
 ip ospf cost 1
 ip access-group 1 in

access-list <PureNmber> <NotNumber> <IPorMask> <IPorMask>
!
interface <NotNumber>
 ip address <IPorMask> <IPorMask>
 ip ospf cost <PureNumber>
 ip access-group <PureNumber> in

Fig. 3: Parameter extraction example. It involves a two-step NER task: (a)
Using rough entity types, the NLP model generates initial templates for
alignment procedure. (b) After alignment, specific entity types can be obtained
from CCT to refine the model.

B. Preliminary Solutions and Challenges

We discuss our preliminary solutions and open questions of
ABC’s core modules: PP, ALIGN and snippet extraction.

Parameter Parsing (PP). The PP module addresses the
knowledge extraction task in ABC mentioned in Section II-C.
It involves training an NLP model for NER tasks to extract
parameters from example snippets in device manuals. This
parameter extraction model is then used to generate config-
uration templates by replacing parameters with entity types
as placeholders. However, due to the large number of network
vendors and intents, it is impractical to have expert knowledge
of every vendor and label intents and specific parameter entity
types for all snippets in manuals. This limitation may result
in providing insufficient labeled training samples for the NLP
model, leading to degraded performance.

PP module in ABC aims to reduce the human effort required
for labeling intent and parameter types in all intent-snippet
tuples. We train a unified parameter extraction model us-
ing rough parameter entities (e.g., PureNumber) applicable
across all intents and vendors (Fig. 3 (a)), instead of refined
entities (e.g., ACL_number and cost_value) (Fig. 3 (b)).
This rough NLP model parses the snippets into configuration
templates. After aligning these vendor-specific templates with
the CCT of a specific intent (ALIGN), we can determine a
template’s specific parameter types from corresponding CCT.
We then fine-tune the model to identify refined entity types
based on rough entity types, requiring minimal human labeling
of rough-refined entity mapping. We then use these fine-tuned
parameter extraction models to generate more accurate config-
uration templates (Fig. 3 (b)). There are still open questions
here to explore designing rough entity types and rough-refined
mapping rules for efficient and accurate parameter extraction.

Templates Alignment (ALIGN). ALIGN groups configu-
ration templates with similar intents from different vendors
and aligns them with the corresponding CCT for specific
intents and their parameter settings. However, human labeling
intents for templates in various vendors is impractical for
NetOps teams, hindering ALIGN’s goal with minimal human
effort. Thus our proposed solution utilizes active-learning-
based NLP encoders with little labeling process. ALIGN
understands intent descriptions and their templates and groups
templates with similar intents together by measuring their

similarity. During ALIGN’s learning pipeline, only a small
set of representative templates are labeled and matched with
their corresponding CCT by experts, reducing extensive pre-
training labeling efforts.

Configuration Comprehension Model. We utilize fine-tuned
large language models (LLMs) (i.e. BERT [17]) for encoding
configuration templates and their intent descriptions, which
involves parallel Description and Template encoders as shown
in Fig. 4. Both encoders take the words in intent descriptions
or templates as input and generate a CLS identifier each,
representing the encoded sentences. We concatenate the CLS
outputs of both encoders to obtain intent-template embeddings.

Training Process. To obtain accurate intent-template embed-
dings, we fine-tune LLMs using similarity-based training data
and loss functions. Fig. 4 illustrates the training pipeline. First,
we input all intent-template tuples into the encoders to obtain
current embeddings. Then, we obtain the similarity matrix
F by calculating normalized Euclidean distance between two
arbitrary embeddings. By setting upper and lower thresholds
for similarity, we determine which embeddings should be
grouped together or not. This forms triple training data (Pi,
qpos, qneg), where Pi is the target embedding, qpos represents
embeddings that have the same intents as Pi and should be
grouped, and qneg represents embeddings not to be grouped.
The loss function for the encoders aims to increase similarity
between embeddings of the same intents and decrease simi-
larity between different ones. It can be defined as:

obj(pi, qpos, qneg) = log(1 + edis(pi,qpos)−dis(pi,qneg)), (1)
where dis(·) represents the Euclidean distance.

Expert Labeling. The learning model alone may not effi-
ciently identify similar intent templates without human label-
ing. To address this, ABC provides representative embeddings
that puzzle similarity measurement for experts to label. For
instance, experts label embeddings pi and pj when Fij falls
near the mean of the upper and lower thresholds. Fij is labeled
as 1 if the templates have the same intent and 0 otherwise. We
also record the intent types of these labeled embeddings, for
alignment of the grouped templates with corresponding CCTs.

Open Questions. As similarity-based alignment measure-
ments do not provide ground truth, resulting in potentially
incorrect training data generation even with expert labeling.
Thus the alignment may not achieve 100% accuracy, which is
not ideal for NetOps teams to maintain the CKB. Future works
can focus on addressing this and exploring potential solutions.

Snippet Extraction. NetOps teams often need to extend
settings in the existing configuration files of a specific ven-
dor to the multi-vendor network. However, it is challenging
because typical configuration files consist of mixed intents,
while a single CCT corresponds to snippets of one intent. To
address this, we propose to split configuration files into intent-
based snippets to facilitate parameter storage in various CCTs.
The straightforward approach to achieve this is to compare
configuration files with snippet templates for all vendors and
intents, but it is time-consuming and may require more human
effort with complex scenarios such as mixed intents within the

⊕

…

…

…

…

Snippet
Set 2

Sn
ip

pe
t S

et
 1

Snippet Set 2

Expert

…

'"

'" '(

 $%%&

!"#

$%%&

!"#

!" !" !"

!#!"

Intent-Template SetIntent-Template Set

In
te

nt
-T

em
pl

at
e

Se
t

 Intent-Template
Tuples Set

Transformer Layer

Transformer Layer

… …
Transformer Layer

Transformer Layer

Description Encoder Template Encoder

Description Words Template Words
Configuration Comprehension Model

Intent-Template
Embedding Train

Triples
Training Data

Construct

Mapping
Matrix *

Selected
SamplesLabel

Fig. 4: The pipeline of ALIGN procedure. Two NLP encoders are employed
to comprehend intents and their templates, while similarity-based training
samples are used to group and align templates with similar intents.

same hierarchy (e.g., assigning OSPF weight and ACL of the
same interface (see Fig. 3)).

To automate and accelerate this procedure, we primarily
propose to construct a statement tree of the configuration file
and enable parallel matching only with CCTs. The tree is
built by organizing statements in configurations hierarchically
with labeled parameters produced by PP module. Matching
occurs between subtrees of the statement tree and CCTs in
parallel, considering parameter types and successive node
relationships. Processing from the root to the leaves, one
subtree matching is terminated when mismatches occur. It
remains an open question for a specific design to enhance
accuracy and efficiency of this process.

IV. VISION FOR FUTURE WORKS

NetOps teams always seek to apply their high-level intents
to the low-level configurations of different vendors with min-
imal human effort. ABC utilizes learning-based approaches
to build a CKB, lightening the heavy expert workload for
learning different configuration languages. ABC can serve as
a milestone and foundation for the topic of automated network
configuration. Future following works can be proposed to
achieve a higher-level automation as outlined below.

Intent-based Network Configuration. Current CKB relies on
existing configuration files to determine parameter settings and
build shared configuration information bases across different
vendors. However, we aim to achieve a more automated
configuration approach by learning parameter settings directly
from human intents, without writing any configuration file. To
accomplish this, we develop tools that understand the intents
of NetOps teams and translate them into specific parameter
settings. Challenges may arise, such as dealing with indirect
intents where parameters cannot be directly extracted from
intents (e.g., modifying link weights for routing configuration),
and detecting and resolving intent conflicts automatically
where multiple intents provided by NetOps teams cannot be
configured together in low-level implementation. Recent work
in this direction, such as [10], primarily focuses on intent
understanding and transferring intents into domain-specific
language, rather than reaching the parameter settings level.

Network Configuration Synthesis. CKB is organized based
on single intents. However, NetOps teams often propose

multiple intents for a network, necessitating efficient synthesis
of these intent templates or snippets. Concatenating snippets
with different intents is impractical due to the hierarchical
organization of network configurations [5, 8]. For instance,
configuring a port’s feature may involve two different intents
of assigning OSPF weights (routing configuration) and ACL,
which reside in the same hierarchy. Recent research [15]
also indicates that the configuration order of intent snippets
affects the effectiveness of high-level intents. Consequently, it
is challenging to develop network configuration synthesis tools
based on intent-based CKBs with multiple high-level intents.

Intent-based Network Inquiry and Summarization. Exist-
ing network configuration files are often lengthy and written
in low-level grammar, posing challenges for NetOps teams to
comprehend and analyze network configuration status. ABC
has introduced a network description encoder that understands
human intents. By extending this module, NetOps teams can
inquire snippets about specific intents and develop tools to
summarize the associated configuration status of that intent.
The summaries should be presented in an easily understand-
able format, such as natural language. Previous research [7]
has proposed network summarization problem, yet only focus-
ing on summarizing traffic information in forwarding tables.
We aim to summarize configuration status of various intents
across multiple configuration files based on human inquiries.

ABC Assisted Network Assimilation. A recent network
configuration assimilation work Nassim [8] aims to automati-
cally transfer network configuration files to other vendors but
still uses top-down methods that require to handcraft vendor-
specific parser functions. However, unlike ABC, Nassim pro-
vides well-designed parameter mapping solutions across dif-
ferent vendors while ABC leaves one-to-one mapping at the
parameter level as an open question (see §III-B), only focusing
on aligning snippet templates at the intent level. Combining
the strengths of both approaches, ABC’s bottom-up methods
can be applied to Nassim, enabling the automatic construction
of parser functions using learning models with device manuals.
This integration may further reduce human efforts in Nassim.

V. CONCLUSION

NetOps teams always seek to implement low-level network
configurations across different vendors using high-level in-
tents, with minimal need for expert knowledge and human
effort. Towards achieving this highly automated network con-
figuration goal, the introduction of ABC will be a fundamental
and significant contribution that builds CKB with snippet
templates for consistent intent across vendors. It learns from
device manuals and extracts labeled parameters from existing
configuration files, enabling shared settings in a common
knowledge base. Following this milestone, we can extend to
consider more vision works that include solving parameter
settings based on high-level intent sets and synthesizing con-
figurations of different intents in a single file. We encourage
the community to further contribute to ABC and to suggest
more valuable follow-up works on this topic.

VI. ACKNOWLEDGMENT

This work is supported in part by funding from the Research
Grants Council of Hong Kong (11209520) and from Huawei
(CUHK #7010691).

REFERENCES

[1] Apstra. https://apstra.com/.
[2] Cisco OSs. https://www.reddit.com/r/Cisco/comments/2o619f/would

someone please explain succinctly what the/cmk1tma/.
[3] Cisco Sues Huawei over Intellectual Property. https:

//www.computerworld.com/article/2578617/cisco-sues-huawei-over-
intellectual-property.html.

[4] Graph-Based Live Queries in AOS. https://apstra.com/products/.
[5] OpenConfig. http://openconfig.net/.
[6] Banerjee, Anubhab and Mwanje, Stephen S and Carle, Georg. Trust

and Performance in Future AI-enabled, Open, Multi-Vendor Network
Management Automation. IEEE Transactions on Network and Service
Management, 20(2):995–1007, Oct. 2022.

[7] Rüdiger Birkner, Dana Drachsler-Cohen, Laurent Vanbever, and Martin
Vechev. Net2Text: Query-Guided Summarization of Network Forward-
ing Behaviors. In Proc. USENIX NSDI, 2018.

[8] Huangxun Chen, Yukai Miao, Li Chen, Haifeng Sun, Hong Xu, Libin
Liu, Gong Zhang, and Wei Wang. Software-Defined Network Assimila-
tion: Bridging the Last Mile Towards Centralized Network Configuration
Management with NAssim. In Proc. ACM SIGCOMM, 2022.

[9] Ari Fogel, Stanley Fung, Luis Pedrosa, Meg Walraed-Sullivan, Ramesh
Govindan, Ratul Mahajan, and Todd Millstein. A General Approach to
Network Configuration Analysis. In Proc. USENIX NSDI, 2015.

[10] Arthur S. Jacobs, Ricardo J. Pfitscher, Rafael H. Ribeiro, Ronaldo A.
Ferreira, Lisandro Z. Granville, Walter Willinger, and Sanjay G. Rao.
Hey, Lumi! Using Natural Language for Intent-Based Network Manage-
ment. In Proc. USENIX ATC, 2021.

[11] Yoshihide Kato and Shigeki Matsubara. Parsing Gapping Constructions
Based on Grammatical and Semantic Roles. In Proceedings of the
Conference on Empirical Methods in Natural Language Processing,
2020.

[12] Ravi Kumar, Prabhakar Raghavan, Sridhar Rajagopalan, and Andrew
Tomkins. Extracting Large-Scale Knowledge Bases from the Web. In
Proceedings of the International Conference on Very Large Data Bases,
1999.

[13] Hongqiang Harry Liu, Xin Wu, Wei Zhou, Weiguo Chen, Tao Wang,
Hui Xu, Lei Zhou, Qing Ma, and Ming Zhang. NetCraft: Automatic Life
Cycle Management of Network Configurations. In Proc. ACM SelfDN,
2018.

[14] Martinez, Anny and Yannuzzi, Marcelo and López, Vı́ctor and Lopez,
Diego and Ramı́rez, Wilson and Serral-Gracia, Rene and Masip-Bruin,
Xavi and Maciejewski, Maciej and Altmann, Jörn. Network Manage-
ment Challenges and Trends in Multi-layer and Multi-vendor Settings
for Carrier-grade Networks. IEEE Communications Surveys & Tutorials,
16(4):2207–2230, June 2014.

[15] Tibor Schneider, Rüdiger Birkner, and Laurent Vanbever. Snowcap:
Synthesizing Network-Wide Configuration Updates. In Proc. ACM
SIGCOMM, 2021.

[16] Yu-Wei Eric Sung, Xiaozheng Tie, Starsky HY Wong, and Hongyi
Zeng. Robotron: Top-down Network Management at Facebook Scale.
In Proc. ACM SIGCOMM, 2016.

[17] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion
Jones, Aidan N. Gomez, Lukasz Kaiser, and Illia Polosukhin. Attention
is All you Need. In Advances in Neural Information Processing Systems,
2017.

