
Dynamic Learning-based Link Restoration
in Traffic Engineering with Archie

Wenlong Ding, Hong Xu
The Chinese University of Hong Kong

Abstract—Fiber cuts reduce network capacity and take a long
time to fix in optical wide-area networks. It is important to
select the best restoration plan that minimizes throughput loss
by reconfiguring wavelengths on remaining healthy fibers for
affected IP links. Recent work studies optimal restoration plan
or ticket selection problem in traffic engineering (TE) in a one-
shot setting of only one TE interval (5 minutes). Since fiber repair
often takes hours, in this work, we extend to consider restoration
ticket selection with traffic dynamics over multiple intervals.

To balance restoration performance with reconfiguration over-
head, we perform dynamic ticket selection every T time steps.
We propose an end-to-end learning approach to solve this T -
step ticket selection problem as a classification task, combining
traffic trend extraction and ticket selection in the same learning
model. It uses convolution LSTM network to extract temporal
and spatial features from past demand matrices to determine
the ticket most likely to perform well T steps down the road,
without predicting future traffic or solving any TE optimization.
Trace-driven simulation shows that our new TE system, Archie,
reduces over 25% throughput loss and is over 3500x faster than
conventional demand prediction approach, which requires solving
TE many times.

I. INTRODUCTION

Fiber cuts are serious failures in optical wide-area networks.
When a fiber cut occurs, all IP links on this fiber stop carrying
traffic, which causes throughput loss. The IP links can be re-
covered by reconfiguring to use remaining healthy fibers with
Reconfigurable Optical Add Drop Multiplexers (ROADMs)
[1, 9, 44]. With different fiber paths and wavelength assign-
ments, many possible restoration plans exist for a given fiber
cut scenario even in a medium-scale network [44]. Each plan
essentially results in a different topology that partially restores
the IP links to varying capacities. Therefore, given the traffic
demand, the network operators need to determine the best
restoration plan that maximizes the recovered throughput, or
equivalently, minimizes the total throughput loss.

To tackle this problem, state-of-the-art solution Arrow [44]
abstracts a restoration plan as a ticket. When a fiber fails, given
the traffic demand, the traffic engineering (TE) system solves
the TE for a specific ticket, calculates the total throughput
realized, and identifies the best ticket by enumerating all
candidate tickets in the same way. While this approach has
been proven effective in production networks [44], we explore
two new aspects that have not been examined before.

First, Arrow [44] only considers ticket selection for a single
time step, i.e. one TE interval. In practice, a fiber cut usually

This work is supported in part by funding from the Research Grants Council
of Hong Kong (GRF 11209520, CRF C7004-22G) and from CUHK (4937007,
4937008, 5501329, 5501517).

takes hours to fix [44], and traffic exhibits significant dynamics
over this period as we show with empirical evidence in §II-C.
Thus, we set out to explore the problem in the long run,
where dynamic ticket selection is necessary to cope with
the dynamic traffic. A natural solution here is to simply
re-select the ticket in every TE time step, i.e. 5 minutes
[12, 15, 24]. This frequent restoration scheme does not work
well because it overlooks the reconfiguration overhead at the
optical layer. Optical wavelength reconfiguration takes at least
O(10) seconds with the latest hardware on a 4-node topol-
ogy [44], while older components and larger topologies can
take minutes [8, 18, 39]. During the reconfiguration process,
the corresponding IP links are completely down [29, 35, 44],
creating excessive throughput loss for the already-attenuated
network. Thus, to rein in the reconfiguration overhead with
frequent restoration, we propose to perform ticket selection
periodically every T time steps.

Dynamic T -step ticket selection naturally motivates us to
consider another new aspect: Since now a restoration ticket is
to be used for T time steps, how can we select a good ticket
that works well down the road? Clearly we need to depart from
Arrow’s one-shot myopic approach which only considers in-
stantaneous demand, and take into account the future demand
time series. Intuitively, one can predict the demand for each of
the future T steps, and apply Arrow’s ticket selection method
using a series of T demand matrices. However, this demand
prediction based approach entails solving the TE optimization
problem TZ times in total for Z candidate restoration tickets
across T steps, which results in non-negligible time overhead
for the 5-minute TE budget. As we will demonstrate in §III-A,
for a medium-scale topology with 16 nodes and 47 IP links,
this method takes over 50 seconds to select the best ticket for
future 10 time steps with 35 candidate tickets. Further, it relies
on accurate prediction of traffic demand, which is challenging
in itself as we try to predict a more distant future.

We take an end-to-end learning approach to design a fast and
accurate ticket selection method for a T -step horizon. We view
the problem as a classification task, and train a neural network
with traffic history and the corresponding candidate tickets
for a particular fiber cut scenario. The neural network learns
which ticket is more likely to lead to the best TE performance
over the next T steps, without explicitly predicting the demand
or exactly solving TE. We train one model for one possible
failure scenario offline, and deploy them in the TE system
for online inference. Our approach enjoys faster decision time
since it requires only one pass of the neural network instead

A B C

IP1 (1000 Gbps)

IP2 (500 Gbps)

IP-layer’s view

IP-optical mapping

（a）Original mapping (healthy state)

A B C

IP1 (800 Gbps)

IP2 (200 Gbps)

（b）Restoration candidate (ticket) 1

A B C

IP1 (500 Gbps)

IP2 (500 Gbps)

（c）Restoration candidate (ticket) 2

fiber
IP1
IP2

IP1 (2 waves) IP2 (1 wave)

IP1 (6 waves) IP2 (1 wave)

A B Cx

IP2 (3 waves)

IP1 (5 waves) IP2 (2 waves)

A B Cx

IP2 (5 waves)IP1 (3 waves)

A B C

IP1 (7 waves)

Fig. 1: IP-optical mapping and restoration tickets in optical network. (a) depicts the routing of IP links on fiber paths and wavelengths assignment on each
fiber in a healthy state, with its IP-layer’s view when a single wave carries 100Gbps. (b) and (c) show different partial restoration plans (tickets) to restore
IP2 when middle fiber from B to C is cut, along with their IP-layer’s views, which is achieved by rerouting IP2 on the unaffected upper and bottom fibers
from B to C and reconfiguring their wavelengths. (This figure refers to Fig.7 in Arrow [44].)

of solving optimization programs many times. It is also more
robust to inherent prediction errors as its end-to-end training
is targeted at selecting one correct ticket (i.e. a classification
label) instead of predicting all future demand.

We make several novel contributions in this paper.
• We design Archie, a TE system with dynamic restoration

ticket selection to adapt to traffic dynamics during fiber
cut period. Archie takes an end-to-end learning approach
to periodically solve the ticket selection problem for a T -
step horizon. The learning model utilizes convolutional
LSTM [33] to extract temporal and spatial features of
demand time series, and uses them to determine the best
ticket without explicitly predicting demand or solving any
TE. When a fiber cut is detected, Archie immediately
handles it with the corresponding pre-trained model.

• We prototype Archie and conduct trace-driven simulation
to extensively evaluate its performance. The results show
that on average Archie can reduce throughput loss by
27.1% and improve decision time by 3598x compared
to the strawman solution using demand prediction. It
further reduces overall throughput loss by 64.7% and
59.6% compared to frequent and static restoration in the
long run, respectively, which represent two extremes of
the design space. Archie’s performance robustness and
scalability to larger topologies and traffic volumes make
it suitable for use in production networks.

• We conduct analyses to understand why and how Archie’s
neural network helps here. We find that, spatially, Archie
learns to focus on the critical flows that significantly
affect overall throughput during restoration; temporally, it
learns to be more attentive to traffic spikes. These features
set Archie apart from the demand prediction approach
which treats all flows equally and is agnostic to traffic
spikes, and may offer valuable insights for better future
designs of dynamic restoration ticket selection.

II. BACKGROUND AND MOTIVATION

In this section, we first introduce background on restoration
tickets in traffic engineering (TE), and then discuss the moti-
vation to consider forward restoration ticket selection for TE
in the long run.

A. Traffic Engineering (TE)

TE is one of the most well-studied problems in the network-
ing community. It allocates traffic of source-destination pairs
to available paths in order to optimize overall performance,
mostly represented by minimizing maximum link utilization
or maximizing total throughput (with or without fairness
constraints) [4, 6, 24, 25, 34, 41, 44]. TE is done on the IP layer
and is agnostic to optical layer details.

In our work, we mainly focus on maximizing total through-
put similar to Arrow [44]. We model the IP-layer topology as
a graph G = (V,E), where V represents the set of routers
and E the set of links. A link e has capacity Ce. We call
a source-destination pair a flow, and the instantaneous traffic
demand of flow f is Df . For each flow, there are K candidate
paths that can be used for routing. We simply use K shortest
paths as the candidate paths in our work following most prior
work [24, 25, 41, 44]. We use a binary variable P ke to encode
the path-link relationship, where it equals 1 if path k traverses
through link e and otherwise 0. We compute TE solution {wkf}
which represents the fraction of traffic on flow f assigned to
path k, which can be formulated as follows:

max
∑
f

∑
k

wkfDf (1)

s.t.
∑
k

wkf ≤ 1,∀f, (2)

wkf ≥ 0,∀f, k, (3)∑
f

∑
k

P ke w
k
fDf ≤ Ce,∀e. (4)

Constraint (2) ensures that each flow’s total routed traffic
does not exceed its demand. Constraint (3) is the traffic non-
negativity constraint, and (4) is the link capacity constraint.

B. Restoration Tickets in Optical Networks

IP-optical mapping. In optical wide-area networks, traffic
is routed on IP links, and each link is composed of optical
physical paths and occupies certain wavelengths on the fibers
of these paths [37, 40, 44]. Fig. 1(a) shows how IP-optical map-
ping works. The network has two links, where IP1 is routed
on fiber AB with 10 wavelengths, as well as on the upper and
bottom fibers of BC with 3 and 7 wavelengths, respectively,

0.5
0.6
0.7
0.8
0.9

1

0 100 200 300 400 500
0

0.25

0.5

0.75

1

0 100 200 300 400 500

flow 0 flow 1 flow 2 flow 3
9 hours

Time steps

9 hours

Time steps

N
or

m
al

iz
ed

 tr
af

fic

(a) Traffic on 4 selected flows (b) Sum of the traffic on all flows

N
or

m
al

iz
ed

 tr
af

fic

600 600

Fig. 2: Illustration of traffic dynamics in Abilene topology from SNDlib [31].
The topology has 12 nodes and 15 edges (fibers), and we present its traffic in
600 continuous time steps with a granularity of 5 minutes. (a) shows demand
of four representative flows, and (b) shows the total demand across topology.
Traffic data is normalized by dividing the maximum value in each sub-figure.

while IP2 uses BC’s middle fiber with 5 wavelengths. Suppose
each wavelength carries 100Gbps; IP1 and IP2 have 1000Gbps
and 500Gbps capacity in IP-layer’s view, respectively.

Partial restoration and restoration ticket. When a fiber
cut occurs, IP links that use this fiber lose all capacity. We can
reconfigure remaining fibers and their wavelengths to partially
restore these links [7, 14, 17, 21]. As shown in Fig. 1, when the
middle fiber of BC is cut, IP2 also fails immediately. We can
reconfigure it to use the other two healthy fibers from B to C as
shown in Fig. 1(b) and (c). This partial restoration is common
in practice [44]. Notice that there are many feasible partial
restoration plans with different wavelength assignments, i.e.
restoration tickets, which result in different IP-level capacities.

To determine which restoration ticket is better, one has to
consider the traffic demand. If the traffic demand is 700Gbps
for IP1 and 100Gbps for IP2, ticket 1 (Fig. 1(b)) achieves a
total throughput of 800Gbps but ticket 2 has 600Gbps only.
Instead, if the demand is 300Gbps and 500Gbps for IP1 and
IP2, ticket 2 delivers 800Gbps throughput and is better. Thus,
it is necessary to store various restoration tickets offline for
each possible fiber cut scenario so the network control plane
can select the best tickets according to dynamic demands.

C. Ticket Selection for the Long Run

A recent work, Arrow [44], is the first to explore the
restoration ticket selection problem in TE. It focuses on the
simple one-shot scenario and uses traffic demand of one time
step in its design and evaluation. However, the reality is much
more complicated. Fiber cuts take a long time to physically
repair: It has been reported that more than half of fiber cuts
last longer than nine hours to repair for Facebook’s WANs
[44]. This prompts a deeper inquiry into ticket selection for
the long run, which is clearly more challenging. First, traffic
demand fluctuates during the fiber cut duration, making the
one-shot approach in Arrow sub-optimal in the long run.
As shown in Fig. 2, the total traffic demand of the entire
WAN and demand of each flow (i.e. source-destination pair)
in production networks show great dynamics. We quantify
the traffic dynamics using the peak-to-trough ratio, which
represents the ratio between the highest and lowest traffic
demands. Over nine hours as in Fig. 2, the peak-to-trough
ratios of four randomly selected flows are 2.60, 9.80, 6.55 and
3.24, respectively; and it stands at 1.79 for all flows. We also
demonstrate experimentally in §IV-C that adopting this static
restoration plan which utilizes the same ticket for the whole
fiber cut duration results in a significant loss in TE objective.

5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80
Tickets

0
25
50
75

100
125

Ti
ck

et
 se

lec
tio

n
tim

e
(s

) 9 nodes, 23 links
12 nodes, 34 links
16 nodes, 47 links

Fig. 3: Selection time (seconds) of a 10-step (T = 10) ticket in Demand
prediction. Results for different topologies and candidate ticket numbers are
shown. We solve TE optimization problem following the formulation in §II-A
using the hardware environment in §IV.

One may be tempted to consider another extreme design
that selects a new restoration ticket at each TE interval with
instantaneous traffic demand, which we refer to as frequent
restoration. TE is performed at 5-minute intervals in practice
[4, 25, 34]. Yet, a new restoration ticket entails reconfiguring
wavelengths at optical layer, which takes at least O(10)
seconds with the latest hardware on a simple 4-node topology,
while older optical components and larger topologies take
minutes [8, 18, 39, 44]. IP links under optical reconfiguration
cannot carry any traffic [29, 35, 44]. This implies that fre-
quent reconfiguration of optical network causes significant and
frequent throughput loss to upper-layer workloads, which is
clearly undesirable.1

Therefore, we propose to re-select restoration ticket every
T time steps to better cope with traffic dynamic and reconfig-
uration overhead. T time steps (e.g., T = 10) is a short period
compared to the whole fiber cut duration, during which traffic
dynamics do not wildly change. The reconfiguration overhead
can be greatly reduced as we reduce the frequency of ticket
selection. Considering ticket selection for multiple time steps
is a fundamentally new problem different from the one-shot
selection [44], since we have to select one restoration ticket
that works well for T steps with T different sets of future
traffic demands and their TE plans that are both unknown to
us at decision-making time.

III. DESIGN

We present Archie’s design now. We first sketch a strawman
solution motivated by previous work and analyze its shortfalls.
We then present Archie’s end-to-end learning approach and
explain the detailed design based on Convolutional LSTM.

A. Strawman Solution with Demand Prediction

An intuitive solution to our problem is to just predict the
traffic demands for each of the future T time steps down the
road, which extends what we do now for TE that predicts only
1-step ahead in production [24, 25]. That is, for a restoration
ticket, at each step, we use the predicted demand matrix and
the ticket to solve the TE problem and obtain the network
throughput. Summing up the throughput across T steps, we
have the total throughput corresponding to one ticket, and
select the best ticket that maximizes this total throughput.

1A new TE plan also entails reconfiguration at IP routers, but IP links and
old routing rules still work until they are de-activated right before new rules
are applied [27, 43]. Thus congestion and throughput loss are much milder.

Update every T time steps Update every time step
(a) T-step restoration ticket selector (ConvLSTM based classifier) (b) Normal TE system

last hidden layer

Flatten

Traffic
Size: H3 X N X N

ConvLSTM1 ConvLSTM2 ConvLSTM3

...

m
 time steps ...

...
Hidden state size: H1 X N X N H2 X N X N H3 X N X N

Target ticket

Output layer

Softmax

Size: Z

Model
output Candidate paths

Traffic matrix

TE optimizer

TE solution

Throughput

Output of each
time step

Traffic trend extraction module Ticket selection module

Specific
fiber cut

Relative ticket set

Relative learning model

Output layer size: Z

.

.

.

.

.

.

.

.

.

FC-network

Traffic matrix: N X N

. . .
K traffic matrices

m time steps

Fig. 4: Overview of Archie with T -step restoration ticket selection. Archie has different pre-trained models for different fiber cut scenarios. A fiber cut triggers
Archie to use the corresponding model (ticket selector), and its output ticket to deal with current failure.

This solution has several important drawbacks. First, it
requires solving TE TZ times where Z is the number of
candidate tickets. Though a single instance of TE typically
does not take long to solve (usually a linear program problem),
scaling it by a factor TZ makes it much more significant. For
example in Fig. 3, when T is set to 10, for a topology with 16
nodes and 47 IP links, it takes over 50 seconds to select the
ticket given 35 candidates (recall one TE interval is 5 minutes).
Larger topologies also greatly prolong the solving time as
shown in the same figure. In addition, to better accommodate
various demand matrices we need as many candidate tickets
as possible, aggravating the time pressure.

Second, prediction entails errors even with state-of-the-art
methods [5, 11, 16, 26, 28], and errors manifest as one tries to
predict further away in the time horizon. The adverse effect
may not be an issue for one-shot TE; as we move to consider
T time steps the prediction error can actually cause salient
performance drop with sub-optimal ticket selection results as
we will demonstrate in §IV-B.

B. Archie’s Approach: End-to-End Learning

We therefore take a very different approach in Archie.
Instead of explicitly predicting traffic time series and solving
TE, we view the ticket selection problem as a classification
task, and adopt a learning approach that uses a neural network
to learn which restoration ticket leads to the best performance
over next T time steps given history traffic. The neural network
is composed of two modules: The first is tasked to extract the
features of traffic demands that are critical to ticket selection,
and the second is responsible for making a selection decision.
Essentially, by combining these two modules into one model
with supervised learning, Archie learns what traffic features
are important, how these features would look like, and then
determines the potential best ticket given this information,
without solving the problem explicitly with tainted input.

An analogy to better understand our idea and why it can
work is the classical CNN models like AlexNet [23] and
ResNet [10]. To do image classification, it is not necessary
to recognize for example each body part of an animal and
its exact position accurately. Instead, it is more effective and
robust to just learn the relationship between features and the
classification, so the model knows that “fluffy ears” and “long
muzzle” can tell a dog apart from a cat. This is what Archie
sets out to do. We perform in-depth analysis in §V to see what
features Archie actually learns and validate our idea.

Archie’s learning approach has two advantages over demand
prediction based approach. First, it is much faster in decision
time, requiring only one pass of the neural network instead
of solving TZ optimization programs. The running time also
scales more gracefully with network topology. Second, Archie
is more robust to the inherent prediction inaccuracy. It takes an
end-to-end approach that enables the neural network to learn
how to cope with traffic uncertainties as long as the final output
(ticket selection) is correct, whereas the demand prediction
based approach only works when each flow’s demand at each
time step can be accurately predicted. For this reason, we
observe that Archie is able to deliver better TE performance.

C. Detailed Design: ConvLSTM Based Classifier

Fig. 4 shows the overall design of Archie. As discussed in
§III-B, it has two neural modules. The first uses Convolutional
LSTM (ConvLSTM) [33] cells to extract both temporal and
spatial traffic trends from the past traffic matrices. The output
of ConvLSTM’s last hidden layer goes into a fully connected
neural network (FC-network) for ticket selection. These two
modules are concatenated in one model and trained together.
Why ConvLSTM? ConvLSTM replaces the fully connected
layers in conventional LSTM cells with convolutional layers as
Fig. 4 depicts. It can explore more complex time series features
compared to statistical models such as ARIMA [30] due to
deep neural network’s ability to model high-dimensional data.
Its use of convolutional layers further allows it to explore spa-
tial information in the data, which is ignored by conventional
LSTM that models traffic matrix prediction as a multivariate
time series prediction problem. ConvLSTM has shown wide
success in real-world traffic matrix prediction [11, 16, 26, 28].
Training of ConvLSTM based classifier. We train one spe-
cific ConvLSTM based model for a given fiber cut scenario of
the network. At time step t, we input traffic demand matrices
of past m time steps (TMt−m+1, TMt−m+2, · · · , TMt) into
the model. The default value of m is 40 in this work. Each
matrix is N×N where N is the node number in the topology.
A typical ConvLSTM requires 3D input (channel, length,
and width) [33], and we set channel number to 1 to enable
1×N×N model input. Archie uses three convolutional layers
in ConvLSTM as shown in Fig. 4. Layer i has a hidden state
size of Hi × N × N , where Hi is a configurable parameter
representing hidden dimensions. We flatten and feed hidden
state of the last time step in the last convolutional layer
into FC network. The output layer size of FC-network is Z,

representing Z restoration tickets in current fiber cut scenario.
We use Cross-Entropy loss with the true labels for training, and
select the ticket with maximal probability when inferring target
ticket. The label tickets are the best ticket that maximizes TE
objective in next T steps which are found by brute-force search
using actual demand matrices of next T steps.

D. Archie’s Deployment and Workflow

We demonstrate Archie’s use in practical network settings.
The system has two stages: offline preparation and online TE.
Offline preparation. Following Arrow [44], we first collect
restoration tickets for each possible fiber cut case. We prepare
a distinct ConvLSTM based classifier for each possible failure
scenario, using its corresponding ticket set for label generation
and model training. Subsequently, these trained models are
deployed in the system for inference only.
Online TE. Upon detection of a fiber cut, the centralized
network controller identifies the affected fiber and triggers
Archie to address the issue using the corresponding learning
model and ticket set (as shown in Fig. 4). The online workflow
of Archie is as follows: At the beginning of each T -step
interval, the learned model takes traffic matrices of the past m
steps as input and selects a ticket. After the ticket is configured,
it does not change for this T -step interval. At each TE step,
the TE optimizer mentioned in §II-A updates the TE solution
using the candidate paths and instantaneous traffic demand.

IV. EVALUATION

We evaluate Archie on the following aspects:
• How does Archie’s ConvLSTM model perform against

other ticket selection methods in one T -step time win-
dow? (§IV-B)

• How does Archie’s dynamic restoration design work in
the long run compared to other design choices including
static restoration and frequent restoration? (§IV-C)

• How does the number of candidate restoration tickets
affect the performance? (§IV-D)

The TE problems are solved with Gurobi Optimizer [2],
which has been widely used in existing TE systems [25, 44].
It runs on a server with 4 Intel Xeon Platinum 8268 24-
Core processors and 128GB RAM. The learning models are
implemented with Pytorch [3] and trained on an Nvidia
GeForce RTX 3090 GPU. The default settings of the models
are as follows: for ConvLSTM, we use 3 convolutional layers
with the hidden state dimensions of H1 = 8, H2 = 4, H3 = 4
and kernel size of 3 × 3 for all layers. For FC-network, we
use 2 fully connected layers (not including input layer) with
ReLU activation in each layer; the first layer has 128 neurons
and the output layer has Z neurons. For TE formulation, we
use K = 4 shortest paths for each flow.

A. Experiment Setup

Topologies, traffic traces, and restoration tickets. We eval-
uate Archie on four topologies as shown in Table I. Abilene
is a real-world backbone network topology commonly used in
existing work [8, 24, 25], and we obtain its 3000 continuous

Topology # Nodes # Fibers # IP links
Traffic matrices

(Train + Test)
Arpanet 9 10 23

2880+120
Abilene 12 15 34
Airtel 16 26 47
GRnet 37 42 101

TABLE I: Network topologies used in evaluations.

traffic matrices in 5-minute intervals from SNDLib [31].
Arpanet, Airtel, and GRnet are three real-world optical topolo-
gies obtained from Internet Topology Zoo [19]. We generate
realistic traffic matrices using the gravity model in YATES [24]
based on the traffic distribution in Abilene with the same 5-
minute granularity. There are many versions of Arpanet in
Internet Zoo Topology; we use the version with 9 nodes.

Following Arrow [44], we generate IP-layer topologies from
the optical ones following the distributions of the number of
IP links per fiber and the number of wavelengths per IP link
in Facebook. We use traffic matrices of the first 2880 time
steps for model training, and the rest for testing. Note that
120-step testing data corresponds to 10 hours which is similar
to the duration to fix a fiber cut in practice [44]. Since multiple
fiber failures are extremely rare in practice [32], we only
consider single fiber failures randomly generated across the
optical topology in our evaluation. The process of generating
restoration tickets is as follows: 1) We identify four shortest
healthy fiber paths with the same endpoints as the failed
fiber, and these fiber paths are used to restore the failed IP
links. 2) We generate Z candidate tickets by enumerating the
possible combinations of wavelength reconfiguration on the
four identified restoration paths. We set the default value of Z
to 30 unless otherwise specified.
Schemes compared. We compare Archie against the following
T -step restoration ticket selection schemes:

• One-shot myopic: It selects the ticket that maximizes the
throughput of the instantaneous demand matrix at the start
of current T -step window, and uses it for next T steps.

• Demand prediction: The strawman solution described in
§III-A that predicts demand for each of the T steps, and
uses the TE results with predicted traffic to select the best
ticket. We use ConvLSTM with the same training dataset
and model settings as Archie to predict future traffic to
ensure a fair comparison.

• Optimal: It uses the actual traffic of next T steps to
select the best ticket that maximizes total throughput. This
serves as the upper bound for performance comparison.

Lastly, we apply demand scaling on the traffic traces to fully
evaluate Archie under different traffic loads.

B. Performance of ConvLSTM-based Ticket Selection

In this section, we focus on various ticket selection methods
under one 10-step time window, by evaluating overall through-
put loss which is defined as the fraction of total throughput loss
relative to total demand. We do not consider reconfiguration
overhead which is the same across the board. Its effect is
considered in §IV-C when we evaluate the impact of T .

We observe that the overall performance of Archie is the
best among all comparison schemes as shown in Fig. 5. Archie

1.75 1.50 1.25 1.00
Demand Scale

0.0
1.0
2.0
3.0
4.0
5.0
6.0

Th
ro

ug
hp

ut
 lo

ss
 (%

)

(a) Arpanet

1.75 1.50 1.25 1.00
Demand Scale

0.0

0.5

1.0

1.5

2.0

2.5

Th
ro

ug
hp

ut
 lo

ss
 (%

)

(b) Abilene

1.75 1.50 1.25 1.00
Demand scale

0.0

0.5

1.0

1.5

2.0

Th
ro

ug
hp

ut
 lo

ss
 (%

)

(c) Airtel

1.75 1.50 1.25 1.00
Demand scale

0.0

0.2

0.4

0.6

0.8

1.0

Th
ro

ug
hp

ut
 lo

ss
 (%

)

(d) GRnet

One-shot myopic Demand prediction Archie Optimal

Fig. 5: Comparison of throughput loss for different restoration ticket selection methods in T -step window under various demand scales. (T is fixed to be 10).

Topology T
Ticket selection time (seconds)

One-shot
myopic

Demand
prediction Archie

Arpanet

5 0.729 3.644 0.01875

10 0.721 7.102 0.01900

15 0.732 10.982 0.01894

Abilene

5 1.845 9.221 0.02544

10 1.852 18.001 0.02501

15 1.847 27.705 0.02539

Airtel

5 4.746 23.712 0.03011

10 4.745 48.003 0.02996

15 4.751 71.265 0.03008

GRnet

5 51.974 259.182 0.04355

10 52.123 522.313 0.04441

15 51.988 779.320 0.04483

TABLE II: Single ticket selection time for different schemes. We show the
average values on the testing set with 120 traffic matrices, involving an average
of 24 runs for T = 5, and 12 and 8 runs for T = 10 and T = 15, respectively.

reduces the throughput loss by 48.5% and 27.1%, compared
to One-shot myopic and Demand prediction, respectively,
averaged over all topologies and demand scales. Archie is
able to offer close-to-optimal performance with additional
throughput loss ranging from 0% to 0.98% at most.

Second, evaluation results reveal that Archie has a more
pronounced impact at a larger demand scale compared to other
methods. In terms of additional throughput loss relative to
Archie averaged over four topologies, when demand scales
are 1.25, 1.5, and 1.75, One-shot myopic suffers from 4.95x,
2.59x, and 1.81x more additional loss compared with the loss
when demand scale is 1.0, and Demand prediction suffers
from 3.82x, 1.72x, and 1.01x more. For a specific example
in Arpanet, One-shot myopic has 2.28% additional loss when
scale is 1.75, compared to 0.83% at original demand. When
demand is small, ticket selection plays a minor role since there
are many tickets that can give good or even optimal throughput
performance. As demand scales up, good restoration tickets
become more difficult to identify and Archie is more capable
of finding them compared to other schemes.

Table II further shows the running time comparison of
different ticket selection schemes with different values of T .
Archie greatly reduces the running time: on average across
all topologies and settings, its speedup relative to One-shot
myopic and Demand prediction stands at 362x and 3598x,
respectively. Notice that Archie almost always takes less than

45ms to select a ticket. Second, as T increases from 5 to 15,
Demand prediction’s running time quickly escalates because of
more runs of TE optimizer, but Archie’s time remains steady
by design. Third, Archie’s running time has a slower growth
speed as topology size increases compared to other methods.
For example, in the largest GRnet with T = 10, Archie’s
running time is only 2.3x that of the smallest Arpanet, whereas
One-shot myopic and Demand prediction take 72.3x and 73.5x
more time, respectively.

C. Benefit of Dynamic Link Restoration
To validate the design choice of dynamically updating the

link restoration plan, here we compare Archie against the two
extreme design choices discussed in §II-C: The first is static
restoration that selects one ticket and deploys it throughout
the whole fiber cut duration, which in our traces corresponds
to setting T to 120, the length of the test dataset. The second
is to re-select the ticket at each TE step, i.e. T = 1, and we
refer to this as frequent restoration. We obtain the cumulative
throughput over 120 steps, and model the restoration overhead
by setting the reconfiguration time at the optical layer to be 1

30
time of one step (10 seconds). During this period, no traffic
can be delivered on the IP links traversing these failed optical
fibers. Our setting is in line with prior work [44] which shows
that reconfiguration time is O(10) seconds.

We observe from Fig. 6 that the extreme methods lead to
more throughput loss than Archie with other settings of T
(5, 10, 15). On average, Archie under the best setting of T
can reduce throughput loss by 64.7% and 59.6% compared
to frequent and static restoration, respectively. The poor per-
formance of the two extreme methods justifies our choice to
use a moderate T to practically reap the benefit of dynamic
restoration without excessive overheads from frequent recon-
figuration and traffic dynamics.

Second, the throughput loss of static restoration grows
faster than frequent restoration with demand scaling. When
demand scale is 1, frequent and static restoration has an
average throughput loss of 0.94% and 0.28%, respectively.
Frequent restoration has a higher loss at this scale because
of reconfiguration overhead. However, when demand scales
are 1.25, 1.5, and 1.75, frequent restoration’s throughput loss
only increases by 1.18x, 1.62x, and 3.24x, respectively; while
for static restoration, it increases by 2.30x, 4.85x, and 12.32x,
respectively. As demand scale becomes larger, static restora-
tion will incur more throughput loss than frequent restoration.

1.75 1.50 1.25 1.00
Demand Scale

0.0

1.5

3.0

4.5

6.0

Th
ro

ug
hp

ut
 lo

ss
 (%

)

(a) Arpanet

1.75 1.50 1.25 1.00
Demand Scale

0.0

1.0

2.0

3.0

4.0

Th
ro

ug
hp

ut
 lo

ss
 (%

)

(b) Abilene

1.75 1.50 1.25 1.00
Demand scale

0.0

0.5

1.0

1.5

2.0

2.5

Th
ro

ug
hp

ut
 lo

ss
 (%

)

(c) Airtel

1.75 1.50 1.25 1.00
Demand scale

0.0

0.3

0.6

0.9

1.2

Th
ro

ug
hp

ut
 lo

ss
 (%

)

(d) GRnet

T=1 T=120 T=5 T=10 T=15

Fig. 6: Comparison of throughput loss in the long run (120 time steps) considering reconfiguration overhead. The restoration methods evaluated include static
restoration (T = 120) and frequent restoration (T = 1) along with other settings of T using Archie (T = 5, 10, 15).

10 20 30 40 50 60 70 80
Tickets

0.0

1.5

3.0

4.5

6.0

7.5

9.0

Th
ro

ug
hp

ut
 lo

ss
 (%

)

Fig. 7: Throughput loss with different numbers of tickets for one fiber cut
scenario. We evaluate it on Abilene with 1.75x demand scale using Archie.

For example, when the scale is 1.75, the average throughput
loss is 3.46% for static restoration compared to 3.05% for fre-
quent restoration. This demonstrates that dynamic restoration
schemes outperform static restoration even with unnecessarily
excessive configuration overheads in heavy traffic situations.

Third, Archie with three moderate settings of T (5, 10, 15)
has small performance difference. The difference in throughput
loss between the best and worst settings is only 0.2% on
average among all topologies and demand scales.

D. Impact of Number of Candidate Tickets

We show throughput loss under different numbers of can-
didate tickets in Abilene with a demand scale of 1.75x in
Fig. 7. When the ticket number is small (≤30), throughput
loss is relatively large because the candidate ticket set is not
large enough to cover a good ticket. At this stage, adding new
candidate tickets greatly reduces the throughput loss. However,
as the number of candidates exceeds 30, throughput loss stops
improving obviously. Notice that with more candidate tickets,
we need more time to calculate the labels for training (the TE
optimizer needs to be called TZ times to obtain one label), and
it requires more cost to train the learning model. Thus, we elect
to use 30 candidate tickets in our evaluation, considering its
good performance and relatively low model preparation cost.
Network operators should use a proper number of candidate
tickets according to their network scale and demand dynamics.

V. ANALYSIS

Our evaluation has shown Archie’s superior performance.
However, as deep learning models act as a black box to a large
extend, we wish to gain a better understanding of the use of
ConvLSTM in Archie, particularly the insights it “learns” for
dynamic ticket selection. In this section, we seek to answer

these questions from two angles: (1) Spatially, does Archie
pay more attention to specific flows that are more important
to ticket selection? (§V-A). (2) Temporally, for a given flow,
does Archie identify any special traffic patterns that are more
impactful to ticket selection? (§V-B).

In this section we use two small topologies in Fig. 8 for
simplicity of analysis, and generate five candidate tickets for
each topology using the method in §IV-A. We use the demands
of flows between the first four and six nodes of the traffic trace
in Abilene topology for G1 and G2, respectively. The trace
contains 3000 steps. The first 70% of the trace is used to train
Archie and Demand prediction method, and the rest for testing.
We use K = 1 shortest path for TE and set T = 10. Other
settings remain the same as in §IV unless specified otherwise.

A. Spatial Features

To explore spatial features that are important to ticket selec-
tion, we employ a DNN analysis method known as occlusion
analysis [42]. This method involves occluding part of the
model input and comparing the output differences before and
after the occlusion. The greater the gap, the more important
the occluded part is. Occlusion analysis has been widely used
in many image classification tasks using CNN [13, 20, 22, 42].

We apply occlusion analysis to Archie’s ConvLSTM model
by making the history demand inputs of specific flows to be
zero, as shown in Fig. 8. For brevity, we focus on the two
most frequently selected tickets from the 900-step testing trace
data. We identify the corresponding ticket selection epochs
that lead Archie to select these two representative tickets,
and leverage them to conduct occlusion analysis. For each of
these identified epochs, we enumerate each restored IP link,
occlude all flows traversing this link, and obtain a new ticket
using the same ConvLSTM model (trained with complete
training data). We then calculate the normalized throughput
loss due to occlusion with this new ticket. Table III provides
the wavelength information for the links associated with the
two tickets of the two topologies.

Fig. 9 shows the results of our occlusion analysis. Observe
that the higher the throughput loss is for an occluded link, the
larger its capacity becomes after restoration with Archie. For
example, for ticket2 in G1, the throughput loss of occluding
the three links is 1.56:1.28:1.01, while their restored capacity
under this ticket is 3:2:1 (wavelengths have the same capacity).
This implies that Archie is able to identify flows, and in turn

Healthy link Restoration link Flows on IP1

A B C D
A
B
C
D

A B C D
A
B
C
D

E F

E
F

A B

D C
IP1

IP2IP3

A B

E F

D C

IP1

IP2

IP3

G1

G2

Model input (occlude flows on IP1)IP-layer topology

occlussion: demand 0

Traffic matrix

Traffic matrix

m time steps.. .

m time steps.. .

Fig. 8: Illustration of two evaluated IP-layer topologies and occlusion analysis
method. The figure depicts certain fiber cut scenarios with restoration links in
red (i.e., IP1, IP2, IP3) and healthy links in green. The method of occluding
flows on restoration links is also shown. When occluding flows on IP1 in G1,
demand of bidirectional flow C to D becomes 0 for the m-step input.

ticket1 ticket2
Evaluated ticket

0.0
0.5
1.0
1.5
2.0
2.5

No
rm

ali
ze

d
Th

ro
ug

hp
ut

 lo
ss

(a) Topology G1

ticket1 ticket2
Evaluated ticket

0.0

0.4

0.8

1.2

1.6

No
rm

ali
ze

d
th

ro
ug

hp
ut

 lo
ss

(b) Topology G2

IP1 IP2 IP3 No occlusion

Fig. 9: Throughput loss comparison of occluding the flows on different
restoration links. No occlusion means we do not occlude any flow in Archie’s
input. The results are normalized to the case of no occlusion.

IP links, that are more important to restore, and pick tickets
that recover them maximally.

To verify if Archie’s capability to identify critical flows can
actually help ticket selection, we add this feature into Demand
prediction. Specifically, we train new prediction models that
pay more attention to critical flows identified by Archie, select
new tickets based on newly predicted traffic, and calculate their
throughput loss. We achieve this by modifying the MSE loss
utilized in training the prediction model which has been used
in many traffic prediction works [5, 11, 28, 38]. Formally,

J =
1

T × F

T∑
t

F∑
f

αf (yft − hft)2,

where J is the MSE loss, F is the number of flows, yft and
hft are the ground truth and predicted demand of flow f at
future time step t, and αf is the assigned weight for flow
f . When αf = 1 for all flows, it is traditional MSE. We
now train the new prediction models using weighted MSE loss
with weights determined by the information in Table III. For
IP links in each representative ticket, more wavelengths after
restoration correspond to the higher importance of the flows
traversing it, and thus, we allocate more weight to these flows.
We calculate the throughput loss at the identified epochs that
correspond to each representative ticket. Fig. 10 demonstrates
that with the weighted MSE loss, Demand prediction can also
achieve a reduction in throughput loss.

Note that it is difficult to determine which flows are impor-
tant, or what weights should be set to these flows that lead
to the best ticket selection. Archie, through training with past
traffic and labeled tickets, seems to be good at solving these
questions which attributes to improved performance.

Topology Information item
ticket1 ticket2

IP1 IP2 IP3 IP1 IP2 IP3

G1

Wavelengths 4 1 1 3 2 1
Weights1 (αf) 2.0 1.0 1.0 2.0 1.5 1.0
Weights2 (αf) 3.0 1.0 1.0 3.0 2.0 1.0

G2

Wavelengths 8 2 2 2 8 2
Weights1 (αf) 2.0 1.0 1.0 1.0 2.0 1.0
Weights2 (αf) 3.0 1.0 1.0 1.0 3.0 1.0

TABLE III: Wavelengths on restoration IP links and weights settings for
weighted MSE loss in Demand prediction. αf of the restoration link is set to
all flows traversing this link. For ticket in each topology, we use two weight
sets based on the capacity (wavelengths) on links, as suggested by Archie.

ticket1 ticket2
Evaluated ticket

0.0
0.3
0.6
0.9
1.2
1.5

No
rm

ali
ze

d
th

ro
ug

hp
ut

 lo
ss

(a) Topology G1

ticket1 ticket2
Evaluated ticket

0.0
0.3
0.6
0.9
1.2
1.5

No
rm

ali
ze

d
th

ro
ug

hp
ut

 lo
ss

(b) Topology G2

Unweighted Weights1 Weights2 Optimal

Fig. 10: Throughput loss comparison using various weight settings in Demand
prediction, with the results normalized to Archie. Two weight settings for each
ticket in each topology are shown in Table III. The unweighted method refers
to the original Demand prediction approach with traditional MSE loss.

B. Temporal Traffic Patterns

Another dimension we explore is temporal patterns utilized
by Archie to determine the best ticket. We use LSTMvis [36],
an LSTM visualization technique that examines hidden states
at each time step along with corresponding input and counts
the number of hidden states that exceed a predetermined
threshold within an input interval comprising multiple time
steps. We consider a input feature more important if there are
more corresponding hidden states exceeding the threshold.

We analyze hidden states of all ConvLSTM layers for each
flow along with time in Archie.2 We also do the same to
the ConvLSTM model when it is trained only for demand
prediction (without the FC network for ticket selection). In
Fig. 11, we see that Archie reacts more violently to the traffic
spikes in the trace and there are 3 hidden states exceeding
the threshold 0.5 between time steps 25 and 30 (the same
interval of the traffic spike), while no significant changes are
observed in other intervals. Demand prediction stays more
stable throughout the whole trace and no hidden states exceed
the threshold in all times. Therefore, Archie focuses more on
the demand spikes in the traffic trace, but Demand prediction
tends to capture the average-case over the long term.

To see if this feature actually helps restoration ticket selec-
tion, we directly use the learned parameters of the ConvLSTM
module in Demand prediction for Archie, freeze this part of
the neural network, and re-train Archie’s FC network. We
refer to this new model as Hybrid in our work. Fig. 12 shows
that Hybrid’s throughput loss is always between Archie and
Demand prediction. Across two tested topologies, Hybrid’s

2To ensure that the hidden state’s information comes from the same flow, we
specifically use a 1x1 convolution kernel in §V-B. The position of a flow’s
hidden state in its hidden state matrix is the same place as the flow in its
traffic matrix. We have 16 hidden states for one flow in total because we have
H1 = 8, H2 = 4, H3 = 4 hidden states in each ConvLSTM layer.

(a) Traffic demand (b) States of Archie
Time stepsTime steps Time steps

40 40

(c) States of Demand Prediction

0

0.5

1

1.5

2

0 5 10 15 20 25 30 35
0

0.2

0.4

0.6

0 5 10 15 20 25 30 35

N
or

m
al

iz
ed

 tr
af

fic

0

0.5

1

1.5

2

0 5 10 15 20 25 30 35 40

St
at

e
va

lu
e

St
at

e
va

lu
e

1.0

0.5

0

-0.5

-1.0

1.0

0.5

0

-0.5

-1.0

Fig. 11: Archie focuses on traffic spikes: (a) shows an example flow in G1

with a spike between time step 20 and 25; (b) shows Archie detects the spike
with 3 hidden states exceeding the threshold (0.5) in that interval, while (c)
shows that no hidden states of Demand prediction exceed the threshold.

G1 G2
Topology

0.0

0.4

0.8

1.2

1.6

2.0

No
rm

ali
ze

d
th

ro
ug

hp
ut

 lo
ss Optimal

Archie
Hybrid

Demand prediction
One-shot myopic

Fig. 12: Comparison of normalized throughput loss between various methods
in two topologies when exploring temporal features. We normalize the loss
to Optimal, with Hybrid’s loss lying between Archie and Demand prediction.

throughput loss is 1.05x and 0.93x that of Archie and Demand
prediction on average, respectively. This implies that Archie’s
ability to focus on traffic spikes is one reason it performs
better than Demand prediction. The superior performance of
Hybrid compared to Demand prediction indicates that Archie’s
end-to-end classification model provides other advantages for
ticket selection beyond focusing on demand spikes (such as
identifying important flows mentioned above in §V-A).

VI. OFFLINE TRAINING COST

Archie’s current design requires a unique model for each
fiber cut scenario due to their unique candidate ticket sets that
result in generating different label tickets. Although offline
model preparation does not affect the online TE performance
as we have shown, it still seems computationally intensive and
time-consuming, especially when repeated label generation
and model training are required for different scenarios. In this
section, we discuss two aspects of offline model training cost:
(1) Does the current design have acceptable offline training
time? (2) What are the possible future ways to improve the
efficiency of the offline training process?

To create one model of Archie, we need to generate label
tickets for all training traffic using TE optimizers, then train
ConvLSTM on GPU. Table IV shows the average time re-
quired to generate one label and train one ConvLSTM across
different topologies using the hardware in §IV-A. Recall that
generating one label ticket entails calling the TE optimizer TZ
times. This process takes less than half a minute for a medium-
scale topology such as Abilene, and several minutes for larger
topologies such as GRnet. To achieve good performance as
shown in §IV, we require O(1000) label tickets for one model,
which can be generated in parallel, reducing the generation
time to O(1000TZ/P), where P is the maximum number of
parallel threads. Once label generation is complete, it takes
another O(10) minutes to train one ConvLSTM model.

Topology Arpanet Abilene Airtel GRnet

Label generation (minutes) 0.121 0.308 0.791 8.662

Model training (minutes) 17.34 19.54 22.74 32.20

TABLE IV: Time to generate one label ticket and train one learning model
in different topologies. We set T = 10 and Z = 30 and train the model
for 100 epochs. The results here are averaged over 500 repetitions for label
generation time, and 5 repetitions for model training time.

Arpanet Abilene Airtel GRnet
Topology

0
5

10
15

To
ta

l p
re

pa
ra

tio
n

tim
e

(h
ou

rs
)

3.2
0.3
2.9

6.1

1.2
4.9

15.1

5.2

9.9
90.9

90
105
120

22.4

113.3Label generation
Model training

Fig. 13: Total time to prepare all ConvLSTM models for all single fiber
failures. We evaluate the time using one single server machine supporting
192 maximum concurrent threads for parallel label generation and one GPU
for model training with the same hardware environment as indicated in IV.

The repeated process above should be conducted for all
highly probable fiber cut scenarios in practice. We present
the practical total time in Fig. 13 to obtain all models for all
single fiber failures with the training set in §IV. Note that
our experiment server machine supports P = 192 concurrent
threads for parallel label generation. The results demonstrate
that for medium topologies, such as Abilene, the entire offline
training process can complete in about six hours, while for
larger topologies like GRnet, it may take around five days.
We believe this offline time investment is acceptable for real-
world use. Additionally, our time evaluation is based on a
single server machine with a single GPU. Network operators
can leverage more powerful resources to prepare the models
in parallel and further reduce the offline training time.

We can also seek more advanced designs in future to reduce
Archie’s offline preparation cost. First, one may explore other
learning methods such as unsupervised learning to decrease la-
bel generation time involved in solving complex TE programs.
Second, improving the generalization ability of the models can
alleviate or even eliminate the need for repeated training for
different settings. For instance, we can design models capable
of handling different fiber cut scenarios or use transfer learning
to avoid repeated training starting from scratch.

VII. CONCLUSION

We present Archie, a novel TE system with T -step restora-
tion ticket selection, targeting at dealing with dynamic link
restoration in a long run. We focus on the restoration ticket
selection problem, propose an end-to-end learning approach
based on ConvLSTM to extract temporal and spatial features
from past demand matrices, and select a ticket that is most
likely to perform well for future demands across the T -step
horizon. Extensive trace-driven simulation shows that Archie’s
learning approach is fast without having to solve the TE
optimization a number of times, and is also effective in picking
a good ticket without explicitly or accurately forecasting future
traffic. Robust online performance and good scalability make
Archie a competitive solution for practical network use.

REFERENCES

[1] Adva ROADM. https://www.adva.com/en/products/technology/roadm.
[2] Gurobi Optimizer. http://www.gurobi.com.
[3] Pytorch. https://pytorch.org/.
[4] Firas Abuzaid, Srikanth Kandula, Behnaz Arzani, Ishai Menache, Matei

Zaharia, and Peter Bailis. Contracting Wide-area Network Topologies
to Solve Flow Problems Quickly. In Proc. USENIX NSDI, 2021.

[5] Abdelhadi Azzouni and Guy Pujolle. NeuTM: A Neural Network-based
Framework for Traffic Matrix Prediction in SDN. In Proceedings of
IEEE/IFIP Network Operations and Management Symposium, 2018.

[6] Jeremy Bogle, Nikhil Bhatia, Manya Ghobadi, Ishai Menache, Nikolaj
Bjørner, Asaf Valadarsky, and Michael Schapira. TEAVAR: Striking the
Right Utilization-Availability Balance in WAN Traffic Engineering. In
Proc. ACM SIGCOMM. 2019.

[7] Bharat T Doshi, Subrahmanyam Dravida, P Harshavardhana, Oded
Hauser, and Yufei Wang. Optical Network Design and Restoration. Bell
Labs Technical Journal, 4(1):58–84, Aug. 2002.

[8] Thomas Fenz, Klaus-Tycho Foerster, and Stefan Schmid. On Effi-
cient Oblivious Wavelength Assignments for Programmable Wide-Area
Topologies. In Proceedings of the Symposium on Architectures for
Networking and Communications Systems, 2021.

[9] Klaus-Tycho Foerster, Long Luo, and Manya Ghobadi. Optflow: A
Flow-Based Abstraction for Programmable Topologies. In Proceedings
of the Symposium on SDN Research, 2020.

[10] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep
Residual Learning for Image Recognition. In Proceedings of the IEEE
conference on computer vision and pattern recognition, 2016.

[11] Zhixiang He, Chi-Yin Chow, and Jia-Dong Zhang. STCNN: A Spatio-
temporal Convolutional Neural Network for Long-Term Traffic Predic-
tion. In Proceedings of IEEE International Conference on Mobile Data
Management, 2019.

[12] Chi-Yao Hong, Srikanth Kandula, Ratul Mahajan, Ming Zhang, Vijay
Gill, Mohan Nanduri, and Roger Wattenhofer. Achieving High Utiliza-
tion with Software-Driven WAN. In Proc. ACM SIGCOMM, 2013.

[13] Cosimo Ieracitano, Nadia Mammone, Amir Hussain, and
Francesco Carlo Morabito. A Novel Explainable Machine Learning
Approach for EEG-Based Brain-Computer Interface Systems. Neural
Computing and Applications, 34(14):11347–11360, Jul. 2022.

[14] Rainer R Iraschko and Wayne D Grover. A Highly Efficient Path-
restoration Protocol for Management of Optical Network Transport In-
tegrity. IEEE Journal on Selected Areas in Communications, 18(5):779–
794, Jun. 2000.

[15] Sushant Jain, Alok Kumar, Subhasree Mandal, Joon Ong, Leon
Poutievski, Arjun Singh, Subbaiah Venkata, Jim Wanderer, Junlan Zhou,
Min Zhu, Jon Zolla, Urs Hölzle, Stephen Stuart, and Amin Vahdat.
B4: Experience with a Globally-Deployed Software Defined WAN. In
Proc. ACM SIGCOMM, 2013.

[16] Weiwei Jiang. Internet Traffic Matrix Prediction with Convolutional
LSTM Neural Network. Internet Technology Letters, 5(2):e332, Sep.
2021.

[17] Xin Jin, Yiran Li, Da Wei, Siming Li, Jie Gao, Lei Xu, Guangzhi Li, Wei
Xu, and Jennifer Rexford. Optimizing Bulk Transfers with Software-
defined Optical WAN. In Proc. ACM SIGCOMM, 2016.

[18] Takuya Kanai, Yumiko Senoo, Kota Asaka, Jun Sugawa, Hideaki Tamai,
Hiroyuki Saito, Naoki Minato, Atsushi Oguri, Seiya Sumita, Takehiro
Sato, et al. Novel Automatic Service Restoration Technique by Us-
ing Self-Reconfiguration of Network Resources for A Disaster-Struck
Metro-access Network. Journal of Lightwave Technology, 36(8):1516–
1523, Jan. 2018.

[19] Simon Knight, Hung X Nguyen, Nickolas Falkner, Rhys Bowden, and
Matthew Roughan. The Internet Topology Zoo. IEEE Journal on
Selected Areas in Communications, 29(9):1765–1775, Sep. 2011.

[20] Muhammed Kocabas, Chun-Hao P Huang, Otmar Hilliges, and
Michael J Black. PARE: Part Attention Regressor for 3D Human Body
Estimation. In Proceedings of the IEEE/CVF International Conference
on Computer Vision, 2021.

[21] Adil Kodian and Wayne D Grover. Failure-Independent Path-Protecting
P-Cycles: Efficient and Simple Fully Preconnected Optical-Path Protec-
tion. Journal of Lightwave Technology, 23(10):3241, Oct. 2005.

[22] Caroline König and Ahmed Mohamed Helmi. Sensitivity Analysis
of Sensors in A Hydraulic Condition Monitoring System Using CNN
Models. Sensors, 20(11):3307, Jun. 2020.

[23] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. ImageNet
Classification with Deep Convolutional Neural Networks. In Advances
in Neural Information Processing Systems, 2012.

[24] Praveen Kumar, Chris Yu, Yang Yuan, Nate Foster, Robert Kleinberg,
and Robert Soulé. YATES: Rapid Prototyping for Traffic Engineering
Systems. In Proceedings of the Symposium on SDN Research, 2018.

[25] Praveen Kumar, Yang Yuan, Chris Yu, Nate Foster, Robert Kleinberg,
Petr Lapukhov, Chiun Lin Lim, and Robert Soulé. Semi-Oblivious
Traffic Engineering: The Road Not Taken. In Proc. USENIX NSDI,
2018.

[26] Phi Le Nguyen, Yusheng Ji, et al. Deep convolutional LSTM Network-
Based Traffic Matrix Prediction with Partial Information. In Proceedings
of IFIP/IEEE Symposium on Integrated Network and Service Manage-
ment, 2019.

[27] Hongqiang Liu, Xin Wu, Ming Zhang, Lihua Yuan, Roger Wattenhofer,
and David Maltz. zUpdate: Updating Data Center Networks With Zero
Loss. In Proc. ACM SIGCOMM, 2013.

[28] Qingyao Liu, Jianwu Li, and Zhaoming Lu. ST-Tran: Spatial-Temporal
Transformer for Cellular Traffic Prediction. IEEE Communications
Letters, 25(10):3325–3329, Jul. 2021.

[29] Athina Markopoulou, Gianluca Iannaccone, Supratik Bhattacharyya,
Chen-Nee Chuah, and Christophe Diot. Characterization of Failures
in An IP Backbone. In Proc. IEEE INFOCOM, 2004.

[30] Brian K Nelson. Time Series Analysis Using Autoregressive Integrated
Moving Average (ARIMA) Models. Academic Emergency Medicine,
5(7):739–744, Jun. 2008.

[31] Sebastian Orlowski, Roland Wessäly, Michal Pióro, and Artur
Tomaszewski. SNDlib 1.0: Survivable Network Design Library. Net-
works: An International Journal, 55(3):276–286, May 2010.

[32] Sumathi Ramamurthy, Laxman Sahasrabuddhe, and Biswanath Mukher-
jee. Survivable WDM Mesh Networks. Journal of Lightwave Technol-
ogy, 21(4):870–883, Apr. 2003.

[33] Xingjian Shi, Zhourong Chen, Hao Wang, Dit-Yan Yeung, Wai-Kin
Wong, and Wang-chun Woo. Convolutional LSTM Network: A Machine
Learning Approach for Precipitation Nowcasting. In Advances in Neural
Information Processing Systems, 2015.

[34] Rachee Singh, Sharad Agarwal, Matt Calder, and Paramvir Bahl.
Cost-effective Cloud Edge Traffic Engineering with Cascara. In
Proc. USENIX NSDI, 2021.

[35] Rachee Singh, Manya Ghobadi, Klaus-Tycho Foerster, Mark Filer, and
Phillipa Gill. RADWAN: Rate Adaptive Wide Area Network. In
Proc. ACM SIGCOMM, 2018.

[36] Hendrik Strobelt, Sebastian Gehrmann, Hanspeter Pfister, and Alexan-
der M Rush. LSTMVis: A Tool for Visual Analysis of Hidden
State Dynamics in Recurrent Neural Networks. IEEE Transactions on
Visualization and Computer Graphics, 24(1):667–676, Aug. 2017.

[37] Massimo Tornatore, Guido Maier, and Achille Pattavina. Availability
Design of Optical Transport Networks. IEEE Journal on Selected Areas
in Communications, 23(8):1520–1532, Aug. 2005.

[38] R Vinayakumar, KP Soman, and Prabaharan Poornachandran. Apply-
ing Deep Learning Approaches for Network Traffic Prediction. In
Proceedings of International Conference on Advances in Computing,
Communications and Informatics, 2017.

[39] Ann Von Lehmen, Robert Doverspike, George Clapp, Douglas M
Freimuth, Joel Gannett, Aleksandar Kolarov, Haim Kobrinski, Christian
Makaya, Emmanuil Mavrogiorgis, Jorge Pastor, et al. CORONET:
Testbeds, Demonstration, and Lessons Learned. Journal of Optical
Communications and Networking, 7(3):A447–A458, Mar. 2015.

[40] Tiejun J Xia, Steven Gringeri, and Masahito Tomizawa. High-
capacity Optical Transport Networks. IEEE Communications Magazine,
50(11):170–178, Nov. 2012.

[41] Zhiyuan Xu, Jian Tang, Jingsong Meng, Weiyi Zhang, Yanzhi Wang,
Chi Harold Liu, and Dejun Yang. Experience-Driven Networking:
A Deep Reinforcement Learning Based Approach. In Proc. IEEE
INFOCOM, 2018.

[42] Matthew D Zeiler and Rob Fergus. Visualizing and Understanding
Convolutional Networks. In Proceedings of European Conference on
Computer Vision, 2014.

[43] Jiaqi Zheng, Hong Xu, Guihai Chen, and Haipeng Dai. Minimizing
Transient Congestion during Network Update in Data Centers. In
Proc. IEEE ICNP, 2015.

[44] Zhizhen Zhong, Manya Ghobadi, Alaa Khaddaj, Jonathan Leach, Yiting
Xia, and Ying Zhang. ARROW: Restoration-Aware Traffic Engineering.
In Proc. ACM SIGCOMM, 2021.

https://www.adva.com/en/products/technology/roadm
http://www.gurobi.com.
https://pytorch.org/

	Introduction
	Background and Motivation
	Traffic Engineering (TE)
	Restoration Tickets in Optical Networks
	Ticket Selection for the Long Run

	Design
	Strawman Solution with Demand Prediction
	Archie's Approach: End-to-End Learning
	Detailed Design: ConvLSTM Based Classifier
	Archie's Deployment and Workflow

	Evaluation
	Experiment Setup
	Performance of ConvLSTM-based Ticket Selection
	Benefit of Dynamic Link Restoration
	Impact of Number of Candidate Tickets

	Analysis
	Spatial Features
	Temporal Traffic Patterns

	Offline Training Cost
	Conclusion
	References

