
Poster: Automating Network Configuration with Natural
Language Intents

Wenlong Ding1, Jianqiang Li1, Zhixiong Niu2, Huangxun Chen3, Hong Xu1
1CUHK 2Microsoft Research 3HKUST (Guangzhou)

CCS CONCEPTS
• Networks → Network management;

KEYWORDS
Network configuration automation, Large language models
ACM Reference Format:
Wenlong Ding, Jianqiang Li, Zhixiong Niu, Huangxun Chen, Hong Xu.
2024. Poster: Automating Network Configuration with Natural Language
Intents. In ACM SIGCOMM 2024 Conference (ACM SIGCOMM ’24), August
4–8, 2024, Sydney, NSW, Australia. ACM, New York, NY, USA, 3 pages. https:
//doi.org/10.1145/3672202.3673721

1 INTRODUCTION
Network configuration is crucial for computer network design
and operation. Network Operations (NetOps) teams typically use
vendor-specific configuration languages to create and deploy scripts
that achieve specific network intents, such as reachability between
two networks [7, 18, 19]. This process necessitates a thorough un-
derstanding of network specifics and protocols. Also, NetOps teams
may need multiple attempts to achieve correct configuration due
to protocol complexity and interactions. They often use network
verification tools [6, 9, 14, 16, 17, 19] to check if the intents are met
and adjust configurations based on failure messages.

This manual configuration method is obviously labor-intensive
and difficult to scale with growing network size and configuration
complexity. Our proposed system, Etna, automates the process by
enabling NetOps teams to specify high-level intents in Natural
Language (NL) and directly generate deployable scripts for all de-
vices across the network. As shown in Figure 1, Etna performs the
following three tasks to achieve this goal.

• Intent Understanding: Etna interprets NL inputs to identify
necessary network specifics and policies for configurations.
For reachability intent as example, Etna identifies the source
and destination networks with their prefixes and compre-
hends the policies to be taken, such as denying the source-
destination pair (i.e. a flow) shown in Figure 1.

• Intent Implementation: Etna solves parameter settings and im-
plements them in the network with proper protocols. In Fig-
ure 1, when implementing a waypoint intent with OSPF [2]

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ACM SIGCOMM ’24, August 4–8, 2024, Sydney, NSW, Australia
© 2024 Copyright held by the owner/author(s). Publication rights licensed to the
Association for Computing Machinery.
ACM ISBN 979-8-4007-0717-9/24/08.
https://doi.org/10.1145/3672202.3673721

User Reachability Intent

Intent Implementation with Protocol (ACL)

User Waypoint Intent

Traffic from the Library is
prohibited from entering the

Dormitory.
NetOps
Teams

10.0.2.0/24 10.0.3.0/2410.0.1.0/24
Library

R2

Port ip/mask: 10.0.1.1/24

R3R1

R4

X: Apply the DENY ACL rule at outbound direction
Function: Firewall A

i/j: OSPF weight of the left-right (i) /right-left (j) direction link

Port name: GigabitEthernet0/0

1

3
4

Transform
& Filling

Scripts Generation with Protocol Templates

Port Information

DormitoryLaboratory

Traffic from the Library to
Dormitory should be inspected

by the Firewall A.

NetOps
Teams

X

Intent Implementation with Protocol (OSPF)
10.0.2.0/24 10.0.3.0/2410.0.1.0/24

Library

R2

Port ip/mask: 192.168.2.3/24

R3R1

R4
Function: Firewall A Port name: GigabitEthernet0/1

1

2
3

Port Information

DormitoryLaboratory

X1 / 11 / 1

1 / 11 / 1

2Source Destination

Waypoint

2

Source Destination

interface <port-name>
 ip address <ip> <mask>
 ip ospf cost <cost_value>
router ospf <#ospf>
 network <ip> <wildcard-mask> area <#area>

OSPF Template
…

…

access-list <#acl> <permit/deny> [protocol]
 <src-ip> <src-mask> <dst-ip> <dst-mask>
!
interface <port-name>
 ip address <ip> <mask>
 ip access-group <#acl> in

ACL Template

…

…

Scripts Generation with Protocol Templates

1

3
4

2

access-list 1 deny
 10.0.1.0 0.0.0.255 10.0.3.0 0.0.0.255
!
interface GigabitEthernet0/0
 ip address 10.0.1.1 255.255.255.0
 ip access-group 1 in

Hostname R1

…

…
interface GigabitEthernet0/1
 ip address 192.168.2.3 255.255.255.0
 ip ospf cost 2
!
router ospf 1
 network 192.168.2.0 0.0.0.0.255 area 0

Hostname R2
…

…

1

3
4

2

Transform
& Filling

3
1

2

3

3
1

2

3

Deployable Scripts Deployable Scripts

Figure 1: Examples of Etna’s network configuration workflow.

that requires to route a flow traversing specific waypoint
routers, Etna tunes OSPF link weights to make the desired
path the shortest among all candidate paths of the flow.

• Scripts Generation: Etna generates configuration scripts by
filling in vendor-specific templates with corresponding net-
work specifics and protocol setting solutions, which are
ready to be deployed and verified in devices across the net-
work. For example in Figrue 1, Etna fills in Cisco’s ACL and
OSPF templates to achieve the desired intents.

Scripts Generation has a rich literature on mapping protocol
settings and network specifics to templates [4, 5, 18], managing
template databases [21], and translating configurations across ven-
dors [7]. So Etna can adopt similar template-filling-based method
to automate it. However, automating another two tasks poses un-
solved challenges. Intent Understanding must accurately interpret
NL intents with network specifics, despite NL expression variations
and implicit configuration items. Conflicts between new intents
themselves and existing settings complicate Intent Implementation.

Etna contributes to solving the three tasks with their challenges
above to automate configuration generation from NL intents.

2 CHALLENGE AND MOTIVATION
We detail challenges and design motivations in Etna.
Intent Understanding. Intuitively, this task can be viewed as the
famous Named-Entity Recognition (NER) problem [8, 10–12], where
models are trained to identify entities (e.g. source endpoint) and
implicit knowledge (e.g. intent policy) from expressions. However,
traditional language models like BERT [20] in these works require

https://doi.org/10.1145/3672202.3673721
https://doi.org/10.1145/3672202.3673721
https://doi.org/10.1145/3672202.3673721

ACM SIGCOMM ’24, August 4–8, 2024, Sydney, NSW, Australia W. Ding et al.

10.0.2.0/24 10.0.3.0/2410.0.1.0/24
Library

R2 R3R1

R4
Function: Firewall A

DormitoryLaboratory

Intent: Permit Library -> Dormitory

deny any 10.0.3.0/24
permit all

Existing ACL Rules

deny 10.0.1.0/24 any
permit all

Existing ACL Rules

Intent 1: Library -> Dormitory Waypoint Firewall A
Intent 2: Library -> Office Waypoint Firewall B
Intent 3: Laboratory -> Dormitory Waypoint Firewall A

Function: Firewall B
Office 10.0.4.0/24

10.0.2.0/24 10.0.3.0/2410.0.1.0/24
Library

R2 R3R1

R4
Function: Firewall A

DormitoryLaboratory

Function: Firewall B
Office 10.0.4.0/24

Protocol Implementation Analysis

permit 10.0.1.0/24 10.0.3.0/24
deny 10.0.1.0/24 any
permit all

Protocol Implementation Analysis

One possible Solution

1 / 1 1 / 1

permit 10.0.1.0/24 10.0.3.0/24
deny any 10.0.3.0/24
permit all

(a) Conflicts between New Intent and Existing Configuration

(b) Conflicts between New Intents

1 / 1 1 / 1

Possible SolutionsFormulation for Three Intents
W14 + W43 < W12 + W23

W12 + W23 + W34 < W14

W21 + W14 + W43 < W233

1
2

i/j: OSPF weight of the left-right (i) /right-left (j) direction link

4 -> W23
Implement 1 & 3

Wij: OSPF link weight of the link from router i to j (1 for default)

1 2 2 3

Implement 1

Implement 2

Implement 3
4 -> W14

OR

4 -> W23

OR

2 -> W23 OR

Inequalities Conflict Combinations

Figure 2: Simple examples of challenges in Intent Implementation.

repeated re-training for expression synonyms such as Lib, Library
and 10.0.1.0/24 in Figure 1 and different network corpora when
introducing new networks and devices. The recent advancement of
Large Language Models (LLMs) with strong text processing abilities
through prompting [1, 3, 13, 15] is more suitable for solving NL
expression variations above without repeated retraining.

However, network-specific information necessary for configu-
rations like prefixes and routers may not be explicitly provided in
NL and differs between networks. Therefore, LLMs cannot inde-
pendently identify such information. To address this, Etna provides
LLMs with a domain-specific database containing this implicit infor-
mation about currently operated networks, e.g. mapping Library
to prefix 10.0.1.0/24 and router R1 in Figure 1. Additionally, Etna
should detail key identification elements for LLMs to understand,
such as source prefixes or policy to allow or deny flows.
Intent Implementation. This involves non-textual tasks includ-
ing topology analysis for ACL configuration ports and OSPF weight
formulation for desired flow paths in Figure 1 and 2, which are inef-
ficient for LLMs to solve [22]. Traditional topology-based methods
are used here, but various configuration conflicts pose challenges.

New intent conflicts with existing configurations. For instance,
when implementing reachability intent in Figure 2(a), conflicts arise
with ACL rules on routing paths as they manage overlapping flows
with opposite policies to our new intent. The common practice of
configuring ACL at source router’s port in Figure 1 obviously cannot
resolve this conflict. One possible solution is to prioritize new intent
over existing configurations, as the solution in Figure 2(a), but this
method should be carefully considered by NetOps teams as they
may not want to change certain old network settings.

Conflicts can also occur between multiple new intents. For in-
stance, in Figure 2(b), three waypoint intents will be implemented
with OSPF. We solve OSPF link weights with the formulation that
makes the target path traversing specified waypoints the shortest
compared to other paths of the flow for each intent. However, some
intents’ inequalities have conflicts, resulting in only partial intent
achievement, such as intents 1 and 3, or each intent alone, as the
solutions shown in Figure 2(b). These conflicts are difficult to recog-
nize in NL without formulation. Additionally, different intent types
can also conflict, such as when a reachability intent denies traffic of
a flow, making the corresponding waypoint intents unachievable.

Etna’s design aims to reconcile various conflict types mentioned
above according to the specific needs of NetOps teams.

Dataset Dataset Information Evaluation Results

Intents # Chars
Per Intent Metric Llama 2 Mistral GPT-3.5 GPT-4

Hand-crafted 150 81.3 Accuracy 91.3% 86.7% 98.7% 100%
Time (s) 2.25 2.59 1.38 3.98

AI-generated 300 81.9 Accuracy 88.0% 88.7% 98.3% 100%
Time (s) 2.89 2.33 1.34 4.13

Table 1: Evaluated dataset and preliminary results of Intent Understanding.

3 INITIAL DESIGN
LLM Prompts for Intent Understanding. Prompts help LLMs
specify and achieve understanding goals. We first encode key identi-
fication elements such as associated routers, prefixes and NL names
of source, destination and waypoints, as well as the intent policy for
examples in Figure 1. Prompts include description for each element
such as policy: <permit or deny intent flow> for intent pol-
icy. Etna is also provided with implicit network specifics such as
routers and prefixes by mapping endpoint NL names to such in-
formation with prompts like Library -> [R1], [10.0.1.0/24].
Note that synonyms like Library and Lib can be handled by LLMs
efficiently instead of encoding both NL names in prompts. We also
guide LLMs on how to identify key elements with NL intents and
provided implicit information, such as extracting endpoint names
from NL intents and utilizing implicit knowledge to identify routers
and prefixes. LLMs return results of all identified elements with each
element such as source prefixes: [10.0.1.0/24] for source
prefixes. We finally include a few examples of input intents and
result elements to improve LLMs’ comprehension of the prompts.
Priority-Based Framework toReconcile Conflicts. Etna assigns
a priority to each intent and existing setting and maximizes priority
sum across the network. This design satisfies intents or settings
with higher priorities when conflicts happen. For example, if three
intents in Figure 2(b) are equally important with the same priority,
Etna will achieve intents 1 and 3. However, if intent 2 is crucial,
we can assign it a higher priority than the sum of other intents for
Etna to achieve it alone.

4 PRELIMINARY RESULTS
We present preliminary results for Intent Understanding with vari-
ous famous LLMs in Table 1. Accuracy is measured by comparing
LLMs’ results with human-labeled ground truth. The entire result
is accurate only if all identified elements in the result are correct.
Inference time is the duration between entering NL intents and re-
ceiving entire results. LLMs are evaluated with provided APIs [1, 3].
We use two datasets in evaluation: a handcrafted dataset resem-
bling intents in Figure 1 and an AI-generated dataset created by
GPT-4 [3] prompting with intents in our handcrafted dataset.

Results demonstrate that state-of-the-art LLMs like GPTs achieve
over 95% accuracy for both datasets, with GPT-4 even reaching
100%. Lightweight LLMs like Llama2 and Mistral can also maintain
accuracy above 85%. Inference times range from a few seconds, with
GPT-4 being the slowest at around 4 seconds, but compensating
with its high accuracy. Both datasets yield similar accuracy and
inference time results.

5 ACKNOWLEDGEMENT
This work is supported in part by funding from the Research Grants
Council of Hong Kong (CRF C7004-22G) and from CUHK (4055199).

Automating Network Configuration with Natural Language Intents ACM SIGCOMM ’24, August 4–8, 2024, Sydney, NSW, Australia

REFERENCES
[1] APIs of Our Evaluated LLMs. https://replicate.com/pricing.
[2] Cisco OSPF. https://www.cisco.com/c/en/us/support/docs/ip/

open-shortest-path-first-ospf/7039-1.html.
[3] GPT. https://chat.openai.com/.
[4] Graph-Based Live Queries in AOS. https://apstra.com/products/.
[5] OpenConfig. http://openconfig.net/.
[6] Ryan Beckett, Aarti Gupta, Ratul Mahajan, and David Walker. A General Ap-

proach to Network Configuration Verification. In Proc. ACM SIGCOMM, 2017.
[7] Huangxun Chen, Yukai Miao, Li Chen, Haifeng Sun, Hong Xu, Libin Liu, Gong

Zhang, andWeiWang. Software-DefinedNetwork Assimilation: Bridging the Last
Mile Towards Centralized Network Configuration Management with NAssim. In
Proc. ACM SIGCOMM, 2022.

[8] Maud Ehrmann, Ahmed Hamdi, Elvys Linhares Pontes, Matteo Romanello, and
Antoine Doucet. Named Entity Recognition and Classification in Historical
Documents: A Survey. 56(2):1–47, Sep. 2023.

[9] Aaron Gember-Jacobson, Raajay Viswanathan, Aditya Akella, and Ratul Mahajan.
Fast Control Plane Analysis Using an Abstract Representation. In Proc. ACM
SIGCOMM, 2016.

[10] Arthur S. Jacobs, Ricardo J. Pfitscher, Rafael H. Ribeiro, Ronaldo A. Ferreira,
Lisandro Z. Granville, Walter Willinger, and Sanjay G. Rao. Hey, Lumi! Using
Natural Language for Intent-Based Network Management. In Proc. USENIX ATC,
2021.

[11] Jing Li, Aixin Sun, Jianglei Han, and Chenliang Li. A Survey on Deep Learning
for Named Entity Recognition. 34(1):50–70, Mar. 2020.

[12] Chen Liang, Yue Yu, Haoming Jiang, Siawpeng Er, Ruijia Wang, Tuo Zhao, and
Chao Zhang. Bond: Bert-Assisted Open-Domain Named Entity Recognition
with Distant Supervision. In Proceedings of the 26th ACM SIGKDD International
Conference on Knowledge Discovery & Data Mining, 2020.

[13] Laria Reynolds and Kyle McDonell. Prompt Programming for Large Language
Models: Beyond the Few-shot Paradigm. In Extended Abstracts of the 2021 CHI
Conference on Human Factors in Computing Systems, 2021.

[14] Steffen Smolka, Praveen Kumar, Nate Foster, Dexter Kozen, and Alexandra Silva.
Cantor Meets Scott: Semantic Foundations for Probabilistic Networks. In Pro-
ceedings of ACM SIGPLAN Symposium on Principles of Programming Languages,

2017.
[15] Taylor Sorensen, Joshua Robinson, ChristopherMichael Rytting, Alexander Glenn

Shaw, Kyle Jeffrey Rogers, Alexia Pauline Delorey, Mahmoud Khalil, Nancy Fulda,
and David Wingate. An Information-Theoretic Approach to Prompt Engineering
without Ground Truth Labels. arXiv Preprint arXiv:2203.11364, 2022.

[16] Samuel Steffen, TimonGehr, Petar Tsankov, Laurent Vanbever, andMartin Vechev.
Probabilistic Verification of Network Configurations. In Proc. ACM SIGCOMM,
2020.

[17] Kausik Subramanian, Anubhavnidhi Abhashkumar, Loris D’Antoni, and Aditya
Akella. Detecting Network Load Violations for Distributed Control Planes. In
Proceedings of ACM SIGPLAN Conference on Programming Language Design and
Implementation, 2020.

[18] Yu-Wei Eric Sung, Xiaozheng Tie, Starsky HYWong, and Hongyi Zeng. Robotron:
Top-Down Network Management at Facebook Scale. In Proc. ACM SIGCOMM,
2016.

[19] Bingchuan Tian, Xinyi Zhang, Ennan Zhai, Hongqiang Harry Liu, Qiaobo Ye,
Chunsheng Wang, Xin Wu, Zhiming Ji, Yihong Sang, Ming Zhang, Da Yu, Chen
Tian, Haitao Zheng, and Ben Y. Zhao. Safely and Automatically Updating In-
Network ACL Configurations with Intent Language. In Proc. ACM SIGCOMM,
2019.

[20] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N. Gomez, Lukasz Kaiser, and Illia Polosukhin. Attention is All you
Need. In Advances in Neural Information Processing Systems, 2017.

[21] Wenlong Ding, Libin Liu, Li Chen and Hong Xu. ABC: Automatic Bottom-Up
Construction of Configuration Knowledge Base for Multi-Vendor Networks. In
2023 IEEE 5th International Conference on Cognitive Machine Intelligence (CogMI),
2023.

[22] Chengrun Yang, Xuezhi Wang, Yifeng Lu, Hanxiao Liu, Quoc V Le, Denny
Zhou, and Xinyun Chen. Large language models as optimizers. arXiv preprint
arXiv:2309.03409, 2023.

https://replicate.com/pricing
https://www.cisco.com/c/en/us/support/docs/ip/open-shortest-path-first-ospf/7039-1.html
https://www.cisco.com/c/en/us/support/docs/ip/open-shortest-path-first-ospf/7039-1.html
https://chat.openai.com/
https://apstra.com/products/
http://openconfig.net/

	1 Introduction
	2 Challenge and Motivation
	3 Initial Design
	4 Preliminary Results
	5 Acknowledgement
	References

