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ABSTRACT

DNN inference is becoming prevalent for many real-world
applications. Current machine learning frameworks usually
schedule inference tasks with the goal of optimizing through-
put under predictable workloads and task arrival patterns.
Yet, inference workloads are becoming more dynamic with
bursty queries generated by various video analytics pipelines
which run expensive inference only on a fraction of video
frames. Thus it is imperative to optimize the completion
time of these unpredictable queries and improve customer
experience.

We propose the preliminary design of the first online in-
ference task scheduling system, called Irina, that takes com-
pletion time under unpredictable workload as its primary
objective. Irina augments the design space of inference task
scheduling with three new strategies, namely batching, stack-
ing, and preemption, in order to more flexibly schedule the
tasks and reduce overall latency. Simulation results with em-
pirical inference execution data shows that Irina can improve
average task completion time by 1.3x-2.5x over TensorFlow
Serving scheduling.
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1 INTRODUCTION

Low-latency DNN (deep neural network) inference over
live data streams has emerged as an important workload,
most notably in live video analytics [1, 27]. Enabled by ad-
vanced vision models, live video analytics is ubiquitously
used, but unlike other DNN applications (e.g., model train-
ing), its workload can be highly unpredictable. Interesting
events in real-world videos tend to occur intermittently and
such temporal patterns have been exploited by many video
pipelines (e.g., [14, 27]) to opportunistically avoid expensive
DNN inference on most video frames. With wider camera
deployments, more video streams—each with unpredictable
workload—could create more workload variance as a whole.

Unfortunately, recent inference frameworks are not well-
suited for maintaining low inference latency under unpre-
dictable workloads. While these frameworks optimize through-
put or utilization through optimal batching and scheduling,
they are most effective only when the workload is largely
predictable. For instance, Nexus [21] splits time into epochs
and in each epoch it schedules inference tasks from a pre-
determined list in a way that exploits the inherent parallelism
of GPU. It assumes that the workloads in one epoch are sta-
ble and predictable. However, these schemes become less
efficient when future tasks arrive at unpredictable intervals
and/or with dynamic GPU/CPU demands; e.g., many video
analytics pipelines use expensive DNNs only on a small sub-
set of frames with unpredictable intervals (e.g., [14]). Other
frameworks exploit the DNN architectures to speedup infer-
ence, such as opportunistically caching intermediate feature
maps across DNNs that share layers [13]. None of them,
however, explicitly deals with unpredictable workloads or
minimizes the delay per inference task.

In this preliminary work, we present Irina, a novel DNN
inference scheduler tailored to reducing delay under unpre-
dictable workloads. It explores several strategies that are
largely overlooked in existing systems to efficiently share
the available (GPU) resources and minimize average infer-
ence delay.

¢ Batching: When receiving new queries (e.g., inference
on a new set of images), Irina dynamically decides
whether to batch them with the ongoing inference task
(if they use the same DNN). As we elaborate in §2.2,
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DNN inference almost always underutilizes the GPU
cores, so opportunistically batching these tasks could
greatly reduce average inference delay.

e Preemption: When the new query and the ongoing
query use different DNNs (i.e., cannot be batched),
Irina will dynamically decide if it is beneficial to pre-
empt the ongoing query and start the new query in-
stead. This can be particularly efficient when the new
query is short or has a low delay tolerance.

e Stacking: Finally, Irina supports packing two tasks
together when there is enough spare resource on a
currently underutilized GPU. This is particularly useful
when the arrivals of queries using large DNNs are
interleaved with those using small DNNs.

Irina implements these techniques transparently without
requiring modifications to the query code.

While some strategies, for example dynamic batching and
preemption, have been used in other context, our contri-
butions lie in harnessing their potential to reduce online
DNN inference delay under unpredictable workloads. We
also investigate the systems challenges to enable these con-
trol knobs in common DNN frameworks. We use empirical
DNN inference execution data from a small GPU testbed to
conduct simulation to evaluate the performance of Irina. Our
preliminary results show that Irina can achieve 1.3x — 2.5x
speedups over state-of-the-art schedulers.

2 MOTIVATION

In DNN inference, multiple applications and DNN mod-
els share the GPU cluster. Existing inference task sched-
ulers commonly use canonical scheduling principles (FIFO
or shortest job first) to sequentially schedule tasks and ded-
icate a GPU for a task at one time [4, 6]. This is simple to
implement but misses many opportunities to minimize job
completion times (JCT). In many cases, customer experience
is influenced by query response time and any additional de-
lay of inference results can cause revenue losses and should
be minimized by the scheduler.

This section presents concrete examples to make a case
for three scheduling strategies, which would later become
the building blocks of Irina. Throughout the examples we
assume two types of inference task—one that requires more
GPU memory and relatively long delay (e.g., FasterRCNN-
ResNet152 for object detection) and one that requires less
GPU memory and relatively short delay (e.g., LeNet [17] for
license plate recognition). The performance of these DNN
models are given in Table 1 (used in §2.1 and §2.3) and Ta-
ble 2 (used in §2.2). The data is extracted from the MLperf
inference benchmark [3] with minor simplifications for ease
of exposition.
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Model | Batch Size Latency | Throughput
(ms) (regs/s)
4 60 66
8 75 106
A 16 85 188
32 150 213
B 128 8 16000
256 10 25600

Table 1: Execution information for DNN models used in the exam-
ples in §2.1 and §2.3.
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Figure 1: An illustrative example (with realistic delay numbers)
where opportunistically batching two tasks of the same DNN re-
duces the average inference delay.

2.1 Opportunistic Batching

Let us consider a scenario where 8 queries for model A arrive
at time 0 and 8 queries for the same model arrive one mil-
lisecond afterwards. The current FIFO scheduler will simply
execute these two batches sequentially as shown in Figure 1a:
the second batch experiences a JCT of 149ms and the average
JCT is 112ms.

Now, Figure 1b shows an alternative schedule which re-
duces the average JCT to 86ms for the all 16 queries. The idea
behind it is to opportunistically merge the two batches of
queries of the same model into a larger batch. It leverages a
common property of DNNs—large batch size only marginally
inflates the execution time (as illustrated in Table 1 which is
consistent with benchmarked performance of many DNNs
[2, 15]). For example, execution time of model A increases
only by 10 ms when the batch size increases from 8 to 16.
The reason is that small batches may not fully utilize all the
cores in a GPU and a larger batch size can utilize the idle
GPU resources without much latency increase.

In practice, batching is commonly used to speed up train-
ing of DNN (especially vision models) or inference over
constant-rate data streams, both of which, however, have
pre-determined batches. In contrast, Figure 1b illustrates that
similar ideas, when properly used, can reduce inference delay
of unpredictable workloads as well.

2.2 Online Job Stacking

So far, we have considered cases where there is one model
running in each GPU at a time. Though it is common to run
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inference tasks on separate GPUs, this can clearly lead to
under-utilization of GPU resource, especially as more cam-
eras are deployed and continuously generate video streams,
many of which need to be analyzed at edge/cloud servers.
This motivates our second scheduling strategy—stacking.
Before introducing stacking, it is useful to differentiate
two types of utilization in GPU. First, GPU utilization is de-
fined as the percentage of time one or more GPU kernels are
running over the last second according to the common GPU
performance analysis tool nvidia-smil. If the utilization is
under 100%, it means the workload cannot fully utilize the
GPU and other workloads can still be added to the GPU,
though the execution delay may raise. Second, memory uti-
lization represents how much GPU memory has been used.
Different from GPU utilization, if GPU memory is already
used up, adding more workloads causes runtime crash.

Model Batch | Latency | Avg. GPU Peak Memory (%)
Size (ms) (%) / On-Peak Time (ms)
C 10 200 70% 65/100
D 100 10 28% 35/5

Table 2: Execution information of two models for the stacking ex-
ample. Here “on-peak time” indicates the starting time of peak
memory usage since the task execution.

Now consider two models, C and D, whose execution in-
formation is listed in Table 2, including the average GPU
utilization and peak memory utilization of the model dur-
ing execution. On-peak time is the duration that the model
memory usage reaches its peak. As explained, we cannot
overuse GPU memory. We assume that model C submits 10
queries at time 0 and model D submits 100 queries in 160
ms. SLOs (deadlines) for both applications are 250 ms. Ex-
isting schedulers run these two tasks sequentially (i.e., one
GPU can only run on task at a time) and as a result, model
D’s queries must wait for four times the execution delay of
themselves (as depicted in Figure 2a).

In contrast, we propose to stack these two tasks for con-
current execution on the same GPU. We find from Table 2
that although the sum of peak memory usage for both mod-
els is 100%, but their peaks happen at different times, which
indicates that stacking them does not lead to runtime crash.
Their combined GPU utilization is also below 100%. The new
scheduling result with stacking is shown in Figure 2b where
the average JCT drops to 27.3 ms.

Many DL frameworks such as Tensorflow already support
running multiple models concurrently on one GPU and some
prior work also seek to optimally pack tasks to better utilize
memory space. What is new in Figure 2b is that online infer-
ence tasks can also benefit from being dynamically stacking

Ihttps://nvidia.custhelp.com/app/answers/detail/a_id/3751/~/useful-
nvidia-smi-queries
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Figure 2: An illustrative example where stacking inference tasks in
realtime leads to better GPU utilization.

to improve GPU utilization, especially when long running
tasks are interleaved with short ad-hoc queries.

2.3 Dynamic Job Preemption

Finally, most of existing inference schedulers focus on maxi-
mizing average throughput, so they do not proactively pre-
empt currently running tasks. This can sometimes cause
resource wastage and even reduce overall throughput. On
the other hand, preemption is known to improve JCT and
query response time, since in theory it allows theoretically
optimal policies (e.g., the shortest job first) in the online
setting.

Let us consider the two inference applications, one using
model A and one using model B (whose properties are given
in Table 1), and both have an SLO (deadline) of 200 ms. We
assume that 8 queries of model A arrive at the very beginning
and then 256 queries pf model B arrive one millisecond after
that (as depicted in Figure 3a). FIFO schedulers will run A’s
queries first then B’s queries, leading to 85ms JCT for model
B and an average JCT of 84.69ms across all queries. Since
queries of model B only take 10ms to finish, if we allow
preemption as shown in Figure 3b where B’s queries get
executed as soon as they arrive, the overall average JCT now
drops to 12.30ms. Note that throughput is slightly lowered
with preemption though, since the makespan increases from
85ms to 86ms.
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Figure 3: An illustrative example of online inference task arrivals
where preemptive scheduling reduces average the inference delay.
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3 DESIGN

We now present the preliminary design of Irina, which in-
tegrates the three complementary strategies introduced in
the last section. Two immediate challenges must be resolved:
First, the ability to gracefully terminate a DNN inference
task and switch to another task is key to both preemptive
scheduling and opportunistic batching, but how to effectively
enable preemption in existing inference frameworks that do
not consider preemption in the first place? Second, how to
select the best strategy for scheduling inference tasks online?
This section elaborates our initial results towards addressing
these key questions.

3.1 Enabling Preemption

Existing ML frameworks do not allow preemption while ex-
ecuting an inference task. Though it seems straightforward
to stop a running task in GPU, it is tricky to do it safely
and gracefully. Generally, an inference task is started by a
CPU thread on the host machine. Killing the CPU thread
is the simplest way to stop the running task. For example,
code blocks 1 and 2 describe sample code to kill or cancel
the thread that launches the inference task. However, both
pthread APIs assume that there are functions to process the
SIGQUIT signal with pthread.kill or cancellation points
in the thread function for pthread. cancel, which requires
users to modify their inference code. If there is no func-
tions to process SIGQUIT signal, the signal may change to
SIGKILL which kills the process and causes an abnormal
exit. If there is no cancellation points in the thread func-
tion, pthread. cancel cannot perform and just wait for the
thread function to finish. Moreover, during inference, the
framework usually dynamically allocates the GPU memory
which needs to be taken care of upon preemption.

/| Create thread pl to execute inference tasks
pthread_create (&p1, NULL, execute_fn, (void«)&tsk_queue);
pthreak_kill (p1, SIGQUIT);

// Insert a new task to the queue

tsk_queue. insert (new_task, 0);

// Create a new thread to execute inference tasks
pthread_create (&p2, NULL, execute_fn, (voidx)&tsk_queue);

Listing 1: Preemption by killing the CPU thread.

/| Create thread pl to execute inference tasks
pthread_create(&p1, NULL, execute_fn, (void«)&tsk_queue);
pthread_cancel (p1);

pthread_join (p1, NULL);

// Insert a new task to the queue

tsk_queue. insert (new_task, 0);

// Create a new thread to execute inference tasks
pthread_create (&p2, NULL, execute_fn, (void«)&tsk_queue);

Listing 2: Preemption by canceling the CPU thread.

Xiaorui Wu, Hong Xu, and Yi Wang

Alternatively one can Kkill the inference process on the
CPU to avoid the abnormal exit, but CUDA is not safe across
multiple processes as it does not support fork [7]. Thus both
solutions are inadequate to address the challenges.

We aim to design a general preemption mechanism that
can be applied to different ML frameworks while enabling
graceful termination of the running task on GPU. To this
end, we choose to work with the dataflow graph of the in-
ference model. The dataflow graph is a direct acyclic graph
(DAG) that describes the execution and data dependency
of the operations (e.g. conv2d, relu, etc.) of an ML model.
It is used in all ML frameworks as an execution blueprint
of the ML training and inference pipelines [18] We add a
new operation called exit to the dataflow graph to enable
preemption. The exit operation maintains the dynamic GPU
memory allocation information of the current task and safely
frees the memory upon receiving the preemption signal. In
addition, it returns a specially result to the ML framework
to indicate that the task finishes in order to prevent it from
crashing. This is because the function in the main process
sometimes waits for a return value even when the inference
thread is terminated. Irina re-writes the dataflow graph by
inserting the exit operation between any two consecutive
operations, which works across all ML frameworks. If the
scheduler wants to tell the running task to stop, Irina will
send a signal to the exit operations in the modified dataflow
graph. The next immediate exit operation will then receive
the signal and execute the exit function.

3.2 Scheduling Policy

The second design challenge is to devise an online schedul-
ing policy that minimizes the JCT under unpredictable task
arrivals. As can be seen from the examples in §2, each strat-
egy’s performance gains depend on the task arrival patterns
and the running task’s progress and it is not clear which
strategy is best. Although stacking seems to be the best strat-
egy as long as it is feasible since it does not affect the ongoing
tasks, this is not always true in online DNN inference. For
example, the new task may have to wait until the ongoing
task’s peak usage is over to avoid overusing GPU memory,
which can slow down the average completion time.

To optimally leverage the three strategies, Irina’s sched-
uler first computes for each new task the best-case schedule
and average JCT under each strategy and then chooses the
strategy with the smallest average JCT as the final result. In
the following, we present the scheduling policies for each of
the three strategies.

Preemption scheduling: We begin with the preemption
algorithm in Irina. The scheduler should first retrieve the
current scheduling information from different backends. We
assume the models are all loaded in advance, so there is no



Irina: Accelerating DNN Inference with Efficient Online Scheduling

Input Description
i an inference task

B; batch size of task i

M DNN model of task i

i
Li(-) | execution latency of task i given batch size B;
Ri(-) | resource requirement of task i given batch size B;

Gn remaining resources on GPU n

Table 3: Notations for the Irina’s scheduler.

additional delay to load a model. (This is possible, because
usually the DNN models are much smaller than the runtime-
generated intermediate data, but our scheduler can be ex-
tended to account for the additional model-loading delay.)
Our scheduler still processes inference tasks according to
their arrival order. For a given task i, the scheduler requires
information as listed in Table 3, especially its execution la-
tency and the resource requirement both as functions of the
batch size. This information can be accurately obtained from
offline profiling since it largely depends on the GPU hard-
ware and the hyperparameters. The scheduler selects GPUs
which have the required model M; preloaded into their mem-
ory and have enough resources, as candidates for preemption.
For each candidate GPU, the scheduler computes the average
JCT by assuming that task i preempts the running task on
this GPU, as long as preemption does not violate the SLO
(deadline) of both tasks. Lastly, among the candidate GPUs
where preemption improves average JCT upon simple FIFO,
our scheduler assigns task i to the one with the smallest
average JCT.

Batching scheduling: To see if the given task i should be
batched with an ongoing task, Irina first identifies all GPUs
that are running tasks of the same DNN model M; and filters
them with the total resource requirement of the merged
batch size according to R;(-). Among all candidate GPUs,
the scheduler computes the average JCT of batching task i
with their current task, removes them if SLO is violated by
the hypothetical batching, and selects the schedule with the
smallest average JCT as the merging target.

Stacking scheduling: Stacking requires two models to run
concurrently and safely on one GPU. Recall that the (peak)
resource requirement and the timestamp information is con-
tained in R;(B;). Because stacking does not affect the JCT
of the running task, the scheduling policy can be simpler.
First, the scheduler identifies busy GPUs whose resource
capacity can support the combined resource requirements of
its running task and the new task i. Note that the timestamp
information has to be taken into account to determine the
actual peak requirement of the combined workload. Then, it
computes the average JCT when stacking i to each candidate
GPU, and assigns i to the one with the smallest JCT.
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4 SIMULATION RESULTS

In this preliminary work, we conduct numerical simulation
to evaluate the performance of Irina. We choose the speedup
of the average JCT as the performance metric. There is a
little difference for average JCT in DNN inference:

i (Ti — t;) X B;

?:1 B;
Here t; and T; represent task i’s arrival time and finish time,
respectively, and B; is the batch size. We use the number
of samples processed in each inference task because each
request is generated by a unique user. The average JCT thus
reflects user’s perceived latency on average.

In order to collect real task execution data, we adopt a
server with 32-core CPUs, 64GB RAM, and NVIDIA RTX
2080 GPU with 8GB RAM. The server runs Ubuntu 18.04,
Nvidia driver version 440.33, CUDA 10.2, cuDNN6.5 and
libTorch 1.3.1. We use PyTorch to training the image classifi-
cation models with ImageNet and TorchScript as the DNN
inference framework. We use common models: AlexNet [16],
VGG-16 [22], YOLOV3 [19], GoogLeNet [23], and obtain their
inference execution information. Figure 4 shows the execu-
tion latency for the models with different batch sizes. Both
AlexNet and GoogLeNet are indifferent to the batch size:
there is little difference in execution latency when the batch
size increases from 1 to 32. AlexNet, in particular, adopts the
largest batch size while maintaining the lowest execution
cost, which indicates that it is suitable for preemption and
stacking. In contrast, YOLOv3 and VGG-16 appear more com-
plex. With a batch size of 16 for example, YOLOv3 suffers
the longest execution latency in the table.

We select some data points from our measurements for our
simulation as summarized in Table 4. To simplify, we assume
that each inference task runs on the same GPU. Generally
speaking, the online inference workloads contain regular
and ad-hoc requests. We choose YOLOv3 as the DNN model
for the predictable regular requests since object detection is
used in various monitoring systems that generates queries
with fixed intervals. We assign AlexNet, GoogLeNet, and
VGG-16 for the on-demand unpredictable queries since they
are used to identify say vehicle models, animal types, or
other ad-hoc purposes. Queries arrive dynamically over time
and each query appears as a regular query with a probability
we control. If a query is assigned to be ad-hoc it is uniformly
assigned to one of the three CNN models. We implement the
default scheduling policy in TenserFlow Serving as our base-
line. TensorFlow Serving aims to maximize the throughput
via large batching, so it waits for as many requests of the
same model as possible under SLOs for scheduling.

Figure 5 shows the simulation results. We find the per-
formance of Irina varies depending on the probability of
having ad-hoc tasks. Comparing to baseline, Irina achieves

Average JCT =
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. Memory
Model Name | Batch Size | Latency(ms) Utilization

8 68 30%

YOLOVS 16 117 55%
8 22 55%

VGG-16 16 33 86%
GoogleNet 32 14 46%
AlexNet 128 9 16%

Table 4: Models and their execution information used in the simu-
lation.
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Figure 4: The execution latency for the selected models measured
on our testbed.

1.3x — 2.5x speedup on average task completion time. When
ad-hoc tasks are unlikely to arrive, there is not many schedul-
ing opportunities for Irina and it can only deliver moderate
gains. Baseline also performs well in these cases. On the
other hand, when the ad-hoc tasks appear more frequently,
Irina has ample opportunities to apply the three scheduling
strategies.

5 RELATED WORK

Clipper [6] and Tensorflow Serving [4] are two popular serv-
ing systems. Tensorflow Serving is designed to serve the
DNN models trained by Tensorflow on CPU and GPU. It
provides the complete service stack for DNN inference. Ten-
sorflow Serving maximizes system throughput via batching
[8]. Clipper can be viewed as an extension of Tensorflow
Serving. It simplifies model deployment with a modular ar-
chitecture and employs techniques like caching to optimize
performance. However, neither system focuses on inference
task scheduling.

Nexus [21], InferLine [28], and Nanily [24] are recent
works focusing on large scale distributed DNN inference.
Nanily proposes adaptive batching to schedule the requests
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Figure 5: Irina’s speedup in average JCT.

under SLOs and pre-schedules the predictable requests. Nexus
focuses on DNN inference on video analysis and assume the
workloads are stable in each epoch. It exploits the large
batch execution on the predictable requests to improve the
throughput. MainStream [13] proposes to re-use the same
sub-models in different requests in order to enlarge batch
size and improve the inference throughput. InferLine focuses
on scheduling the complex execution pipelines which may
contain multiple models. It exploits the different configura-
tions for the models in the complex execution pipelines and
re-uses some base models to reduce the latency and improve
the throughput. Although these systems can schedule the re-
curring tasks efficiently, when it comes to the unpredictable
ad-hoc queries they all rely on FIFO which does not work
well for completion time. Salus [26] modifies the internal
execution engine of TensorFlow to maximize the number of
models concurrently running on GPU. Olympian [10] aims
to schedule multiple inference models fair sharing the single
GPU and reduce the makespan. Some works [11, 12] pro-
poses space-time multiplexing to reduce the latency when
the same models execute concurrently in a GPU. INFaas [20]
provides different configurations for different batch sizes,
hardwares and accuracies, which provides an easy-to-use
interface for the user.

6 DISCUSSION

We discuss several concerns one may have about Irina.

Overhead of adding the exit op. In our design §3.1, Irina
only modifies the dataflow graph to add the exit op ahead-of-
time. To keep implementation simple, we insert exit ops only
between two consecutive layers. In general, most models
contain tens of layers, so adding exit op brings little overhead
on execution time. When there is a more complex model
with thousands of layers [9], inserting thousands of exit ops
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becomes inefficient. One can combine multiple small layers
into a group and add the exit Op at the group level to reduce
the overhead.

Availability of task execution information. Irina has
focused on scheduling inference tasks with unpredictable
arrivals. However, the models used by the workloads are
known in advance by the applications and to the sched-
uler. Irina can then profile each model offline using the cor-
responding backend runtimes and different hardware, and
store the static and dynamic information in a metadata store.
Static metadata maintains the architecture, framework, accu-
racy, and the preprocessing method for a given application.
Dynamic metadata includes the relationship across hard-
ware, batch sizes, and execution costs, including GPU core
utilization, memory utilization, and execution latency. Irina
estimates the average job completion time using the empiri-
cal model execution cost and then schedules the new coming
tasks.

Interference among concurrent GPU models. Stacking
is used to saturate GPU resource. However, some work [11,
12] shows the interference among the concurrently running
models on a GPU may slow the execution, and may affect the
stacking performance. In this work, to simplify the motiva-
tion and simulation, we do not consider this effect. Different
from [11, 12], we only consider a long-running and a short
task as the potential stacking candidates. The short task can
finish much faster compared to the long task and the inter-
ference effect is minimal in this sense. In addition, Irina’s
model pool holds all the models which will be used in the
execution. We can profile the concurrently running models
offline to explicitly take into account the interference effect
in JCT.

The intermediate data during execution. As Irina pre-
empts a running task, there are intermediate computation
results from executing the DNN model in the GPU. One may
choose to save and reuse them when this task is re-executed.
However, this solution requires redesigning the data loading
method before launching the task in current frameworks.
Further, saving the intermediate results in GPU occupies lim-
ited GPU memory. If we swap them to the host memory, the
extra delay of swapping out and in may even be worse than
simply re-computing everything from scratch as some work
already showed [5, 25]. Therefore, here we simply discard
all the intermediate results when preempting a task.

7 CONCLUSION AND FUTURE WORK

In this work, we have presented the preliminary design of
Irina, an efficient online scheduling system for DNN infer-
ence workloads. Irina aims to reduce the average inference
latency via three key strategies that were previously over-
looked in inference scheduling: (1) Preemption that schedules
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the small task which is easy to be blocked by other tasks in ex-
isting schedulers; (2) Batching which utilizes the large batch
execution for queries arriving at different times for the same
model; and (3) Stacking which runs queries of more than
one model on the same GPU to improve the utilization and
reduce the queueing time. We performed simulation studies
and demonstrate with empirical data that Irina reduces the
average JCT by 1.3x — 2.5x compared to the default sched-
uler in TensorFlow Serving. We are now implementing a
complete prototype of Irina and will conduct comprehensive
testbed experiments to assess Irina’s full potential.

REFERENCES

[1] 11 reasons cloud video surveillance is moving to the cloud. https:
/[www.een.com/vsaas-video-surveillance-moving-to-cloud/.

[2] Cnn model inference benchmarks for some popular deep learning

frameworks. https://github.com/nicklhy/DLInfBench/tree/master/

results/.

Mlperf inference v0.5 results. https://www.mlperf.org/inference-

results/ November 6th, 2019.

BAYLOR, D., BRECK, E., CHENG, H.-T., FIEDEL, N, Foo, C. Y., HAQUE, Z.,

HavkaL, S., IspIR, M., JAIN, V., Koc, L., ET AL. Tfx: A tensorflow-based

production-scale machine learning platform. In Proceedings of the 23rd

ACM SIGKDD International Conference on Knowledge Discovery and

Data Mining (2017), pp. 1387-1395.

BEAUMONT, O., HERRMANN, J., PALLEZ, G., AND SHILOVA, A. Optimal

memory-aware backpropagation of deep join networks. Philosophical

Transactions of the Royal Society A 378, 2166 (2020), 20190049.

[6] CranksHAW, D., WANG, X., ZHOU, G., FRANKLIN, M. J., GONZALEZ,
J. E., AND Stoica, L. Clipper: A low-latency online prediction serving
system. In 14th {USENIX} Symposium on Networked Systems Design
and Implementation ({NSDI} 17) (2017), pp. 613-627.

[7] GuipE, D. Cuda c programming guide. NVIDIA, July (2013).

[8] HanHIROVA, ], KAMARAINEN, T., SEPPALA, S., SIEKKINEN, M.,
Hirvisaro, V., AND YLA-JAAsKI, A. Latency and throughput char-
acterization of convolutional neural networks for mobile computer
vision. In Proceedings of the 9th ACM Multimedia Systems Conference
(2018), pp. 204-215.

[9] HE, K., ZHANG, X., REN, S., AND SUN, J. Deep residual learning for
image recognition. In Proceedings of the IEEE conference on computer
vision and pattern recognition (2016), pp. 770-778.

[10] Hu, Y., RarLapaLLr, S., Ko, B., AND GovINDAN, R. Olympian: Sched-
uling gpu usage in a deep neural network model serving system. In
Proceedings of the 19th International Middleware Conference (2018),
pp. 53-65.

[11] JaIn, P., Mo, X., JAIN, A., SUBBARAJ, H., DURRANTL, R. S., TuMANOV, A.,
GONZALEZ, J., AND STOICA, I. Dynamic space-time scheduling for gpu
inference. arXiv preprint arXiv:1901.00041 (2018).

[12] JaIN, P., Mo, X, JAIN, A., TuMANOV, A., GONZALEZ, ]. E., AND STO-
1cA, I The ooo vliw jit compiler for gpu inference. arXiv preprint
arXiv:1901.10008 (2019).

[13] JiaNG, A. H., WoNgG, D. L.-K., CANEL, C., TANG, L., MIsra, L, KAMINSKY,
M., KozucH, M. A., PiLLAlL, P., ANDERSEN, D. G., AND GANGER, G. R.
Mainstream: Dynamic stem-sharing for multi-tenant video processing.
In 2018 {USENIX} Annual Technical Conference ({USENIX}{ATC} 18)
(2018), pp. 29-42.

[14] Kang, D., EMMONS, J., ABUZAID, F., BAILIS, P., AND ZAHARIA, M. No-
scope: optimizing neural network queries over video at scale. arXiv
preprint arXiv:1703.02529 (2017).

E

—

[4

—

5

—


https://www.een.com/vsaas-video-surveillance-moving-to-cloud/
https://www.een.com/vsaas-video-surveillance-moving-to-cloud/
https://github.com/nicklhy/DLInfBench/tree/master/results/
https://github.com/nicklhy/DLInfBench/tree/master/results/
https://www.mlperf.org/inference-results/
https://www.mlperf.org/inference-results/

APNet ’20, August 3-4, 2020, ONLINE

(15]

[16

=

[17

—

(18

=

[19

—

[20

[t

[21]

KocHURa, Y., GORDIENKO, Y., TARAN, V., GORDIENKO, N., Rokovyl, A.,
ALIENIN, O., AND STIRENKO, S. Batch size influence on performance
of graphic and tensor processing units during training and inference
phases. In International Conference on Computer Science, Engineering
and Education Applications (2019), Springer, pp. 658—-668.
KRIZHEVSKY, A., SUTSKEVER, L, AND HINTON, G. E. Imagenet classifica-
tion with deep convolutional neural networks. In Advances in neural
information processing systems (2012), pp. 1097-1105.

LeCuN, Y., BorTou, L., BENGIO, Y., AND HAFFNER, P. Gradient-based
learning applied to document recognition. Proceedings of the IEEE 86,
11 (1998), 2278-2324.

Looks, M., HERRESHOFF, M., HUTcHINS, D., AND NORVIG, P. Deep learn-
ing with dynamic computation graphs. arXiv preprint arXiv:1702.02181
(2017).

REDMON, ]., AND FARHADI, A. Yolov3: An incremental improvement.
arXiv preprint arXiv:1804.02767 (2018).

RoMERO, F., L1, Q., YADWADKAR, N. J., AND Kozyrakis, C. Infaas: A
model-less inference serving system. arXiv preprint arXiv:1905.13348
(2019).

SHEN, H., JiN, Y., KoNg, B., PHILIPOSE, M., KRISHNAMURTHY, A., AND
SUNDARAM, R. Nexus: A gpu cluster for accelerating neural networks
for video analysis.

[22]

[23]

[24]

[25]

[26]

[27]

[28]

Xiaorui Wu, Hong Xu, and Yi Wang

SIMONYAN, K., AND ZISSERMAN, A. Very deep convolutional networks
for large-scale image recognition. arXiv preprint arXiv:1409.1556 (2014).
SzeGeDY, C., L1u, W,, J14, Y., SERMANET, P., REED, S., ANGUELOV, D.,
ERHAN, D., VANHOUCKE, V., AND RABINOVICH, A. Going deeper with
convolutions. In Proceedings of the IEEE conference on computer vision
and pattern recognition (2015), pp. 1-9.

TaNG, X., WANG, P., L1u, Q., WANG, W., AND HaAN, J. Nanily: A qos-
aware scheduling for dnn inference workload in clouds. In 2019 IEEE
21st International Conference on High Performance Computing and Com-
munications; IEEE 17th International Conference on Smart City; IEEE 5th
International Conference on Data Science and Systems (HPCC/SmartCi-
ty/DSS) (2019), IEEE, pp. 2395-2402.

VAN DE LEEMPUT, S. C., TEUWEN, J., AND MANNIESING, R. Memcnn: a
framework for developing memory efficient deep invertible networks.
Yu, P., AND CHOWDHURY, M. Salus: Fine-grained gpu sharing primitives
for deep learning applications. arXiv preprint arXiv:1902.04610 (2019).
ZHANG, B., JIN, X., RATNASAMY, S., WAWRZYNEK, J., AND LEE, E. A.
Awstream: Adaptive wide-area streaming analytics. In Proceedings of
the 2018 Conference of the ACM Special Interest Group on Data Commu-
nication (2018), pp. 236-252.

ZUMAR, C. Inferline: Ml inference pipeline composition framework.



	Abstract
	1 Introduction
	2 Motivation
	2.1 Opportunistic Batching
	2.2 Online Job Stacking
	2.3 Dynamic Job Preemption

	3 Design
	3.1 Enabling Preemption
	3.2 Scheduling Policy

	4 Simulation Results
	5 Related Work
	6 Discussion
	7 Conclusion and Future Work
	References

