
Arlo: Serving Transformer-based Language Models with Dynamic
Input Lengths

Xin Tan

The Chinese University of Hong Kong

Hong Kong SAR, China

xtan22@cse.cuhk.edu.hk

Jiamin Li

Microsoft

Vancouver, Canada

jiaminli@microsoft.com

Yitao Yang

The Chinese University of Hong Kong

Hong Kong SAR, China

ytyang@cse.cuhk.edu.hk

Jingzong Li

The Hang Seng University of Hong

Kong

Hong Kong SAR, China

jingzongli@cuhk.edu.hk

Hong Xu

The Chinese University of Hong Kong

Hong Kong SAR, China

hongxu@cuhk.edu.hk

ABSTRACT
A prominent challenge in serving requests for NLP tasks is handling

the varying length of input texts. Existing solutions, such as uniform

zero-padding and compiler support, suffer from either computa-

tional inefficiency or suboptimal latency. To address these practical

issues, we propose an approach called polymorphing. Polymorphing

involves creating and utilizing multiple runtimes of the model, each

statically compiled with a different input length, to serve requests

accordingly. This fine-grained use of statically-compiled runtimes

reduces the overheads of zero-padding while improving latency per-

formance compared to dynamic compilation. To practically realize

polymorphing, we have developed an inference scheduling system,

Arlo, which leverages the observed input length distribution to pe-

riodically allocate compute resources across multiple runtimes by

solving an integer linear program. Upon request arrival, Arlo uses

a multi-level queue-based heuristic to dispatch requests to the most

suitable runtime instances, efficiently adapting to the dynamics of

request length and instance load. Extensive testbed evaluations and

large-scale simulations using production traces demonstrate Arlo’s

promising potential. It achieves 23.7%–98.1% mean latency reduc-

tions compared to existing schemes while significantly reducing

tail latency.

CCS CONCEPTS
• Computing methodologies→ Distributed computing method-
ologies.

KEYWORDS
ML inference, resource scheduling, language model

ACM Reference Format:
Xin Tan, Jiamin Li, Yitao Yang, Jingzong Li, and Hong Xu. 2024. Arlo: Serving

Transformer-based Language Models with Dynamic Input Lengths. In The
53rd International Conference on Parallel Processing (ICPP ’24), August 12–15,

This work is licensed under a Creative Commons Attribution International

4.0 License.

ICPP ’24, August 12–15, 2024, Gotland, Sweden
© 2024 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-1793-2/24/08

https://doi.org/10.1145/3673038.3673124

2024, Gotland, Sweden. ACM, New York, NY, USA, 10 pages. https://doi.org/

10.1145/3673038.3673124

1 INTRODUCTION
Transformer-based language models (LMs) have revolutionized nat-

ural language processing (NLP) with remarkable success in many

applications [17, 24, 25, 29, 36], such as machine translation [36],

question answering [39], etc. In the realm of Transformer-based

LMs, two fundamental types have emerged: generative and discrimi-

native models. Generative models like GPT-4 [28] auto-regressively

predict the next word’s probability distribution given the sentence

context. Their popularity, exemplified by ChatGPT [2], has spurred

systems [4, 23, 40, 43] into enhancing these models’ efficiency and

scalability. Despite the spotlight on generative models, discrimina-

tive models, which consider the entire context to predict labels or

classifications, continue to occupy a substantial portion of open-

source NLP libraries[6] and real-world deployment.

In this work, we focus on discriminative models [17, 52]. These

models have shown exceptional performance in various NLP tasks

like text classification and sentiment analysis, making them valu-

able assets inmany applications. Besides, it is crucial not to overlook

the significance of discriminative models as middleware compo-

nents in application pipelines. For example, these models are exten-

sively used to detect and flag misleading or fake news articles in

social media platforms [19, 34]. Moreover, search engines and vec-

tor databases leverage their context-aware embeddings to retrieve

results that align with user intent [25, 42], enhancing the relevance

of search results. The widespread adoption of discriminative mod-

els in both academia and industry underscores their relevance and

practicality today.

Deploying these models in practice, however, faces a partic-

ular challenge of working with intrinsically dynamic lengths of

input sequences (§2.1). This variability has salient implications for

the efficiency of the inference process. Current inference systems

[15, 21, 27, 30, 46] mostly use uniform zero-padding with static-

shape
1
runtime compilation, where models are configured and

compiled with a particular sequence length. Shorter requests are

1
Input sequence length is an important factor to determine the shape of the tensors for

which DL compilers strive to optimize. It is thus customary to use the term “shape” with

compilers, while using “length” with requests. We follow this convention throughout

the paper.

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3673038.3673124
https://doi.org/10.1145/3673038.3673124
https://doi.org/10.1145/3673038.3673124

ICPP ’24, August 12–15, 2024, Gotland, Sweden Xin Tan et al.

then padded with zeros before processing. Zero-padding clearly

results in suboptimal resource utilization and increased latency for

shorter sequences, as a significant portion of computation is wasted

on the padded data. Recently, some deep learning (DL) compilers

including TensorRT [8] and TVM Unity [10] have provided support

for dynamic-shape inputs at runtime. Yet, our experiments in §2.2

and some existing studies [33, 51] reveal that it often comes with

worse latency compared to using static compilation for the same

shape. Additionally, it also requires time-consuming kernel tuning

[10, 13], making it cumbersome for practical use.

We propose a different approach called polymorphing to address

dynamic input lengths. Polymorphing leverages multiple runtimes,

each statically compiled with a different maximum input length,

effectively creating different forms of the same model (hence the

term). By directing requests to the best runtime that can handle

themwith the least amount of padding, polymorphing optimizes the

trade-off between latency and zero-padding size. This also avoids

the need of extensive kernel tuning or compromising on computa-

tional efficiency.

To realize polymorphing effectively, we build Arlo, an inference

scheduling system that works with existing serving systems [9, 15,

21, 22, 27, 46, 47]. Arlo has two key components, Runtime Scheduler

and Request Scheduler, each addressing an imminent technical

question brought by polymorphing.

First, Arlo needs to determine the resource allocation across run-

times (§3.3). Based on the principle that each request should ideally

be processed by the runtime with the least amount of padding, this

problem can be formulated as an optimization that minimizes the

overall latency given resource capacity and request demand con-

straints. This optimization is based on the assumption that request

length distribution can be obtained over a coarse time scale (e.g.

every 10 minutes), which we establish empirically.

Second, despite our best effort, the instantaneous request length
dynamics seen by the serving system deviates from the average.

Many idiosyncratic factors such as failures and bugs also leads to

imbalanced load even across instances of the same runtime [44].

These dynamics cannot be handled by resource scheduling due to

the inherent difficulty of short-term time-series prediction and the

overheads of adjusting deployment at scale. Thus, Arlo relies on a

Request Scheduler (§3.4) to dynamically select a runtime instance

for each request. Using a multi-level queue based heuristic, Request

Scheduler can opportunistically re-direct requests to runtimes for

longer inputs when ideal runtime instances are overloaded, achiev-

ing a better tradeoff between queuing delay and running time.

Putting everything together, we design, implement and evaluate

Arlo, that exploits multiple runtimes. In the offline stage, multiple

runtimes are prepared and their computation time are profiled to

facilitate Arlo’s decision. During online serving, Runtime Sched-

uler collects the long-term request length distribution pattern and

identifies the ideal runtime for requests. It periodically computes

the runtime resource allocation to match with such pattern and

ensure no violation on the service level objective (SLO). Request

Scheduler actively dispatches queuing requests to the most suit-

able runtime instances by considering the trade-offs of all candiate

runtime instances to minimize the average latency.

The results of Arlo are promising. We use Twitter’s production

trace [11] to evaluate Arlo. In a 10-GPU testbed and large-scale

0 25 50 75 100 125
Length

0.00

0.25

0.50

0.75

1.00

CD
F 50%

21

98%

72

(a) Sequence length distribution over
10 consecutive one-minute traces.

0 25 50 75 100 125
Length

0.00

0.25

0.50

0.75

1.00

CD
F

(b) Sequence length distribution over
10 one-second traces.

Figure 1: Sequence length distribution of real-world Twitter traces [11] at
different time scales. We randomly select a one-second trace from each one-
minute trace (left) to illustrate instantaneous request length dynamics (right).

simulation scenarios, Arlo surpasses uniform zero-padding and

dynamic compilation schemes, reducing mean latency by up to

98.1% and 30.7%, and 98%ile tail latency by up to 98.4% and 26.0%,

respectively. Besides, we compare Arlo with a state-of-the-art sys-

tem INFaaS[30] and Arlo consistently outperforms it, achieving

reductions in mean and tail latency of up to 41.7% and 40.1%.

We summarize our contributions as follows.

• We report problems of the existing solutions in handling

requests with varying lengths, i.e. inflated latency with zero-

padding and low computational efficiency using compilers

with dynamic-shape input support.

• We introduce Arlo, an inference scheduler that minimizes

the computation resource waste caused by zero-padding,

without the support of dynamic-shape compiled runtime.

• We design Runtime Scheduler to dynamically allocate run-

time resources based on the long-term request length distri-

bution pattern, and Request Scheduler to actively dispatch

requests to proper instances to address short-term fluctua-

tions and minimize the average latency.

• We implement Arlo and conduct comprehensive evaluations,

demonstrating the effectiveness of Arlo in reducing latency

and optimizing resource utilization for discriminative lan-

guage models with real-world traces.

2 BACKGROUND AND MOTIVATION
2.1 Transformer-based language models
In this work, we focus on serving discrimative Transformer-based

LMs that have shown remarkable success across many NLP applica-

tions in the wild. The serving process involves setting up appropri-

ate configurations for models and compiling them to run on specific

hardware. In this stage, one key configuration is the shape of the

data, which put constraints on the requests. This shape includes

two essential components: (a) the batch size, which determines the

number of data samples processed by the runtime simultaneously

(usually set to 1 or 2 to maintain low latency in latency-sensitive

scenarios[30, 37, 38]), and (b) the sequence length, representing

the length of the input text. It is applied in most existing serving

systems[9, 15, 21, 30, 38, 46, 47].

One unique property of serving Transformer-based models is

the variability of the request sequence length. Empirical evidence

indicates that input texts can vary widely in length, from short

sentences to long documents, significantly impacting computation

time. Fig. 1a depicts the cumulative distribution function (CDF) of

Arlo: Serving Transformer-based Language Models with Dynamic Input Lengths ICPP ’24, August 12–15, 2024, Gotland, Sweden

0 64 128 192 256 320 384 448 512
Sequence Length

2

4

6

La
te

nc
y (

m
s) Dynamically compiled

Statically compiled

(a) Inference latency of Bert-Base model with different sequence lengths
(batch size 1) compiled via TensorRT.

0 64 128 192 256 320 384 448 512
Sequence Length

5

10

15

La
te

nc
y (

m
s) Dynamically compiled

Statically compiled

(b) Inference latency of Bert-Large model with different sequence lengths
(batch size 1) compiled via TensorRT.

0 100 200 300 400 500
Sequence Length

0

500

1000

La
te

nc
y (

m
s) Dynamically compiled

Statically compiled

(c) Inference latency of Dolly model with different sequence lengths (batch
size 1) compiled via TVM Unity.

Figure 2: Inference latency comparison of three representative Transformer-
based LMs compiled with static and dynamic length dimension on NVIDIA
GeForce RTX 3090. The Bert-Base and Bert-Large are compiled with FP32 via
TensorRT, while the Dolly is compiled with FP16 via TVM Unity.

input length over randomly selected 10-minute traces from Twit-

ter’s production [11]. We observe that the 50%ile of sequence length

is 21 tokens, whereas the 98%ile significantly rises to 72 tokens.

The variability in sequence length drastically influences computa-

tion time. To demonstrate it, we measure the computation time of

varying input lengths with different Transformer-based models, as

depicted by the orange lines in Fig. 2. The computation time for a

sequence of length 512 is 4.22x and 5.25x longer than for a sequence

of length 64 in Bert-Base and Bert-Large models, respectively.

2.2 Handling varying lengths of input
sequences

Existing solutions to address the issue of varying input lengths

encompass the two main approaches:

Uniform zero-padding. Padding is the most common approach

when deploying models for serving[9, 22, 27, 46, 47]. The idea is

to treat each input sequence uniformly by zero-padding shorter

sequences to match a fixed maximum length. Specifically, the input

length of these models is configured to the𝑚𝑎𝑥_𝑙𝑒𝑛𝑔𝑡ℎ, a parameter

representing the upper limit of lengths that can be handled by the

runtime. This strict configuration enables uniformity in processing,

but the inherent limitations are also pronounced. First, shorter

sequences suffer from inflated latency when served by runtimes

configured for longer sequences. Fig. 2a shows that a sequence of

length 20 would end up with a latency of 4.86ms when served by

a runtime with𝑚𝑎𝑥_𝑙𝑒𝑛𝑔𝑡ℎ as 512, which is 4.28x longer than its

actual computation time. Second, computation resources are wasted.

Computation over the zero-padding components are redundant

and the corresponding output would be truncated eventually. For

example, one trace clip in Fig. 1a results in 80.6% of the FLOPs

wasted when served by a runtime with𝑚𝑎𝑥_𝑙𝑒𝑛𝑔𝑡ℎ as 125.

Compiler support. A more sophisticated approach involves

compiler-level design. Engineers provided enabled dynamic shape

support to existing DL compilers, such as TensorRT[8], DISC[51],

TVM Nimble[33] and TVM Unity[10]. By configuring specific axes

in the data shape as dynamic, runtimes can be compiled only once

and accept a diverse range of input sequences during inference.

While this support brings more flexibility to the serving system,

we find that they are not as efficient as those compiled with a

static shape. We profile the TensorRT runtime latency of two repre-

sentative Bert models [17] in Fig. 2a and 2b, and compare results

when dynamic shape support is enabled. The minimum latency

inflation is 1.22x and the maximum can be up to 3.56x. As for an-

other compiler TVM, it needs time-intensive tuning to well support

dynamic-shape compilation. Here we directly use Dolly [3], an offi-

cial well-tuned model release compiled with TVM Unity. The result

is shown in Fig. 2c. Even with kernel-tuning, the latency is still,

on average, 2.86x worse than untuned statically-compiled runtime,

highlighting a large performance gap. The performance gap may be

attributed to the kernel dispatching overhead from dynamic shape

and missed aggressive fusion optimization opportunity without

shape information [33, 51], which is still an ongoing area to improve

its efficiency.

It is worth mentioning that researchers have also introduced

other inference optimizations tailored for Transformer-based mod-

els, with removing zero-padding being one of the key optimizations

[4, 20, 45]. However, these optimizations require intricate hand-

crafted kernel modifications to achieve optimal performance and

can not be easily transferred to models with different architectures,

which further complicates the deployment process.

2.3 Our Solution: Arlo
We present Arlo, an inference scheduler that efficiently handles

varying-length requests in Transformer-based LMs using polymor-
phing. Our primary goal is to achieve a comparable performance to

static-shape compiled runtimes while simultaneously minimizing

zero-padding. We exploit multiple static-shape compiled runtimes

instead of using a single unified runtime for each model. These

runtimes possess different𝑚𝑎𝑥_𝑙𝑒𝑛𝑔𝑡ℎ values and are distributed

within the largest request length range. Arlo involves determining

an ideal runtime for each request to minimize zero-padding. It dy-

namically deploys runtimes and routes requests to the appropriate

runtime based on the request length distribution.

Note that a state-of-the-art inference system INFaaS [30] also

studies a problem about model selection across multiple variants

with varying efficiency and accuracy. While INFaaS could poten-

tially be adapted for transformer-based models, its vertical auto-

scaling strategy is designed for request load changes and does not

take into account the distribution of input lengths for overall re-

source allocation, ultimately failing to minimize the overall latency.

Furthermore, its bin-packing-like dispatching does not consider

the dynamic nature of request length variability and fluctuating

instance loads. We compare INFaaS with Arlo experimentally in §5.

ICPP ’24, August 12–15, 2024, Gotland, Sweden Xin Tan et al.

3 SYSTEM DESIGN
3.1 Design Overview
System architecture. Arlo is an inference scheduler designed to

handle the variability of input lengths in LMs requests. It strategi-

cally allocates resources to different runtimes based on the request

length pattern, deploys them on GPU instances within the cluster,

and efficiently schedules incoming requests.

Fig. 3 presents Arlo’s architecture. In an inference system, Arlo

works on one request stream (requests with the same SLO and

target model) [32, 47] and we can have a dedicated Arlo for each re-

quest stream. Arlo comprises two key components, Runtime Sched-

uler and Request Scheduler. Runtime Scheduler determines which

runtimes should be deployed and howmany GPU instances are allo-

cated to each runtime.When new requests arrive, Request Scheduler

decides which runtime instance will handle each request. We also

incorporate an offline profiler to obtain each runtime’s computation

time. Arlo exploits this knowledge to make an optimal decision.

Workflow. Initially, Arlo fragments the request length span into

sub-spans ①, referred to as length bins later. Next the model is com-

piled into multiple runtimes ②, each with a different𝑚𝑎𝑥_𝑙𝑒𝑛𝑔𝑡ℎ

value that defines the upper limit for the request length it can han-

dle. The offline profiler measures the computation times for all the

runtimes ③. During serving, Runtime Scheduler assesses the avail-

able cluster resources and the history request distribution pattern

(a) to compute the resource allocation for each runtime, with run-

time profiles from profiler (b). It then deploys the runtimes onto the

GPU instances accordingly (c). Request Scheduler actively monitors

the request buffer (e) and schedules each incoming request to the

most suitable runtime instance (f) under the resource allocation

decision of Runtime Scheduler (d). For each request, it takes into

account all runtime candidates and the load of each instance.

Key questions. Arlo’s design is centered on three questions:

• How to decide the appropriate number of runtimes required

and the corresponding𝑚𝑎𝑥_𝑙𝑒𝑛𝑔𝑡ℎ?

• Given a request length distribution, how to efficiently al-

locate resources to each runtime to minimize the overall

latency?

• How to design an efficient Request Scheduler to schedule

requests to the appropriate instances?

3.2 Challenges
Arlo introduces two challenges that are not present in existing

solutions.

Runtimes have different length ranges. Arlo introduces a new

variable to the problem, where each runtime has a different length

range it can handle. This is in contrast to existing approaches like

uniform zero-padding and compiler-level support, where the same

runtime is deployed across all instances, allowing requests to be

executed on any instance in the cluster. In Arlo, a request with a

length of 𝑙𝑒𝑛 can only be executed by runtimes with a𝑚𝑎𝑥_𝑙𝑒𝑛𝑔𝑡ℎ

greater than or equal to 𝑙𝑒𝑛. Therefore, it is crucial to determine

a proper 𝑚𝑎𝑥_𝑙𝑒𝑛𝑔𝑡ℎ for each runtime, as it affects the number

of runtimes required for each model. Compiling a runtime for ev-

ery possible length value is neither scalable nor efficient since it

also increases Runtime Scheduler’s search space when performing

resource allocation. Additionally, the request length distribution

must be considered during runtime scheduling, as the computation

time of each runtime differs. Merely favoring runtimes with longer

length ranges may lead to increased zero-padding size and higher

latency, offsetting the advantages of flexibility.

Short-term request length distribution. While the distribution

of request lengths tends to be stable over a longer term, it may

not hold true in short term. Fig.1 depicts the length distribution

for 10-minute and 10-second clips. The median length for both is

21.0, while the 98%ile is 71 for the 10-minute clips and 58 for the

10-second clips. Ideally, each request should have minimal padding.

However, ensuring optimal performance for near-future requests

is challenging due to the fluctuation of request lengths in the short

term. Therefore, we have to carefully design the scheduling al-

gorithm so that Request Scheduler can make a sensible decision

independent of the runtime resource allocation. Common strate-

gies may not be sufficient to achieve this objective. For example,

in Fig. 4, a 4-GPU cluster is deployed with two runtime instances

with a length of 128, one with length 256, and one with length 512.

The length of the initial eight requests is less than 128. Later, 14

requests arrive, with lengths ranging from 257 to 512. If the ideal

policy of scheduling requests to the runtime with the least padding

is followed, five initial requests cannot meet the SLO as instances

with length 128 can only handle three more requests. For a greedy

algorithm which selects the instance with the least load, it ends up

with scheduling all eight initial requests to GPU3. It makes eight

latecomers fail to meet the SLO. Interestingly, by scheduling 5 out

of the first eight requests to GPU2, no SLO violations would occur.

3.3 Runtime Scheduler
Wefirst discuss how to address the first two questions in this section

and introduce the design of Arlo’s Runtime Scheduler.

Determine the𝑚𝑎𝑥_𝑙𝑒𝑛𝑔𝑡ℎ of each runtime.We have discussed

that determining the value of 𝑚𝑎𝑥_𝑙𝑒𝑛𝑔𝑡ℎ is non-trivial. Even

though compilation is performed offline, creating runtimes for

every possible value becomes impractical due to the trend of an

increasing request length. To simplify this problem, we exploit one

empirical observation: staircase pattern in latency. As shown in

Fig. 2a and 2b, when using static-shape compilation, the increase

of latency is significant for every 64 length step. Within each 64

length step, the latency change is tiny, usually less than 5%. This

observation aligns with previous literature [18, 33] indicating that

GPUs are most efficient at matrix multiplication when the sequence

length is a multiple of the tile size. Therefore, it is evident that

having runtimes within the 64-length step range would offer little

improvement in latency (discussed in §5.2.3). Arlo linearly increases

the𝑚𝑎𝑥_𝑙𝑒𝑛𝑔𝑡ℎ values for each runtime with a coefficient corre-

sponding to the step size observed in the staircase pattern. For

instance, in the case of the Bert model in Fig. 2a and 2b, the orig-

inal model with a𝑚𝑎𝑥_𝑙𝑒𝑛𝑔𝑡ℎ of 512 would have eight runtimes

(512/64=8). This approach ensures that the runtimes are adequately

spaced out to cover the likely range of request lengths while avoid-

ing unnecessary granularity within each 64-length step. Arlo can

thus strike a balance between efficiently handling varying request

lengths and avoiding excessive runtime compilation. It is noted that

the 64-length step here is specific to TensorRT runtimes of Bert.

Arlo: Serving Transformer-based Language Models with Dynamic Input Lengths ICPP ’24, August 12–15, 2024, Gotland, Sweden

Request Buffer
Seq
len:
120

Seq
len:
30

Seq
len:
502

Traffic

Runtime
Scheduler

Request
Scheduler

GPU Cluster

(d)
Resource
allocation
results
&&
Runtime
profiles(a)

Request
length pattern

(c)
Deploy
runtimes

Offline Online

…

1 512

1 64 65 128 449 512

request length span

compiling

fragmenting

shape:(B,64)

2

1

3

(e)
Request

(f)
Dispatch to
instance

shape:(B,128) shape:(B,512)

Profiler (b)
Profiled latency

Runtime instance for length 64
Runtime instance for length 128

Runtime instance for length 512
Free GPU

profiling

Figure 3: The system overview of Arlo.

timestamp #request length SLO

0 8 <128 480ms

3 14 257∼512 480ms

0 5 time

Outstanding Requests: 78;
Capacity: 80

Outstanding Requests: 28; Capacity: 40

Outstanding Requests: 6; Capacity: 20

8 request (length< 128)
SLO: 480ms

14 request (256< length< 512)
SLO: 480ms

Outstanding Requests: 79; Capacity: 80

timestamp request num length range SLO

0 8 <128 480ms

5 14 257~512 480ms

Snapshot of instances at timestamp 0

OR: 78
CY: 80

GPU0: runtime0
(length: 128)

GPU2: runtime1
(length: 256)

GPU1: runtime0
(length: 128)

GPU3: runtime2
(length: 512)

Request

OR: 79
CY: 80

OR: 28
CY: 40

OR: 6
CY: 20

Figure 4: An example illustrating dispatching challenges with short-term
variability. The outstanding requests (OR) represent the quantity of requests
in the queue and in execution. Each instance’s capacity (CY) is determined by
per-request latency and the predefined SLO.

For other models or compilers, the step sizes may vary and not

necessarily uniform.

Runtime resource allocation. With the runtimes well prepared,

Runtime Scheduler now focuses on resource allocation for the on-

line serving stage. It exploits the request length distribution and

profiled runtime performance to make the decision. The problem

then becomes: given 𝐺 available GPUs, 𝐼 different runtimes sorted

by their 𝑚𝑎𝑥_𝑙𝑒𝑛𝑔𝑡ℎ, the average number of requests 𝑄𝑖 during

a period of the SLO in each length bin of the 𝑖-th runtime, and

the runtime performance (𝑀𝑖 representing the maximum capacity

within SLO and L𝑖 representing the mapping from batch size to

mean latency for the 𝑖-th runtime, which are obtained by profiling),

our goal is to calculate the resource allocation 𝑁𝑖 (GPU instances)

for each runtime in a way that minimizes overall latency. We can

formulate the problem with integer linear program (ILP) as follows:

min

𝐼∑︁
𝑖=1

L𝑖 (𝐵𝑖) · 𝐶𝑖 (1)

s.t.

𝐼∑︁
𝑖=1

𝑁𝑖 = 𝐺, (2)

𝑁𝑖 ≥ ⌊
𝑄𝑖

𝑀𝑖

⌋, ∀𝑖, (3)

𝑅𝑖 =

{
0, 𝑖 = 0,

max (𝑅𝑖−1 +𝑄𝑖 − 𝑁𝑖 ·𝑀𝑖 , 0) , 𝑖 ≥ 1,
(4)

𝐶𝑖 =

{
min (𝑅𝑖−1 +𝑄𝑖 , 𝑁𝑖 ·𝑀𝑖) , 𝑖 < 𝐼 ,

𝑅𝑖−1 +𝑄𝑖 , 𝑖 = 𝐼 ,
(5)

𝐵𝑖 =
𝐶𝑖

𝑁𝑖

, ∀𝑖, (6)

𝑁𝐼 ≥ 1. (7)

𝑅𝑖 represents unprocessed requests for the 𝑖-th runtime, while

𝐶𝑖 is the actual requests to be processed. 𝐵𝑖 denotes the workload

for each individual instance of the 𝑖-th runtime. We provide an

explanation for each constraint below.

• Eq. 2: the number of instances deployedwith runtimes should

be the same as the number of available GPUs.

• Eq. 3: the deployed instances for each runtime should be able

to handle their requests within the SLO constraints. In other

words, the number of requests handled by each instance

should not exceed its maximum capacity.

• We also consider the non-ideal scenario. Eqs. 4 and 5 is used

for demoting requests to a runtime with a larger𝑚𝑎𝑥_𝑙𝑒𝑛𝑔𝑡ℎ.

It happens when the current instances of the ideal runtime

cannot handle the requests without violating the SLO con-

straints.

• Eq. 6: requests assigned to the 𝑖-th runtime are evenly dis-

tributed among its instances to balance the load.

• Eq. 7: the runtime with the largest 𝑚𝑎𝑥_𝑙𝑒𝑛𝑔𝑡ℎ should be

deployed on at least one instance. This ensures prompt han-

dling of all requests without waiting in the buffer.

Although this formulation represents a non-linear and non-

convex problem, the constraints in Eq. 3 effectively narrow down

the search space. By leveraging optimization solvers such as

GUROBI [5], Arlo can solve this formulation efficiently even in

large-scale clusters, taking less than one second in most cases. We

present more analysis on overhead in §5.1.4.

It is crucial to note that Runtime Scheduler does not consider

scenarios inwhichmultiple runtime instances of the samemodel are

co-located on a single GPU. Although there are studies investigating

concurrent execution on GPU devices [14, 35, 41], these methods

often result in suboptimal performance, due to the unavoidable

interference. To prevent performance degradation and maintain

optimal runtime behavior, Arlo deliberately avoids such co-location.

To enhance system utilization, particularly during periods of low

request load, Arlo can be combined with resource time-multiplexing

in a multi-request stream serving scenario, and the implications of

such scheme are discussed in §6.

Resource auto-scaling. Periodic resource allocation is crucial for

optimizing overall latency based on length distribution when the

load level is stable under given resources. However, to address load

fluctuations, an auto-scaling method is necessary. In fact, many

existing scaling methods in current systems[1, 15, 16, 30, 46], such

as threshold-based heuristics, could be integrated. In Arlo, an auto-

scaling mechanism is implemented as described in §4. For scaling-

out, a runtime instance compiled with the maximum input length

is added, while for scaling-in, an instance with the least load is

removed. After each auto-scaling action, the Runtime Scheduler

would still make an optimal resource allocation for different run-

times with scaled resources upon a decision period and automati-

cally adapt to the length distribution.

ICPP ’24, August 12–15, 2024, Gotland, Sweden Xin Tan et al.

40/80 42/80 41/80

54/60

28/48 29/48

20/38

Runtime Instance
for seq len 128

Runtime Instance
for seq len 256

Runtime Instance
for seq len 384

Runtime instance
for seq len 512

Q1

Q2

Q3

Q4

short

long

seq len:200

Figure 5: A multi-level queue maintained by Request Scheduler, with arrows
representing the potential dispatch decision sequence. Grey arrows indicate
traversing back. Each instance’s outstanding requests and maximum capacity
within SLO are labeled.
3.4 Request Scheduler
We then present the design of Request Scheduler to address the

third design question.

Short-term requests. Recall that we have shown an inconsistency

between the short-term and long-term request pattern. Runtime

Scheduler can dynamically allocates resources for each runtime

to match the long-term request pattern as it is performed in a

lower frequency. To address the short-term pattern fluctuation,

Arlo relies on Request Scheduler to dispatch request properly under

the current runtime resource allocation. The design is guided by

two key intuitions.

Requests could be demoted to another runtime when the ideal
runtime is overloaded.

When a burst of similar-length requests arrives and overwhelms

the ideal runtime instances, Request Scheduler considers the option

of demoting queuing requests to less busy but less ideal runtime

instances with a larger 𝑚𝑎𝑥_𝑙𝑒𝑛𝑔𝑡ℎ value. This demotion is per-

formed to alleviate the load on the ideal runtime and expedite the

execution of arriving requests. Request Scheduler’s decision in-

volves measuring the trade-off between the queuing time in the

ideal runtime instances and the increased latency incurred due to

additional zero-paddings in the non-ideal candidates.

Demotion should be conservative to account for potential
longer requests.

In Arlo, enabling demotion allows shorter requests a broader

range of runtime options than longer ones. However, excessively

demoting requests to non-ideal candidates may inadvertently im-

pact the processing of longer requests. Therefore, it is critical to

adopt a conservative approach to demotion. Specifically, we need

to select the non-ideal candidate that is closest in𝑚𝑎𝑥_𝑙𝑒𝑛𝑔𝑡ℎ to

the length of the request being considered for demotion. By doing

so, Request Scheduler minimizes interference with longer requests

while still optimizing the processing of shorter requests.

Multi-level queue. Based on the two intuitions mentioned ear-

lier, Request Scheduler implements a multi-level queue, illustrated

in Fig. 5. Each level of the queue corresponds to one runtime, or-

dered by the increasing value of their 𝑚𝑎𝑥_𝑙𝑒𝑛𝑔𝑡ℎ. Within each

level, Request Scheduler maintains a priority queue of instances

Algorithm 1 Request Scheduler Algorithm

Inputs: 𝑄 : The multi-level queue with 𝐾 runtime queues

𝜆: The initial threshold for picking a runtime instance.

𝛼 : The threshold decay coefficient.

𝐿: The maximum peeking level.

𝑅: The arriving request

1: Initialize𝑄𝑒 to ∅, 𝑓 𝑙𝑎𝑔 to 𝑓 𝑎𝑙𝑠𝑒
2: 𝑄𝑒 ← get_sorted_candidate_runtime_indexes(R.length)

3: if 𝑄𝑒 .𝑠𝑖𝑧𝑒 () > 𝐿 then
4: 𝑄𝑒 ← TopK (𝑄𝑒 , 𝐿) ⊲ Only peek the first 𝐿 candidate runtimes.

5: end if
6: for 𝑖 ∈ 𝑄𝑒 do
7: 𝑁 ← 𝑄 [𝑖] .𝑓 𝑟𝑜𝑛𝑡 () .𝑜𝑢𝑡𝑠𝑡𝑎𝑛𝑑𝑖𝑛𝑔_𝑟𝑒𝑞𝑢𝑒𝑠𝑡𝑠
8: 𝑀 ← 𝑄 [𝑖] .𝑓 𝑟𝑜𝑛𝑡 () .𝑚𝑎𝑥_𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦
9: 𝑃 ← 𝑁

𝑀
⊲ Measure the congestion level of the head instance

10: if 𝑃 < 𝜆 then
11: 𝑞 ← 𝑖

12: 𝑓 𝑙𝑎𝑔← 𝑡𝑟𝑢𝑒

13: break

14: else
15: 𝜆 ← 𝜆 ∗ 𝛼 ⊲ Decrease the threshold for a lower runtime

16: end if
17: end for
18: if 𝑓 𝑙𝑎𝑔 == 𝑓 𝑎𝑙𝑠𝑒 then
19: 𝑞 ← 𝑄𝑒 [0] ⊲ Pick the top candidate runtime when all candidates fail to meet

the requirement

20: end if
21: dispatch(R, Q[q]) ⊲ Dispatch the request to the head instance

22: update(Q[q]) ⊲ Update the priority queue of selected runtime

deployed with the corresponding runtime. The instance with the

least ongoing load is always positioned at the head of a queue.

As shown in Algorithm 1, when a request arrives, Request Sched-

uler identifies all candidate runtimes based on the request length

(line 2). It iterates through the candidate runtimes in the increasing

order of their𝑚𝑎𝑥_𝑙𝑒𝑛𝑔𝑡ℎ, looking up for a suitable runtime for the

request. During this process, Request Scheduler computes the con-

gestion level 𝑃 for the head instance of each candidate runtime (line

7-9) and utilizes a threshold 𝜆 with a decay rate of 𝛼 to adaptively

determine the appropriate runtime instance. If the value of 𝑃 for a

candidate runtime instance is less than 𝜆, it is considered suitable

for dispatching the request and the lookup process terminates (line

10-13). Otherwise, Request Scheduler decreases the threshold with

𝛼 (line 15) and continues iterating through the remaining candidate

runtimes. The algorithm is constrained by parameter 𝐿 (lines 3-4),

limiting the number of lookup attempts to control overhead. If no

candidate runtimes meet the conditions, Request Scheduler returns

to the top candidate runtime queue (lines 18-19) and dispatches

the request to the head instance (line 21). After dispatching, the

selected runtime queue is updated accordingly (line 22).

Request scheduling example. Fig. 5 shows a simple example with

four runtimes. Each maintain several running instances. Assume

that 𝐿 is set to 3, 𝜆 is 0.85, and 𝛼 is 0.9. When a request with a length

of 200 arrives, Request Scheduler begins by identifying runtime

candidates (𝑄2,𝑄3, and𝑄4). It looks up at the top runtime candidate

(𝑄2) first and finds out that the congestion level of its head instance

is 54/60, which is greater than 𝜆. Request Scheduler then moves on

to the next candidate (𝑄3) and repeats the process with a smaller 𝜆

(0.85*0.9=0.765). Lastly, its head instance, with a congestion level

of 28/48 and below 0.765, is selected for dispatching.

Time complexity. Given 𝐾 deployed runtimes and 𝑁 running in-

stances, with a maximum loop iteration limit of 𝐿, the time complex-

ity for dispatching is O(𝐿) + O(log(𝑁 /𝐾)). The overhead remains

low, as empirically tested and discussed in §5.1.4.

Arlo: Serving Transformer-based Language Models with Dynamic Input Lengths ICPP ’24, August 12–15, 2024, Gotland, Sweden

4 IMPLEMENTATION
We have implemented the prototype of Arlo on top of Triton Server

[9] with additional ∼2200 lines of code (LoC) in C++. It could sup-

port runtimes compiled by different mainstream compilers, such

as XLA [12], TensorRT [8] and TVM [10]. Moreover, we develop a

discrete event simulator with ∼2000 LoC in Python. It accurately

models the process of periodic resource allocation, instance replace-

ment, request dispatching and batch execution with great care.

Resource scaling.As mentioned in §3.3, Arlo could integrate exist-

ing auto-scaling methods to address the load fluctuation. Therefore,

we adopt a target tracking scaling mechanism as per [1]. A GPU

worker is added when the 98%ile latency of recently executed re-

quests reaches 95% of the SLO. By default, the new worker will load

a runtime instance compiled for the maximum sequence length. For

scaling in, we employ a conservative approach where we release

the least busy instance if the 98%ile latency of recently completed

requests falls below 50% of the SLO in every given time period (60

seconds here). More advanced scaling methods, like using predic-

tion models [16, 22, 46], could also be incorporated.

Instance replacement. Each time Runtime Scheduler resolves a

new allocation, it makes a replacement plan that replaces the mini-

mum number of current runtime instances to adjust the deployment.

The replacement process is carried out in small batches to prevent

excessive traffic pressure on uninvolved instances. A replacement is

low-overhead and usually lasts approximately 1 second. Moreover,

if feasible, hot instances can be pre-loaded or cached in GPU RAM

to avoid the need for swapping in and out [21, 47].

5 EVALUATION
We conduct a comprehensive evaluation of Arlo through both

testbed experiments and large-scale simulations. We summarize

the key takeaways as follows:

• Arlo could greatly reduce the mean latency compared with

existing schemes, while also achieving much lower tail la-

tency in both testbed and simulation scenarios.

• The key components in Arlo distinctly contribute to the

performance uplift and work in concert with others.

• The overhead introduced by components in Arlo is minimal,

ensuring the high efficiency and responsiveness.

Setup. For our testbed experiments, we utilize five GPU servers,

each outfitted with 52 vCPUs, 125GB RAM, and two Nvidia GTX

3090 GPUs. An additional CPU server, equipped with 32 vCPUs and

32GB of RAM, is employed to deploy Arlo. The network bandwidth

between servers is 25Gb/s. All servers operate under Ubuntu 20.04

and CUDA 11.8. For simulations, we use a CPU server with 52

vCPUs and 125GB RAM to emulate the operations of GPU workers.

Models. We evaluate Bert-Base and Bert-Large [17], which are

two representative discriminate LMs of different scales. Their input

is two-dimensional: the first dimension is the batch size, and the

second is the sequence length. Statically-compiled runtimes only

accept inputs with a fixed shape, while dynamically-compiled ones

can handle inputs with variable sequence lengths without padding.

Notably, we set the batch size for all runtimes to 1, a common

practice in live data analytics [30, 37, 38].

Metrics. Our primary focus is on the mean latency and tail (98%ile)

latency of the served requests.

Features ST DT INFaaS Arlo

Best Runtime Compilation Performance ✓ ✗ ✓ ✓

Reduced Padding Size ✗ ✓ ✓ ✓

Multiple Runtime Variant ✗ ✗ ✓ ✓

Input length-aware Resource Allocation ✗ ✗ ✗ ✓

Dynamics-aware Request Dispatching ✗ ✗ ✗ ✓

Table 1: Feature comparison among different schemes
Workloads.We synthesize workload traces based on the Twitter

production trace [11], the only publicly available production trace

that includes text data to our knowledge. As the Twitter trace has a

maximum sentence length of approximately 125, we recalibrate the

sentence length distribution to span up to a maximum length of 512.

We do not consider the tokenization pre-processing overhead, as

modern tokenizers can efficiently tokenize gigabytes of text within

seconds [7]. Since the Twitter trace only provides per-second time

information, we generate the request arrival pattern within each

second using a stable pattern (Poisson process) and a bursty pattern

(Markov-modulated Poisson process), as in [46, 47]. We denote

them as Twitter-Stable and Twitter-Bursty. The SLO is set to 150ms

for Bert-Base and 450ms for Bert-Large.

Parameter settings. In Arlo, the period of Runtime Scheduler is

empirically set to 120 seconds, and 8 runtimes are compiled, as

explained in §3.3. For Request Scheduler, 𝜆 is set to 0.85, 𝛼 to 0.9,

and 𝐿 to 6.

Compared schemes. We compare Arlo with other three schemes

using the state-of-the-art (SOTA) DL compiler TensorRT v8.6.1 [8],

which is specially optimized for dynamic shapes.

• ST: Deploy statically-compiled TensorRT runtimes with a

unified maximum length.

• DT: Deploy dynamically-compiled TensorRT runtimes.

• INFaaS [30]: A SOTA inference system which also utilizes

the multi-variant model runtimes.

ST and DT employ the headroom-based auto-scaling heuristics

from INFaaS for dynamic resource adjustment and use load balanc-

ing for request dispatching due to their uniform runtimes. INFaaS re-

tains its bin-packing dispatching scheme, allocating requests among

instances that satisfy the specified input length requirements. Table

1 compares the features of different schemes.

5.1 Testbed Results
5.1.1 Latency comparison with fixed GPU resource. We conduct

experiments in a 10-GPU testbed for two request streams under

Twitter-Stable traces with given request loads. Fig. 6 shows that ST

exhibits the poorest performance due to padding each request to the

maximum length (512 here). Conversely, DT significantly reduces

overall latency without the need for padding. Despite this, DT still

results in long tail latency due to the suboptimal performance intro-

duced by dynamic compilation, while INFaaS suffers similarly due

to suboptimal instance allocation and naive dispatching. However,

Arlo successfully strikes a balance between padding size and run-

time latency. Specifically, Arlo reduces the mean latency by 70.3%

and 66.7% compared to ST, by 23.7% and 29.2% compared to DT, and

by 24.9% and 39.3% compared to INFaaS, for two different streams.

Moreover, Arlo significantly improves tail latency, reducing it by

up to 89.4%, 25.9%, and 40.1% compared to ST, DT, and INFaaS.

5.1.2 Performance with varying load. The impact of request load

is also evaluated by varying the load level using the Twitter-Stable

ICPP ’24, August 12–15, 2024, Gotland, Sweden Xin Tan et al.

0 20 40 60
Latency (ms)

0.0
0.2
0.4
0.6
0.8
1.0

CD
F

ST
DT
INFaaS
Arlo

(a) The latency CDF of Bert-Base
stream under Twitter-Stable (1.5k
req/s) with 10 GPUs.

0 20 40 60 80 100120
Latency (ms)

0.0
0.2
0.4
0.6
0.8
1.0

CD
F

ST
DT
INFaaS
Arlo

(b) The latency CDF of Bert-Large
stream under Twitter-Stable (1k req/s)
with 10 GPUs.

Figure 6: Testbed results. Latency for Bert-Base and Bert-Large streams under
different loads and scales .

GPU # runtimes Time (s)

50 8 0.156

200 12 0.623

1000 16 2.612

Table 2: The ILP solving time of Runtime Scheduler with varying GPU number,
runtime number and request traffic, averaged over 20 runs.

trace for the Bert-Base stream in our testbed, with the results pre-

sented in Fig. 7. At a low arrival rate (e.g., less than 1k req/s), all

systems exhibit good performance, and their metrics do not differ

significantly. However, with increasing arrival rates, the burden on

the systems and the resultant queue sizes escalate. This effect is

particularly pronounced for ST, where the requirement to process

all requests with full padding leads to elongated queuing times and

deteriorated mean latency. In contrast, Arlo’s efficient resource al-

location and sensible request dispatching markedly diminish queue

times compared with other schemes and enhance overall perfor-

mance, particularly in high-load scenarios.

5.1.3 Consumed GPU number with auto-scaling. Apart from the

fixed GPU scenario, we also experiment with auto-scaling enabled,

using a highly varying-load Twitter-Bursty trace for Bert-Large.

Initially, 5 GPUs are provisioned, and during inference, the GPU

scaling process is activated through the target tracking mechanism

mentioned in §4, allowing for GPUs to scale in and out. Fig. 8 shows

that Arlo utilizes fewer GPUs than others, with a time-weighted

GPU number of 5.49, in contrast to 6.38 for DT, 6.80 for INFaaS, and

8.13 for ST. Despite using fewer GPUs, Arlo achieves a better tail

latency of 330.41, compared to 397.10 for DT, 404.12 for INFaaS and

430.54 for ST. This highlights the benefits of incorporating Arlo with

resource scaling in multi-tenant data centers, as it can handle the

same traffic load for a request stream with fewer compute resources.

5.1.4 The overhead analysis. We systematically evaluate the over-

heads of Runtime Scheduler and Request Scheduler to show neither

of them impact the performance of Arlo.

Overheads in Runtime Scheduler. We measure the ILP solve

time in Runtime Scheduler for various GPU workers, runtimes, and

request traffic. Table 2 shows minimal overhead, with a solution

time of about 2.612 seconds for 1000 GPUs and 16 runtimes. This du-

ration is significantly shorter than the observed request fluctuation

period of at least several minutes in the Twitter trace.

Overheads in Request Scheduler. §3.4 mentions that the the-

oretical overhead of Request Scheduler is minimal, with each dis-

patch operation completing within microseconds in the testbed. To

measure overheads in large-scale deployments, we emulate runtime

1k 2k 3k
Load (req/s)

0

20

40

60

80

M
ea

n
La

te
nc

y (
m

s)

ST
DT
INFaaS
Arlo

Figure 7: The mean latency with vary-
ing request load under Twitter-Stable
with 10 GPUs.

0 250 500 750 1000
Time (s)

4

6

8

10

GP
U

Nu
m

be
r

ST
DT
INFaaS
Arlo

Figure 8: Consumed GPU number for
four schemes under highly varying
load.

200 400 600 800 1000 1200
of Instances

0.2

0.4

0.6

0.8

Ov
er

he
ad

 (m
s)

L=2
L=4
L=8

Figure 9: The overhead of Request Scheduler under different load and scales.
Note that the concurrent request load scales with deployed instances.

instances using CPU cores. With 12 runtimes, we vary the number

of instances from 200 to 1200 and generate between 400 and 2400

concurrent requests. Fig. 9 shows the overhead in processing these

concurrent requests with different 𝐿 (maximum peeking level in

Algorithm 1) under different scales. Even with 1200 instances and

a burst of 2400 requests, it takes only about 0.737 ms. Besides, a

larger 𝐿 could bring a slight increase in overhead, depending on

the request pattern and instance load. We could see that Request

Scheduler can easily handle 150k requests per second, the largest

load setting among other works [30, 32, 46, 47], without being the

bottleneck of Arlo.

5.2 Large-scale Simulations
5.2.1 Simulator calibration and fidelity. To establish its fidelity, we

evaluate our simulator against the prototype in a testbed using

small traces (5-10 min). To account for overheads, such as data

transmission in the network and from CPU to GPU RAM, we add

a fixed overhead of 0.8ms per request in the simulator. Simulation

results closely match the testbed results, with mean and 98%ile

latency differing by only 4.3% and 2.6%, respectively.

5.2.2 Latency comparison with fixed GPU resource. We conduct

large-scale simulations with different GPUs for two request streams.

As depicted in Fig. 10, ST’s performance suffers due to constant

zero-paddings, further exacerbated by the bursty workload. DT

outperforms ST in both mean and tail latency, benefiting from its

flexible, padding-free processing. Despite employing multi-variant

models, INFaaS still underperforms compared to DT, consistent

with testbed results. Arlo surpasses all of them, reducing the mean

latency by 70.3% and 98.1% compared to ST, by 24.1% and 30.7%

compared to DT and by 31.3% and 41.7% compared to INFaaS. The

tail latency is also reduced up to 98.4%, 26.0% and 29.3% respectively.

5.2.3 Deep-Dive. We now dig deeper into how each key compo-

nent in Arlo contributes to overall performance improvements.

Benefit of Runtime Scheduler. Firstly, We vary the number

of runtime types to validate Runtime Scheduler’s choice. Fig. 11

Arlo: Serving Transformer-based Language Models with Dynamic Input Lengths ICPP ’24, August 12–15, 2024, Gotland, Sweden

0 20 40 60 80 100120
Latency (ms)

0.0
0.2
0.4
0.6
0.8
1.0

CD
F

ST
DT
INFaaS
Arlo

(a) The latency CDF of Bert-Base
stream under Twitter-Bursty (8k req/s)
with 90 GPUs.

0 20 40
Latency (ms)

0.0
0.2
0.4
0.6
0.8
1.0

CD
F

660 680

ST
DT
INFaaS
Arlo

(b) The latency CDF of Bert-Large
stream under Twitter-Bursty (25k
req/s) with 300 GPUs.

Figure 10: Simulation results. Latency for Bert-Base and Bert-Large streams
under different loads and scales. We truncate x axis to better display the data.

0 50 100
Latency (ms)

0.0
0.2
0.4
0.6
0.8
1.0

CD
F

900 950

N=2
N=4
N=8
N=16

Figure 11: The latency CDF for𝑁 avail-
able runtimes under a trace with 40
GPUs for Bert-Large stream.

Scheme Mean(ms) Median(ms) P98(ms)

Even 455.19 21.13 3407.02

Global 80.58 8.21 1514.53

Arlo 11.51 8.02 75.04

Table 3: Latency comparison of differ-
ent runtime resource allocation meth-
ods under the same trace with 40
GPUs.

shows the latency CDF with 𝑁 runtimes under a trace with 40

GPUs, where the𝑚𝑎𝑥_𝑙𝑒𝑛𝑔𝑡ℎ of each runtime has a step of 512/𝑁 .

With only 2 runtimes, Arlo fails to serve the streamwith excessively

long queuing times for many requests, while with 4 runtimes, it can

roughly handle the load, albeit with a 2.5% SLO violation. However,

with Runtime Scheduler’s chosen configuration of 8 runtimes, Arlo

causes no SLO violation and achieves a performance comparable

to that with 16 runtimes, with a mean latency of 14.16 (98%ile of

84.04) as opposed to 14.45 (98%ile of 81.74) for 16 runtimes. This

suggests that compiling too few runtimes can lead to suboptimal

performance, as the impact of padding on computation efficiency

remains significant. Additionally, creating an excessive number of

runtimes does not necessarily bring remarkable benefits, as the

performance difference between runtimes compiled with two close

lengths is minimal. Since a larger amount of runtimes also intensify

overhead of solving ILP in Runtime Scheduler (§5.1.4), it is sensible

to decide the number of runtimes depending on the specific latency

pattern of themodel as discussed in §3.3. Next, we compare Runtime

Scheduler’s periodic resource allocation to two offline schemes:

even GPU allocation per runtime and allocation based on global

trace length distribution. Table 3 shows both offline schemes fail to

achieve optimal performancewith dynamicworkloads, highlighting

the need for periodic allocation. Fig. 12 illustrates the GPU numbers

Runtime Scheduler allocates to eight runtimes throughout the trace.

Benefit of Request Scheduler.We also compare Request Sched-

uler (RS) with two conventional dispatching strategies. The first,

Intra-group Load Balance (ILB), dispatches a request to the run-

time requiring the least padding and maintains the load balance

among instances of each runtime. The second, Inter-groups Greedy

(IG), dispatches each request to the least busy instance among all

candidate runtime queues. We replace RS with ILB and IG in Arlo

and compare the overall latency with three different Twitter-Bursty

traces for Bert-Large. The results in Table 4 demonstrate that RS sig-

nificantly lowers tail latency, with reductions of up to 95.6% relative

to ILB and up to 58.7% compared to IG. This marked improvement

10 20 30 40
Time (min)

0

10

20

30

40

GP
U

Nu
m

be
r

64
128
192
256
320
384
448
512

Figure 12: The GPU number allocated
to eight runtimes by Runtime Sched-
uler.

Trace Strategy Mean(ms) P98(ms)

6k req/s

25 GPUs

ILB 1035.90 9555.3

IG 150.21 422.03

RS 77.8 414.58

20k req/s

80 GPUs

ILB 77.83 1024.78

IG 157.09 1183.85

RS 73.61 810.41

250k req/s

1000 GPUs

ILB 76.23 419.04

IG 172.00 990.29

RS 76.09 408.79

Table 4: Latency comparison of dif-
ferent dispatching strategies for Bert-
Large streams at different scales under
Twitter-Bursty traces.

largely stems from RS’s request demotion strategy and its antici-

pation of longer impending requests, which collectively alleviate

potential congestion across different runtime instances. Besides,

RS substantially reduces mean latency by up to 92.5% and 55.8%

compared to ILB and IG, respectively. In the first two traces, RS

consistently outperforms both ILB and IG, which alternate in per-

formance. For the third trace with weak short-term length pattern

fluctuation, RS slightly outperforms ILB but significantly dominates

IG. Here, RS approximates ILB, while IG’s greedy seizing of less

busy runtime instances with larger𝑚𝑎𝑥𝑙𝑒𝑛𝑔𝑡ℎ overloads them.

6 DISCUSSION
Multiple request streams. As discussed in §3.3, Arlo is designed

for resource scheduling tailored to single request stream but can

be extended to handle multiple streams. This can be achieved by

deploying a dedicated Arlo for each stream and employing resource

sharing among them through time-multiplexing scheduling. In this

multi-stream setup, runtime instances for different models could

be co-located on a same GPU, aligning with several extant systems

[22, 47]. Concurrently serving multiple streams can improve sys-

tem utilization compared to single-stream processing. While Arlo is

adaptable to multi-stream scenarios, it also presents unique oppor-

tunities and challenges in resource provisioning and multiplexing

efficiency, offering potential avenues for further development.

Dynamic batch execution. Due to the even worse performance

of compilers for inference involving multiple dynamic axes (e.g.,

dynamic batch size and sequence length for LM inputs)[8], we focus

on resource scheduling for dynamic request length, with a fixed

small batch size. Batch size often trades off between throughput and

per-request latency. A small batch size is conservative and reason-

able in latency-sensitive scenarios, complemented by the excellent

performance and resource utilization afforded by SOTA compilers.

However, ideally, batch size should be dynamic in response to traf-

fic load. This requires advanced support from compilers or more

fine-grained scheduling in both batch size and length dimensions,

which could result in potential overheads from frequent instance

replacements. We leave these as future work.

Large models with multiple GPUs. Arlo is primarily optimized

for serving small models that can be accommodated within a single

GPU. Nonetheless, when faced with models too large to fit in one

GPU, model parallelism becomes a necessity. Such parallelism can

be implemented either through inter-operator or intra-operator

strategies. Regardless of the parallelism technique employed, the

computational load remains dependent on the input shape. Conse-

quently, Arlo can still be effectively leveraged to schedule resources

and manage the serving of these larger models.

ICPP ’24, August 12–15, 2024, Gotland, Sweden Xin Tan et al.

7 RELATEDWORK
DL inference system. Previous work has focused on resource auto-
scaling and scheduling to handle diverse model request streams

and meet their overall demands, which can be categorized into two

strategies: per-stream approaches [16, 32, 46] and global strategies

[21, 47]. Additionally, some studies have explored automatic model

selection and model-less services [22, 30, 38]. Besides, certain sys-

tems have been optimized with customized GPU kernel, specifically

for transformer models [20, 45]. Recent generative LM-specific in-

ference systems [23, 26, 43, 50] have been developed to address

the unique challenges of autoregressive generation, optimizing per-

formance from various angles. In contrast, Arlo takes a distinct

approach, focusing on discriminative LMs and optimizing resource

allocation for specific request streams with varying input lengths,

allowing for seamless integration into most existing systems.

DL compilers. Existing DL compilers [8, 10, 12, 13, 31] provide

excellent support for static shapes. They rely on pre-defined in-

put shapes to determine the tensor shapes, allocate memory, and

optimize kernel performance. Several of them [8, 10, 33] also add

support for dynamic shapes, albeit at the cost of performance. Be-

sides, the dynamic sparsity optimization is also explored [48, 49].

Arlo schedules statically-compiled runtimes and achieves a balance

between input flexibility and performance, enabling it to efficiently

handle length-variable requests without any special dynamic com-

pilation support.

8 CONCLUSION
In this paper, we present Arlo, an inference scheduler specifically de-

signed for request streams with varying input lengths. Arlo realizes

the idea of polymorphing, which involves compiling and scheduling

multiple runtimes that are statically compiled for different lengths.

This aims to strike a balance between zero-padding size and run-

time performance. A multi level queue-based heuristic is employed

to address the online request dynamics and dispatch requests more

intelligently. Our evaluation demonstrates that Arlo outperforms

existing schemes by a significant margin.

ACKNOWLEDGMENTS
This work is supported in part by funding from the Research Grants

Council of Hong Kong (CRF C7004-22G) and from CUHK (4055199).

REFERENCES
[1] Amazon autosacling. https://docs.aws.amazon.com/autoscaling/.

[2] ChatGPT. https://chat.openai.com/.

[3] Dolly. https://www.databricks.com/blog/2023/04/12/dolly-first-open-

commercially-viable-instruction-tuned-llm.

[4] FasterTransformer. https://github.com/NVIDIA/FasterTransformer.

[5] Gurobi Optimization. https://www.gurobi.com/.

[6] HuggingFace. https://huggingface.co/.

[7] HuggingfaceTokenizers. https://github.com/huggingface/tokenizers.

[8] TensorRT. https://developer.nvidia.com/tensorrt.

[9] Triton inference server. https://github.com/triton-inference-server/server.

[10] TVM Unity. https://github.com/apache/tvm/tree/unity.

[11] Twitter streaming traces. https://archive.org/details/twitterstream.

[12] XLA: Accelerated Linear Algebra. https://github.com/openxla/xla.

[13] Tianqi Chen et al. 2018. TVM: An Automated End-to-End Optimizing Compiler

for Deep Learning. In Proc. USENIX OSDI.
[14] Seungbeom Choi et al. 2022. Serving heterogeneous machine learning models

on Multi-GPU servers with Spatio-Temporal sharing. In Proc. USENIX ATC.
[15] Daniel Crankshaw et al. 2017. Clipper: A Low-Latency Online Prediction Serving

System.. In Proc. USENIX NSDI.

[16] Daniel Crankshaw et al. 2020. InferLine: latency-aware provisioning and scaling

for prediction serving pipelines. In Proc. ACM SoCC.
[17] Jacob Devlin et al. 2019. BERT: Pre-training of Deep Bidirectional Transformers

for Language Understanding. In Proc. NAACL-HLT.
[18] Tianyu Ding et al. 2023. The Efficiency Spectrum of Large Language Models: An

Algorithmic Survey. arXiv preprint arXiv:2312.00678 (2023).
[19] Yingtong Dou et al. 2021. User preference-aware fake news detection. In Proc.

ACM SIGIR.
[20] Jiarui Fang et al. 2021. Turbotransformers: an efficient gpu serving system for

transformer models. In Proc. ACM PPoPP.
[21] Arpan Gujarati et al. 2020. Serving dnns like clockwork: Performance predictabil-

ity from the bottom up. arXiv preprint arXiv:2006.02464 (2020).
[22] Jashwant Raj Gunasekaran et al. 2022. Cocktail: AMultidimensional Optimization

for Model Serving in Cloud. In Proc. USENIX NSDI.
[23] Woosuk Kwon et al. 2023. Efficient Memory Management for Large Language

Model Serving with PagedAttention. In Proc. ACM SOSP.
[24] Mike Lewis et al. 2020. BART: Denoising Sequence-to-Sequence Pre-training for

Natural Language Generation, Translation, and Comprehension. In Proc. ACL.
[25] Wenhao Lu et al. 2020. Twinbert: Distilling knowledge to twin-structured com-

pressed bert models for large-scale retrieval. In Proc. ACM CIKM.

[26] Xupeng Miao et al. 2024. SpecInfer: Accelerating Large Language Model Serving

with Tree-based Speculative Inference and Verification. In Proc. ACM ASPLOS.
[27] Christopher Olston et al. 2017. TensorFlow-Serving: Flexible, High-Performance

ML Serving. In Workshop on ML Systems at NIPS.
[28] OpenAI. 2023. GPT-4 Technical Report. arXiv preprint arXiv:2303.08774 (2023).
[29] Colin Raffel et al. 2020. Exploring the limits of transfer learning with a unified

text-to-text transformer. The Journal of Machine Learning Research (2020).

[30] Francisco Romero et al. 2021. INFaaS: Automated model-less inference serving.

In Proc. USENIX ATC.
[31] Nadav Rotem et al. 2018. Glow: Graph lowering compiler techniques for neural

networks. arXiv preprint arXiv:1805.00907 (2018).

[32] Haichen Shen et al. 2019. Nexus: A GPU cluster engine for accelerating DNN-

based video analysis. In Proc. ACM SOSP.
[33] Haichen Shen et al. 2021. Nimble: Efficiently compiling dynamic neural networks

for model inference. In Proc. Machine Learning and Systems.
[34] Shivangi Singhal et al. 2019. Spotfake: A multi-modal framework for fake news

detection. In Proc. IEEE BigMM.

[35] Cheng Tan et al. 2021. Serving DNN models with multi-instance gpus: A case of

the reconfigurable machine scheduling problem. arXiv preprint arXiv:2109.11067
(2021).

[36] Ashish Vaswani et al. 2017. Attention is all you need. In Proc. ACM NIPS.
[37] Guanhua Wang et al. 2021. sensai: Convnets decomposition via class parallelism

for fast inference on live data. In Proc. Machine Learning and Systems.
[38] Yiding Wang et al. 2023. Tabi: An Efficient Multi-Level Inference System for

Large Language Models. In Proc. ACM EuroSys.
[39] Zhiguo Wang et al. 2019. Multi-passage bert: A globally normalized bert model

for open-domain question answering. arXiv preprint arXiv:1908.08167 (2019).

[40] Bingyang Wu et al. 2023. Fast Distributed Inference Serving for Large Language

Models. arXiv preprint arXiv:2305.05920 (2023).
[41] Fei Xu et al. 2022. igniter: Interference-aware gpu resource provisioning for

predictable dnn inference in the cloud. IEEE TPDS (2022).
[42] Shaowei Yao et al. 2022. ReprBERT: Distilling BERT to an Efficient Representation-

Based Relevance Model for E-Commerce. In Proc. ACM SIGKDD.
[43] Gyeong-In Yu et al. 2022. Orca: A distributed serving system for Transformer-

Based generative models. In Proc. USENIX OSDI.
[44] Matei Zaharia et al. 2012. Resilient Distributed Datasets: A Fault-Tolerant Ab-

straction for in-Memory Cluster Computing. In Proc. USENIX NSDI.
[45] Yujia Zhai et al. 2023. Bytetransformer: A high-performance transformer boosted

for variable-length inputs. In Proc. IEEE IPDPS.
[46] Chengliang Zhang et al. 2019. MArk: Exploiting Cloud Services for Cost-Effective,

SLO-Aware Machine Learning Inference Serving.. In Proc. USENIX ATC.
[47] Hong Zhang et al. 2023. SHEPHERD: Serving DNNs in the Wild. In Proc. USENIX

NSDI.
[48] Ningxin Zheng et al. 2022. {SparTA}:{Deep-Learning} Model Sparsity via

{Tensor-with-Sparsity-Attribute}. In Proc. USENIX OSDI.
[49] Ningxin Zheng et al. 2023. SparDA: Accelerating Dynamic Sparse Deep Neural

Networks via Sparse-Dense Transformation. arXiv preprint arXiv:2301.10936
(2023).

[50] Yinmin Zhong et al. 2024. DistServe: Disaggregating Prefill and Decod-

ing for Goodput-optimized Large Language Model Serving. arXiv preprint
arXiv:2401.09670 (2024).

[51] Kai Zhu et al. 2021. DISC: A dynamic shape compiler for machine learning

workloads. In Proc. the 1st Workshop on Machine Learning and Systems.
[52] Liu Zhuang et al. 2021. A Robustly Optimized BERT Pre-training Approach with

Post-training. In Proc. Chinese National Conference on Computational Linguistics.

https://docs.aws.amazon.com/autoscaling/
https://chat.openai.com/
https://www.databricks.com/blog/2023/04/12/dolly-first-open-commercially-viable-instruction-tuned-llm
https://www.databricks.com/blog/2023/04/12/dolly-first-open-commercially-viable-instruction-tuned-llm
https://github.com/NVIDIA/FasterTransformer
https://www.gurobi.com/
https://huggingface.co/
https://github.com/huggingface/tokenizers
https://developer.nvidia.com/tensorrt
https://github.com/triton-inference-server/server
https://github.com/apache/tvm/tree/unity
https://archive.org/details/twitterstream
https://github.com/openxla/xla

	Abstract
	1 Introduction
	2 Background and Motivation
	2.1 Transformer-based language models
	2.2 Handling varying lengths of input sequences
	2.3 Our Solution: Arlo

	3 System Design
	3.1 Design Overview
	3.2 Challenges
	3.3 Runtime Scheduler
	3.4 Request Scheduler

	4 Implementation
	5 Evaluation
	5.1 Testbed Results
	5.2 Large-scale Simulations

	6 Discussion
	7 Related Work
	8 Conclusion
	Acknowledgments
	References

