
NetKernel: Making Network Stack Part of
the Virtualized Infrastructure

Zhixiong Niu
Microsoft Research

Hong Xu
City University of Hong Kong

Peng Cheng
Microsoft Research

Qiang Su
City University of Hong Kong

Tao Wang
New York University

Dongsu Han
KAIST

Keith Winstein
Stanford University

Abstract
This paper presents a system called NetKernel that decou-

ples the network stack from the guest virtual machine and
offers it as an independent module. NetKernel represents a
new paradigm where network stack can be managed as part of
the virtualized infrastructure. It provides important efficiency
benefits: By gaining control and visibility of the network stack,
operator can perform network management more directly and
flexibly, such as multiplexing VMs running different applica-
tions to the same network stack module to save CPU. Users
also benefit from the simplified stack deployment and better
performance. For example mTCP can be deployed without
API change to support nginx natively, and shared memory
networking can be readily enabled to improve performance of
colocated VMs. Testbed evaluation using 100G NICs shows
that NetKernel preserves the performance and scalability of
both kernel and userspace network stacks, and provides the
same isolation as the current architecture.

1 Introduction

Virtual machine (VM) is the predominant virtualization form
in today’s cloud due to its strong isolation guarantees. VMs
allow customers to run applications in a wide variety of operat-
ing systems (OSes) and configurations. VMs are also heavily
used by cloud operators to deploy internal services, such as
load balancing, proxy, VPN, etc., both in a public cloud for
tenants and in a private cloud for various business units of an
organization.

VM based virtualization largely follows traditional OS de-
sign. In particular, the TCP/IP network stack is encapsulated
inside the VM as part of the guest OS as shown in Figure 1(a).
Applications own the network stack, which is separated from
the network infrastructure that operators own; they interface
using the virtual NIC abstraction. This architecture preserves
the familiar hardware and OS abstractions so a vast array of
workloads can be easily moved into the cloud. It also provides
high flexibility to applications to customize the entire network
stack.

We argue that the current division of labor between appli-
cation and network infrastructure is becoming increasingly
inadequate, especially in a private cloud setting. The central
issue is that the network stack is controlled solely by indi-
vidual guest VM; the operator has almost zero visibility or
control. This leads to efficiency problems that manifest in vari-
ous aspects of running the cloud network. Firstly, the operator
is unable to orchestrate resource allocation at the end-points
of the network fabric, resulting in low resource utilization. It
remains difficult today for the operator to meet or define per-
formance SLAs despite much prior work [17,28,35,41,56,57],
as she cannot precisely provision resources just for the net-
work stack or control how the stack consumes these resources.
Further, resources (e.g. CPU) have to be provisioned on a
per-VM basis based on the peak traffic; it is impossible to
coordinate across VM boundaries. This degrades the over-
all utilization of the network stack since in practice traffic to
individual VMs is extremely bursty. Also, many network man-
agement tasks like monitoring, diagnosis, and troubleshooting
have to be performed in an extra layer outside the guest VMs,
which requires significant efforts in design and implemen-
tation [23, 59, 60]. They can be done more efficiently if the
network stack is opened up to the operator.

Even the simple task of maintaining or deploying a net-
work stack suffers from much inefficiency today. Numerous
new stack designs and optimizations ranging from conges-
tion control [14, 19, 50], scalability [34, 42], zerocopy data-
path [4, 34, 55, 64, 65], NIC multiqueue scheduling [63], etc.
have been proposed in our community. Yet the operator, with
sufficient expertise and resources, could not easily deploy
these solutions in a virtualized cloud to improve performance
and reduce overheads because it does not own or control the
network stack. As a result, our community is still finding
ways to deploy DCTCP in the public cloud [20, 31, 36]. On
the other hand, applications without much knowledge of the
underlying network or expertise on networking are forced to
juggle the deployment and maintenance details. For example
if one wants to deploy a new stack like mTCP [34], he faces
a host of problems such as setting up kernel bypass, testing

VM

Network Stack

 vNIC

APP2APP1

Networking API

VM

APP2APP1

Networking API

Network Stack

Network stack module

Provider

Tenant

(a). Existing architecture (b). Decoupling network stack from the guest

Figure 1: Decoupling network stack from the guest, and making it part of the
virtualized infrastructure.

with kernel versions and NIC drivers, and porting applications
to the new APIs. Given the intricacy of implementation and
the velocity of development, it is a daunting task for indi-
vidual users, whether tenants in a public cloud or first-party
services in a private cloud, to maintain the network stack all
by themselves.

To address these limitations, we advocate the separation
of network stack from the guest OS as a new paradigm, in
which the network stack is managed as part of the virtualized
infrastructure by the operator. As the heavy-lifting is taken
care of, applications can just use network stack as a basic
service of the infrastructure and focus on their business logic.

More concretely, as shown in Figure 1(b), we propose to
decouple the VM network stack from the guest OS. We keep
the network APIs such as BSD sockets intact, and use them
(instead of vNIC) as the abstraction boundary between appli-
cation and infrastructure. Each VM is served by an external
network stack module (NSM) that runs the network stack
chosen by the user , e.g., the kernel-bypass stack mTCP or
the improved kernel stack FastSocket [42] . Application data
are handled in the NSM, whose design and implementation
are managed by the operator. Various network stacks can be
provided as different NSMs to ensure applications with di-
verse requirements can work. This new paradigm does not
necessarily enforce a single transport design, or trade off such
flexibility of the existing architecture.

We make three specific contributions in this paper.
• We design and implement NetKernel that demonstrates

our new approach is feasible on existing KVM virtualiza-
tion platforms (§3–§5). NetKernel provides transparent
BSD socket redirection so existing applications can run
directly.

• We present NetKernel’s benefits by showcasing novel
use cases that are difficult to realize today (§6). For exam-
ple, we show that NetKernel enables multiplexing: one
NSM can serve multiple VMs at the same time and save
over 40% CPU cores without degrading performance
using traces from a production cloud.

• We conduct comprehensive testbed evaluation with com-
modity 100G NICs to show that NetKernel achieves the
same scalability and isolation as the current architecture
(§7). For example, the kernel stack NSM achieves 100G

send throughput with 3 cores; the mTCP NSM achieves
979K RPS with 8 cores.

NetKernel’s official website is https://netkernel.net.

2 Motivation

Decoupling the network stack from the guest OS and making
it part of the infrastructure marks a clear departure from the
way networking is provided to VMs nowadays. In this sec-
tion we elaborate why this is a better architectural design by
presenting its benefits and tradeoffs, and contrasting it with
alternative solutions.

2.1 Benefits and Tradeoffs
We highlight the key benefits of our vision with several new
use cases that we experimentally realize with NetKernel in
§6.
Better efficiency in management for the operator. Gaining
control over the network stack, the operator can now perform
network management more efficiently. For example it can
orchestrate the resource provisioning strategies more flexibly:
For mission-critical workloads, it can dedicate CPU resources
to their NSMs to offer performance SLAs in terms of through-
put and RPS (requests per second) guarantees. For elastic
workloads, on the other hand, it can consolidate their VMs
to the same NSM (if they use the same network stack) to
improve its resource utilization. The operator can also di-
rectly implement management functions as an integral part
of user’s network stack, compared to doing them in an extra
layer outside the guest OS.

Use case 1: Multiplexing (§6.1). Utilization of network
stack in VMs is very low most of the time in practice. Using a
real trace from a large cloud, we show that NetKernel enables
multiple VMs to be multiplexed onto one NSM to serve the
aggregated traffic and saves over 40% CPU cores for the
operator without performance degradation.
Deployment and performance gains for users. Making net-
work stack part of the virtualized infrastructure is also benefi-
cial for users in both public and private clouds. Various ker-
nel stack optimizations [42, 64], high-performance userspace
stacks [11, 18, 34, 55], and even designs using advanced hard-
ware [6, 8, 9, 43] can now be deployed and maintained trans-
parently without user involvement or application code change.
For instance, DCTCP can now be deployed across the board
easily in a public cloud. Since the BSD socket is the only
abstraction exposed to the applications, it is now feasible
to adopt new stack designs independent of the guest kernel
or the network API. Our vision also opens up new design
space by allowing the network stack to exploit visibility of
the infrastructure for performance benefits.

Use case 2: Deploying mTCP without API change (§6.2).
We show that NetKernel enables unmodified applications
in the VM to use mTCP [34] in the NSM, and improves

https://netkernel.net

Paradigm Scenario Multiplexing New Stack Deployment
Performance Opt.
with Infrastructure

Guest-based VM 7 Require user effort 7

Host-based Container 3 Limited by host OS 3

Application-based Library OS 7 Require user effort 7

NetKernel VM + NSM 3 3 3

Table 1: Comparison of different network stack architectures depending on where the stack is. The current architecture is a guest-based paradigm where the
network stack is part of the guest OS of a VM.

performance greatly due to mTCP’s kernel bypass design.
mTCP is a userspace stack with new APIs (including modi-
fied epoll/kqueue). During the process, we also find and fix
a compatibility issue between mTCP and our NIC driver, and
save significant maintenance time and effort for users.

Use case 3: Shared memory networking (§6.3). When two
VMs of the same user are colocated on the same host, NetKer-
nel can directly detect this and copy their data via shared mem-
ory to bypass TCP stack processing and improve throughput.
This is difficult to achieve today as VMs have no knowledge
about the underlying infrastructure [40, 66].
Tradeoffs. We are conscientious of the tradeoffs our approach
brings about. For example, due to the removal of vNIC and
redirection from the VM’s own network stack, some network-
ing tools like netfilter are affected. This is acceptable since
most users wish to focus on their applications instead of tun-
ing a network stack. If they wish to gain maximum control
over the network stack they can still use VMs without NetK-
ernel. Also, additional fate-sharing may be introduced by
our approach say when multiple VMs share the same NSM.
We believe this is not serious because cloud users already
have fate-sharing with the vSwitch, hypervisor, and the com-
plete virtual infrastructure. The efficiency benefits of our ap-
proach as demonstrated outweigh the marginal increase of
fate-sharing; the success of cloud computing these years is an-
other strong testament to this tradeoff. NetKernel enforces an-
other level of indirection in order to achieve flexibility which
does not cause performance degradation in most cases as we
will show in §7, and part of it can run on hardware for more
efficiency (see §8). Lastly, one may have security concerns
with using the NSM to handle tenant traffic. Most of the se-
curity protocols such as HTTPS/TLS work at the application
layer and are not affected. One exception is IPSec. Due to
the certificate exchange issue, IPSec does not work in our
approach. However, in practice IPSec is implemented at ded-
icated gateways instead of end-hosts [62]. Thus we believe
the impact is not serious. More discussion on security can be
found in §8.

2.2 Alternative Solutions

We now discuss several alternative architectures depending on
where the network stack resides, and why they are inadequate
compared to NetKernel as summarized in Table 1. Note that
none of them provides all four key benefits as NetKernel does.

Host-based. The first alternative is a host-based paradigm
where the network stack runs on the host machine. This corre-
sponds to the container scenario in the cloud. A container is
essentially a process with namespace isolation: it shares the
host’s network stack in the hypervisor. Therefore containers
can achieve some of NetKernel’s benefits, i.e multiplexing
and performance optimization with infrastructure, since the
operator can access the hypervisor. However, container has
tight coupling with the host OS which makes the stack deploy-
ment difficult. A Windows application in a container cannot
use the Linux-based mTCP, unless the operator ports mTCP to
Windows. With NetKernel no such porting is needed: mTCP
can run in a Linux-based NSM and serve a Windows user
because the only coupling is the BSD socket APIs.

We also note that currently containers have performance
isolation problems [38] and as a result are usually constrained
to be deployed inside VMs in production settings. In fact
we find that all major public clouds [1, 2, 5] require users to
launch containers inside VMs. Thus, our work is centered
around VMs that cover the majority of usage scenarios in a
cloud. NetKernel readily benefits containers running inside
VMs as well.
Application-based. Another alternative is to move the net-
work stack upwards by taking an application-based paradigm.
A representative scenario is library OS including uniker-
nels [22, 44] and microkernels [26], where many OS services
including the network stack are packaged as libraries and com-
piled with the application in userspace. Similar to the guest-
based paradigm, users have to deploy the network stack by
themselves though the I/O performance can be improved with
unikernels [46] and microkernels. In addition, application-
based paradigm is a clean-slate approach and requires radical
changes to both the virtualization software and user appli-
cations. NetKernel can flexibly decouple the network stack
from the guest without re-writing existing applications or
hypervisor.

3 Design Philosophy

NetKernel imposes three fundamental design questions
around the separation of network stack from the guest OS:

1. How to transparently redirect socket API calls without
changing applications?

2. How to transmit the socket semantics between the VM
and NSM whose implementation of the stack may vary?

3. How to ensure high performance with semantics trans-
mission (e.g., 100 Gbps)?

These questions touch upon a largely uncharted territory in
the design space. Thus our main objective in this paper is to
demonstrate feasibility of our approach on existing virtualiza-
tion platforms and showcase its potential. Performance and
overhead are not our primary goals. It is also not our goal to
improve any particular network stack design.

In answering the questions above, NetKernel’s design has
the following highlights.
Transparent socket API redirection. NetKernel needs to
redirect BSD socket calls to the NSM instead of the tenant
network stack. This is done by inserting into the guest a
library called GuestLib. The GuestLib provides a new socket
type called NetKernel socket with a complete implementation
of BSD socket APIs. It replaces all TCP and UDP sockets
when they are created with NetKernel sockets, effectively
redirecting them without changing applications.
A lightweight semantics channel. Different network stacks
may run as different NSMs, so NetKernel needs to ensure
socket semantics from the VM work properly with the ac-
tual NSM stack implementation. For this purpose NetKernel
builds a lightweight socket semantics channel between VM
and its NSM. The channel relies on small fix-sized queue
elements as intermediate representations of socket semantics:
each socket API call in the VM is encapsulated into a queue
element and sent to the NSM, who would effectively trans-
late the queue element into the corresponding API call of its
network stack.
Scalable lockless queues. As NIC speed in cloud evolves
from 40G/50G to 100G [24] and higher, the NSM has to
use multiple cores for the network stack to achieve line rate.
NetKernel thus adopts scalable lockless queues to ensure VM-
NSM socket semantics transmission is not a bottleneck. Each
core services a dedicated set of queues so performance is
scalable with number of cores. More importantly, each queue
is memory shared with a software switch, so it can be lockless
with only a single producer and a single consumer to avoid
expensive lock contention [33, 34, 42].

Switching the queue elements offers important benefits
beyond lockless queues. It facilitates a flexible mapping be-
tween VM and NSM: a NSM can support multiple VMs
without adding more queues compared to binding the queues
directly between VM and NSM. In addition, it allows dy-
namic resource management: cores can be readily added to
or removed from a NSM, and a user can switch her NSM
on the fly. The CPU overhead of software switching can be
addressed by hardware offloading [24, 27], which we discuss
in §7.4 in more detail.
VM based NSM. Lastly we discuss an important design
choice regarding the NSM. The NSM can take various forms.
It may be a full-fledged VM with a monolithic kernel. Or
it can be a container or module running on the hypervisor,
which is appealing because it consumes less resource and

Tenant VM

GuestLib
(NetKernel Socket)

pNICs

NetKernel
device

Huge
pages

Huge
pages

 queues

stripped area indicates a shared memory region

mmap

BSD Socket

APP2APP1

NSM

ServiceLib

Huge
pages

Network Stack

NetKernel CoreEngine Virtual Switch or Embedded
Switch (SR-IOV)

vNIC

 queues

Figure 2: NetKernel design overview.

offers better performance. Yet it entails porting a complete
TCP/IP stack to the hypervisor. Achieving memory isolation
among containers or modules are also difficult [52]. More
importantly, it introduces another coupling between the net-
work stack and the hypervisor, which defeats the purpose
of NetKernel. Thus we choose to use a VM for NSM. VM
based NSM readily supports existing kernel and userspace
stacks from various OSes. VMs also provide good isolation
and we can dedicate resources to a NSM to guarantee per-
formance. VM based NSM is the most flexible: we can run
stacks independent of the hypervisor.

4 Design

Figure 2 depicts NetKernel’s architecture. The BSD socket
APIs are transparently redirected to a complete NetKernel
socket implementation in GuestLib in the guest kernel (§4.1).
The GuestLib can be deployed as a kernel patch and is the
only change we make to the user VM. Network stacks are
implemented by the operator on the same host as Network
Stack Modules (NSMs), which are individual VMs in our
current design. Inside the NSM, a ServiceLib interfaces with
the network stack. The NSM connects to the vSwitch, be it a
software or a hardware switch, and then the pNICs. Thus our
design also supports SR-IOV.

All socket operations and their results are translated into
NetKernel Queue Elements (NQEs) by GuestLib and Ser-
viceLib (§4.2). For NQE transmission, GuestLib and Ser-
viceLib each has a NetKernel device, or NK device in the
following, consisting of one or more sets of lockless queues.
Each queue set has a send queue and receive queue for oper-
ations with data transfer (e.g. send()), and a job queue and
completion queue for control operations without data transfer
(e.g. setsockopt()). Each NK device connects to a software
switch called CoreEngine, which runs on the hypervisor and
performs actual NQE switching (§4.3). The CoreEngine is
also responsible for various management tasks such as set-
ting up the NK devices, ensuring isolation among VMs, etc.
(§4.4) A unique set of hugepages are shared between each
VM-NSM tuple for application data exchange. A NK device
also maintains a hugepage region that is memory mapped
to the corresponding application hugepages as in Figure 2

(§4.5). Note that as the socket API that copies data is pre-
served, misbehaving applications cannot pose security risks
on NetKernel, this is the same as original kernel design. We
discuss additional security implications of NetKernel in §8.

For ease of presentation, we assume both the user VM and
NSM run Linux, and the NSM uses the kernel stack.

4.1 Transparent Socket API Redirection
We first describe how NetKernel’s GuestLib interacts with
applications to support BSD socket semantics transparently.
Kernel space API redirection. There are essentially two ap-
proaches to redirect BSD socket calls to NSM, each with its
unique tradeoffs. One is to implement it in userspace using
LD_PRELOAD for example. The advantages are: (1) It is effi-
cient without syscall overheads and performance is high [34];
(2) It is easy to deploy without kernel modification. However,
this implies each application needs to have its own redirec-
tion service, which limits the usage scenarios. Another way
is kernel space redirection, which naturally supports multiple
applications without IPC. The flip side is that performance
may be lower due to context switching and syscall overheads.

We opt for kernel space API redirection to support most of
the usage scenarios, and leave userspace redirection as future
work. GuestLib is a kernel module deployed in the guest.
This is feasible by distributing images of para-virtualizated
guest kernels to users, a practice operators are already doing
nowadays. Note that kernel space redirection follows the
asynchronous syscall model [61] to get better performance.
NetKernel socket API. GuestLib creates a new type
of sockets—SOCK_NETKERNEL, in addition to TCP
(SOCK_STREAM) and UDP (SOCK_DGRAM) sockets. It
registers a complete implementation of BSD socket APIs to
the guest kernel. When the guest kernel receives a socket()
call to create a new TCP socket say, it replaces the socket
type with SOCK_NETKERNEL, creates a new NetKernel socket,
and initializes the socket data structure with function pointers
to NetKernel socket implementation in GuestLib. The
sendmsg() for example now points to nk_sendmsg() in
GuestLib instead of tcp_sendmsg().

4.2 A Lightweight Semantics Channel
Socket semantics are contained in NQEs and carried around
between GuestLib and ServiceLib via their respective NK
devices.

1B
op

type

1B

VM ID

1B
Queue
set ID

4B
VM

socket ID

8B

op_data

8B

data pointer

4B

size

5B

rsved

Figure 3: Structure of a NQE. Here socket ID denotes a pointer to the
sock struct in the user VM or NSM, and is used for NQE transmission
with VM ID and queue set ID in §4.3; op_data contains data necessary for
socket operations, such as ip address for bind; data pointer is a pointer
to application data in hugepages; and size is the size of pointed data in
hugepages.

Tenant VM

GuestLib
nk_bind(), nk_sendmsg(), …

Huge
pages

BSD Socket API
socket(), send(), …

NQE

(2) translate to NQE

(1) NetKernel socket

(3) response NQE

(4) return to app

NetKernel
device

Queues

Figure 4: NetKernel socket implementation in GuestLib redirects socket API
calls. GuestLib translates socket API calls to NQEs and ServiceLib translates
results into NQEs as well (not shown here).

NQE and socket semantics translation. Figure 3 shows the
structure of a NQE with a fixed size of 32 bytes. Transla-
tion happens at both ends of the semantics channel: GuestLib
encapsulates the socket semantics into NQEs and sends to
ServiceLib, which then invokes the corresponding API of its
network stack to execute the operation; the execution result is
again turned into a NQE in ServiceLib first, and then trans-
lated by GuestLib back into the corresponding response of
socket APIs.

For example in Figure 4, to handle the socket() call in
the VM, GuestLib creates a new NQE with the operation
type and information such as its VM ID for NQE transmis-
sion. The NQE is transmitted by GuestLib’s NK device. The
socket() call now blocks until a response NQE is received.
After receiving the NQE, ServiceLib parses the NQE from
its NK device, invokes the socket() of the kernel stack to
create a new TCP socket, prepares a new NQE with the ex-
ecution result, and enqueues it to the NK device. GuestLib
then receives and parses the response NQE and wakes up the
socket() call. The socket() call now returns to application
with the NetKernel socket file descriptor (fd) if a TCP socket
is created at the NSM, or with an error number consistent with
the execution result of the NSM.

We defer the handling of application data to §4.5.
Queues for NQE transmission. NQEs are transmitted via
one or more sets of queues in the NK devices. A queue set has
four independent queues: a job queue for NQEs representing
socket operations issued by the VM without data transfer, a
completion queue for NQEs with execution results of control
operations from the NSM, a send queue for NQEs represent-
ing operations issued by VM with data transfer; and a receive
queue for NQEs representing events of newly received data
from NSM. Queues of different NK devices have strict corre-
spondence: the NQE for socket() for example is put in the
job queue of GuestLib’s NK device, and sent to the job queue
of ServiceLib’s NK device.

We now present the working of I/O event notification mech-
anisms like epoll with the receive queue. Figure 5 depicts
the details. Suppose an application issues epoll_wait()
to monitor some sockets. Since all sockets are now NetK-
ernel sockets, the nk_poll() is invoked by epoll_wait()
and checks the receive queue to see if there is any NQE

Tenant VM

CoreEngine wakes
up the device

epoll_wait()

GuestLib

nk_poll()

recv()

nk_recvmsg()

Receive
queue

(1)

(2)

(5)

ServiceLib

Network Stack

(3)
data received

(4) NQE

(6)

(7)

NSM

Send
queue

Completion
queue

NetKernel
devices

Job
queue

Receive
queue

Send
queue

Completion
queue

Job
queue

Figure 5: The socket semantics channel with epoll as an example. GuestLib
and ServiceLib translate semantics to NQEs, and queues in the NK devices
perform NQE transmission. Job and completion queues are for socket opera-
tions and execution results, send queues are for socket operations with data,
and receive queues are for events of newly received data. Application data
processing is not shown.

for this socket. If yes, this means there are new data re-
ceived, epoll_wait() then returns and the application issues
a recv() call with the NetKernel socket fd of the event. This
points to nk_recvmsg() which parses the NQE from receive
queue for the data pointer, copies data from the hugepage
directly to the userspace, and returns.

If nk_poll() does not find any relevant NQE, it sleeps
until CoreEngine wakes up the NK device when new NQEs
arrive to its receive queue. GuestLib then parses the NQEs to
check if any sockets are in the epoll instances, and wakes up
the epoll to return to application. An epoll_wait()can also
be returned by a timeout.

4.3 NQE Switching across Lockless Queues
We now elaborate how NQEs are switched by CoreEngine
and how the NK devices interact with CoreEngine.
Scalable queue design. The queues in a NK device is
scalable: there are one dedicated queue set per vCPU for
both VM and NSM, so NetKernel performance scales with
CPU resources. Each queue set is shared memory with the
CoreEngine, essentially making it a single producer single
consumer queue without lock contention. VM and NSM may
have different numbers of queue sets.
Switching NQEs in CoreEngine. NQEs are load balanced
across multiple queue sets with the CoreEngine acting as a
switch. CoreEngine maintains a connection table as shown in
Figure 6, which maps the tuple 〈VM ID, queue set ID, socket
ID〉 to the corresponding 〈NSM ID, queue set ID, socket ID〉
and vice versa. Here a socket ID corresponds to a pointer to
the sock struct in the user VM or NSM. We call them VM
tuple and NSM tuple respectively. NQEs only contain VM
tuple information.

Using the running example of the socket() call, we can
see how CoreEngine uses the connection table. The process is
also shown in Figure 6. (1) When CoreEngine processes the
socket NQE from VM1’s queue set 1, it realizes this is a new
connection, and inserts a new entry to the table with the VM

VM1

GuestLib

NK device

CoreEngine

connection table

queue set 1

ServiceLib

NSM 1

<VM ID, queue set ID, socket ID> <NSM ID, queue set ID, socket ID>
<01, 01, 2A 3E 97 C3> <01, 01, C8 5D 42 6F>
<01, 01, FC 68 4E 02> <01, 02, ?>

…

queue set 2queue set 1

Figure 6: NQE switching with CoreEngine.

tuple from the NQE. (2) It checks which NSM should handle
it,1 performs hashing based on the three tuple to determine
which queue set (say 2) to switch to if there are multiple queue
sets, and copies the NQE to the NSM’s corresponding job
queue. CoreEngine adds the NSM ID and queue set ID to
the new entry. (3) ServiceLib gets the NQE and copies the
VM tuple to its response NQE, and adds the newly created
connection ID in the NSM to the op_data field of response
NQE. (4) CoreEngine parses the response NQE, matches
the VM tuple to the entry and adds the NSM socket ID to
complete it, and copies the response NQE to the completion
queue 1 of VM1 as instructed in the NQE. Later NQEs for
this VM connection can be processed by the correct NSM
connection and vice versa. ServiceLib pins its connections to
its vCPUs and queue sets, so processing the NQE and sending
the response NQE are done on the same CPU.

The connection table allows flexible multiplexing and de-
multiplexing with the socket ID information. For example
one NSM can serve multiple VMs using different sockets.
CoreEngine polls all queue sets to maximize performance.

4.4 Management with CoreEngine
CoreEngine acts as the control plane of NetKernel and carries
out many control tasks beyond NQE switching.
NK device and queue setup. CoreEngine allocates shared
memory for the queue sets and sets up the NK devices accord-
ingly when a VM or NSM starts up, and de-allocates when
they shut down. Queues can also be dynamically added or
removed with the number of vCPUs.
Isolation. CoreEngine sits in an ideal position to carry out
isolation among VMs. In our design CoreEngine polls each
queue set in a round-robin fashion to ensure the basic fair
sharing. Operator can implement other isolation mechanisms
to rate limit a VM in terms of bandwidth or the number of
NQEs (i.e. operations) per second, which we show in §7.3.
Note that CoreEngine isolation happens for egress; ingress
isolation at the NSM is more challenging and may have to
use physical NIC queues [21].
Busy-polling. The busy-polling design of CoreEngine re-
quires a dedicated core per machine which is an inherent

1A user VM to NSM mapping is determined either by the users/operator
offline or some load balancing scheme dynamically by CoreEngine.

overhead of our design. We resort to this simple design as
we focus on showing feasibility and potential of NetKernel
in this work, and prior work also used dedicated cores for
software polling [40]. One can explore hardware offloading
using FPGAs for example to eliminate this overhead [23, 24].

4.5 Processing Application Data
We now discuss the last missing piece of NetKernel design:
how application data are actually processed in the system.
Sending data. Data is transmitted by hugepages shared be-
tween the VM and NSM. Their NK devices maintain a
hugepage region that is mmaped to the application hugepages.
For sending data with send(), GuestLib copies data from
userspace directly to the hugepage, and adds a data pointer
to the send NQE. It also increases the send buffer usage for
this socket similar to the send buffer size maintained by the
kernel. The send() now returns to application. ServiceLib
invokes tcp_sendmsg() provided by the kernel stack upon
receiving the send NQE. Data are obtained from hugepages,
processed by the network stack, and sent to the vNIC. A new
NQE is generated with the result of send by the NSM and
sent to GuestLib, who then decreases the send buffer usage.
Receiving data. Now for receiving packets in the NSM, a
normal network stack would send received data to userspace
applications. In order to send received data to the user VM,
ServiceLib then copies the data chunk to hugepages and create
a new NQE to the receive queue, which is then sent to the VM.
It also increases the receive buffer usage for this connection,
similar to the send buffer maintained by GuestLib described
above. The rest of the receive process is already explained
in §4.2. Note that application uses recv() to copy data from
hugepages to their own buffer.
ServiceLib. As discussed ServiceLib deals with much of data
processing at the NSM side so the network stack works in
concert with the rest of NetKernel. One thing to note is that
unlike the kernel space GuestLib, ServiceLib should live in the
same space as the network stack to ensure best performance.
We have focused on a Linux kernel stack with a kernel space
ServiceLib here. The design of a userspace ServiceLib for a
userspace stack is similar in principle. ServiceLib busy-polls
its queues for maximum performance.

4.6 Optimization
We present several optimizations employed in NetKernel.
Pipelining. NetKernel applies pipelining between VM and
NSM for performance. For example on the VM side, a send()
returns immediately after putting data to the hugepages, in-
stead of waiting for the actual send result from the NSM.
Similarly the NSM would handle accept() by accepting a
new connection and returning immediately, before the cor-
responding NQE is sent to GuestLib and then application to
process. Doing so does not break BSD socket semantics. Take

send() for example. A successful send() does not guarantee
delivery of the message [13]; it merely indicates the message
is written to socket buffer successfully. In NetKernel a suc-
cessful send() indicates the message is written to buffer in
the hugepages successfully. As explained in §4.5 the NSM
sends the result of send back to the VM to indicate if the
socket buffer usage can be decreased or not.
Interrupt-driven polling. We adopt an interrupt-driven
polling design for NQE event notification to GuestLib’s NK
device. This is to reduce the overhead of GuestLib and user
VM. When an application is waiting for events e.g. the re-
sult of the socket() call or receive data for epoll, the device
will first poll its completion queue and receive queue. If no
new NQE comes after a short time period (20µs in our experi-
ments), the device sends an interrupt to CoreEngine, notifying
that it is expecting NQE, and stops polling. CoreEngine later
wakes up the device, which goes back to polling mode to
process new NQEs from the completion queue. This is sim-
ilar in spirit to busy-polling sockets in Linux kernel [3, 10].
Interrupt-driven polling presents a favorable trade-off between
overhead and performance compared to pure polling based
or interrupt based design. It saves precious CPU cycles when
load is low and ensures the overhead of NetKernel is very
small to the user VM. Performance on the other hand is com-
petent since the response NQE is received within the polling
period in most cases for blocking calls, and when the load is
high polling automatically drives the notification mechanism.
As explained before CoreEngine and ServiceLib use busy
polling to maximize performance.
Batching. Batching is used in many parts of NetKernel for
better throughput. CoreEngine uses batching whenever pos-
sible for polling from and copying into the queues. The NK
devices also receive NQEs in a batch.

5 Implementation

Our implementation is based on QEMU KVM 2.5.0 and Linux
kernel 4.9 for both host and guest, with over 11K LoC.
GuestLib. We add the SOCK_NETKERNEL socket to the kernel
(net.h), and modify socket.c to rewrite the SOCK_STREAM
to SOCK_NETKERNEL during socket creation. We imple-
ment GuestLib as a kernel module with two components:
Guestlib_core and nk_driver. Guestlib_core is mainly for
Netkernel sockets and NQE translation, and nk_driver is
for NQE communications via queues. Guestlib_core and
nk_driver communicate with each other using function calls.
ServiceLib and NSM. We also implement ServiceLib as two
components: Servicelib_core and nk_driver. Servicelib_core
translates NQEs to network stack APIs, and the nk_driver is
identical to the one in GuestLib. For the kernel stack NSM,
Servicelib_core calls the kernel APIs directly to handle socket
operations without entering userspace. We create an indepen-
dent kthread to poll the job queue and send queue for NQEs
to avoid kernel stuck. Some BSD socket APIs can not be

invoked in kernel space directly. We use EXPORT_SYMBOLS to
export the functions for ServiceLib. Meanwhile, the boundary
check between kernel space and userspace is disabled. We
use per-core epoll_wait() to obtain incoming events from
the kernel stack.

We also port mTCP [12] as a userspace stack NSM. It
uses DPDK 17.08 for packet I/O. For simplicity, we main-
tain its two-thread model and per-core data structure. We
implement the NSM in mTCP’s application thread at each
core. The ServiceLib is essentially an mTCP application:
once receiving a NQE from its send queue, it accesses data
from the shared hugepage by the data pointer in the NQE
and sends it using mTCP with DPDK. For receiving, the
received data is copied into the hugepage, and ServiceLib
encapsulates the data pointer into a NQE of the receive
queue. The per-core application thread (1) translates NQEs
polled from the NK device to mTCP socket APIs, and (2)
responds NQEs to the tenant VM based on the network events
collected by mtcp_epoll_wait(). Since mTCP works in
non-blocking mode for performance, we buffer send opera-
tions at each core and set the timeout parameter to 1ms in
mtcp_epoll_wait() to avoid starvation when polling NQE
requests.
Queues and hugepages. The hugepages are implemented
based on QEMU’s IVSHMEM. The page size is 2 MB and
we use 128 pages. The queues are ring buffers implemented
as much smaller IVSHMEM devices. Together they form a
NK device which is a virtual device to the VM and NSM.
CoreEngine. The CoreEngine is a daemon with two threads
on the KVM hypervisor. One thread listens on a pre-defined
port to handle NK device (de)allocation requests, namely 8-
byte network messages of the tuples 〈ce_op, ce_data〉. When
a VM (or NSM) starts (or terminates), it sends a request to
CoreEngine for registering (or deregistering) a NK device. If
the request is successfully handled, CoreEngine responds in
the same message format. Otherwise, an error code is returned.
The other thread polls NQEs in batches from all NK devices
and switches them as described in §4.3.

6 Evaluation: New Use Cases

In the first part of evaluation, we present some new use cases
that are realized using our prototype to demonstrate the poten-
tial of NetKernel. Details of the performance and overhead
microbenchmarks are presented in §7.

6.1 Multiplexing
Here we describe a new use case where the operator can
optimize resource utilization by serving multiple bursty VMs
with one NSM.

To make things concrete we draw upon a user traffic trace
collected from a large cloud in September 2018. The trace
contains statistics of tens of thousands of application gateways

0 10 20 30 40 50 60
Time (min)

0

20

40

60

80

100

120

N
or

m
al

iz
ed

R
P

S
Pe

rfo
rm

an
ce

AG1 AG2 AG3

Figure 7: Traffic of three most uti-
lized application gateways (AGs) in
our trace. They are deployed as VMs.

0 10 20 30 40 50 60
Time (min)

0

2

4

6

8

10

12

14

N
or

m
al

iz
ed

R
P

S
pe

rc
or

e

Baseline Netkernel

Figure 8: Per-core RPS comparison.
Baseline uses 12 cores for 3 AGs,
while NetKernel with multiplexing
only needs 9 cores.

(AGs) that handle tenant (web) traffic in order to provide load
balancing, proxy, and other services. The AGs are internally
deployed as VMs by the operator. We find that the AG’s
average utilization is very low most of the time. Figure 7
shows normalized traffic processed by three most utilized AGs
(in the same datacenter) in our trace with 1-minute intervals
for a 1-hour period. We can clearly see the bursty nature of the
traffic. Yet it is very difficult to consolidate their workloads
in current cloud because they serve different customers using
different configurations (proxy settings, LB strategies, etc.),
and there is no way to separate the application logic with the
underlying network stack. The operator has to deploy AGs
as independent VMs, reserve resources for them, and charge
customers accordingly.

NetKernel enables multiplexing across AGs running dis-
tinct services, since the common TCP stack processing is now
separated into the NSM. Using the three most utilized AGs
which have the least benefit from multiplexing as an example,
without NetKernel each needs 4 cores in our testbed to handle
their peak traffic, and the total per-core requests per second
(RPS) of the system is depicted in Figure 8 as Baseline. Then
in NetKernel, we deploy 3 VMs each with 1 core to replay
the trace as the AGs, and use a kernel stack NSM with 5 cores
which is sufficient to handle the aggregate traffic. Totally 9
cores are used including CoreEngine, representing a saving
of 3 cores in this case. The per core RPS is thus improved
by 33% as shown in Figure 8. Each AG has exactly the same
RPS performance without any packet loss.

In the general case multiplexing these AGs brings even
more gains since their peak traffic is far from their capacity.
For ease of exposition we assume the operator reserves 2
cores for each AG. A 32-core machine can host 16 AGs. If
we use NetKernel with 1 core for CoreEngine and a 2-core
NSM, we find that we can always pack 29 AGs each with 1
core for the application logic as depicted in Table 2, and the
maximum utilization of the NSM would be well under 60%
in the worst case for ∼97% of the AGs in the trace. Thus
one machine can run 13 or 81.25% more AGs now, which
means the operator can save over 40% cores for supporting
this workload. This implies salient financial gains for the
operator: according to [24] one physical core has a maximum
potential revenue of $900/yr.

Total Cores NSM CoreEngine AGs
Baseline 32 0 0 16
NetKernel 32 2 1 29

Table 2: NetKernel multiplexes more AGs and saves over 40% cores.

6.2 Deploying mTCP without API Change
We now focus on use cases of deployment and performance
benefits for users.

Most userspace stacks use their own APIs and require appli-
cations to be ported [4, 11, 34]. For example, in mTCP an ap-
plication has to use mtcp_epoll_wait() to fetch events [34].
The semantics of these APIs are also different from socket
APIs [34]. These factors lead to expensive code changes and
make it difficult to use the stack in practice. The lack of
modern APIs also makes it difficult to support complex web
servers like nginx. mTCP also lacks some modern kernel
TCP features such as advanced loss recovery, small queue,
DSACK, etc.

With NetKernel, applications can directly take advantage
of userspace stacks without any code change. To show this,
we deploy unmodified nginx in the VM with the mTCP NSM
we implement, and benchmark its performance using ab. Both
VM and NSM use the same number of vCPUs. Table 3 depicts
that mTCP provides 1.4x–1.9x improvements over the kernel
stack NSM across various vCPU setting.

vCPUs 1 2 4
Kernel stack NSM 71.9K 133.6K 200.1K
mTCP NSM 98.1K 183.6K 379.2K

Table 3: Performance of nginx using ab with 64B html files, a concurrency
of 100, and 10M requests in total. The NSM and VM use the same number
of vCPUs.

NetKernel also mitigates the maintenance efforts required
from users. We provide another piece of evidence with mTCP
here. When compiling DPDK required by mTCP on our
testbed, we could not set the RSS (receive side scaling) key
properly to the mlx5_core driver for our NIC and mTCP
performance was very low. After discussing with mTCP de-
velopers, we were able to attribute this to the asymmetric RSS
key used in the NIC, and fixed the problem by modifying the
code in the DPDK mlx5 driver. We have submitted our fix to
mTCP community. Without NetKernel users would have to
deal with such technical complication by themselves. Now
they are taken care of transparently, saving much time and
effort for many users.

6.3 Shared Memory Networking
Inter-VM communication is well-known to suffer from high
overheads [58]. A VM’s traffic goes through its network stack,
then the vNIC and the vSwitch, even when the other VM is on
the same host. It is difficult for users and operator to optimize
for this case, because a VM has no information about where

64 128 256 512 1024 2048 4096 8192

Message Size (B)

0

20

40

60

80

100

120

T
h
ro

u
g
h
p
u
t

(G
b
p
s)

Baseline

NetKernel w. shared mem NSM

Figure 9: Using shared memory NSM for NetKernel for traffic between two
colocated VMs of the same user. NetKernel uses 2 cores for each VM, 2
cores for the NSM, and 1 core for CoreEngine. Baseline uses 2 core for the
sending VM, 5 cores for receiving VM, and runs TCP Cubic. Both schemes
use 8 TCP connections.

the other endpoint is. The hypervisor cannot help either as the
data has already been processed by the TCP/IP stack. With
NetKernel the NSM is part of the infrastructure, the operator
can easily detect the on-host traffic and use shared memory
to copy data for the two VMs. We build a prototype NSM
to demonstrate this idea: When a socket pair is detected as
an internal socket pair by the GuestLib, and the two VMs
belong to the same user, a shared memory NSM takes over
their traffic. This NSM simply copies the message chunks
between their hugepages and bypasses the TCP stack process-
ing. As shown in Figure 9, with 7 cores in total, NetKernel
with shared memory NSM can achieve 100Gbps, which is
∼2x of Baseline using TCP Cubic and same number of cores.

7 Evaluation: Microbenchmarks

We now present microbenchmarks of crucial aspects of NetK-
ernel: performance and multicore scalability in §7.2; isolation
of multiple VMs in §7.3; and system overhead in §7.4.

7.1 Setup

Each of our testbed servers has two Xeon E5-2698 v3 16-core
CPUs clocked at 2.3 GHz, 256 GB memory at 2133 MHz,
and a Mellanox ConnectX-4 single port 100G NIC. Hyper-
threading is disabled. We compare to the status quo where an
application uses the kernel TCP stack in its VM, referred to
as Baseline in the following. We designate NetKernel to refer
to the common setting where we use the kernel stack NSM
in our implementation. When mTCP NSM is used we explic-
itly mark the setting in the results. The same TCP parameter
settings are used for both systems. The NSM uses the same
number of vCPUs as Baseline since CPU is used almost en-
tirely by the network stack in Baseline. NetKernel allocates 1
more vCPU for the VM to run the application and ServiceLib
throughout the evaluation. Its CPU utilization is usually low:
we report the actual CPU overheads of NetKernel in §7.4. The
throughput results are measured by iperf and the rps results
are measured by ab, unless stated otherwise. The throughput
results are averaged over 5 runs each lasting 30 seconds.

1 2 3 4 5 6 7 8
of vCPUs

0

20

40

60

80

100

120

T
h
ro

u
g
h
p
u
t

(G
b
p
s)

Baseline

NetKernel

Figure 10: Send throughput of 8 TCP streams
with varying numbers of vCPUs, 8KB messages.

1 2 3 4 5 6 7 8
of vCPUs

0

20

40

60

80

100

120

T
h
ro

u
g
h
p
u
t

(G
b
p
s)

Baseline

NetKernel

Figure 11: Recv throughput of 8 TCP streams
with varying numbers of vCPUs, 8KB messages.

1 2 3 4 5 6 7 8
of vCPUs

0

200

400

600

800

1000

1200

R
e
q
u
e
st

s
/

se
c

(x
 1
0
3

)

Baseline

NetKernel

NetKernel w. mTCP NSM

mTCP

Figure 12: Performance of TCP short connec-
tions with multiple vCPUs. Message size 64B.

7.2 Performance and Scalability

We now look at NetKernel’s basic performance.
NQE switching and memory copy. NQEs are transmitted
by CoreEngine as a software switch. It is important that
CoreEngine offers enough horsepower to ensure performance
at 100G and higher. We measure CoreEngine throughput
which is defined as the number of 32-byte NQEs copied from
GuestLib’s NK device queues to the ServiceLib’s NK device
queues. Table 4 shows the results with varying batch sizes.
CoreEngine achieves ∼8M NQEs/s without batching. With a
small batch size of 4 or 8 throughput reaches 41.4M NQEs/s
and 65.9M NQEs/s, respectively, which is sufficient for most
applications.

We also measure the memory copy throughput between
GuestLib and ServiceLib via hugepages. A memory copy in
this experiment includes the following: (1) application in the
VM issues a send() with data; (2) GuestLib gets a pointer
from the hugepages; (3) copies the message to hugepages; (4)
prepares a NQE with the data pointer; (5) CoreEngine copies
the NQE to ServiceLib; and (6) ServiceLib obtains the data
pointer and puts it back to the hugepages. Thus it measures
the effective application-level throughput using NetKernel
(including NQE transmission) without network stack process-
ing.

We observe from Table 5 that NetKernel delivers over 100G
throughput with messages larger than 4KB: with 8KB mes-
sages 144G is achievable. Thus NetKernel provides enough
raw performance to the network stack and is not a bottleneck
to the 100G deployment in production.

Batch Size (B) 1 2 4 8 16 32 64 128 256
NQEs per second (×106) 8.0 14.4 22.3 41.4 65.9 100.2 119.6 178.2 198.5

Table 4: CoreEngine switching throughput using a single core with different
batch sizes.

Message Size (B) 64 128 256 512 1024 2048 4096 8192
Throughput (Gbps) 4.9 8.3 14.7 25.8 45.9 80.3 118.0 144.2

Table 5: Message copy throughput via hugepages with different message
sizes.

Throughput. We examine throughput performance using
the kernel stack NSM and 8 TCP streams with 8KB mes-
sages. Figures 10 and 11 show respectively the send and
receive throughput with varying number of vCPUs. NetKer-
nel achieves the same throughput performance and scalability

with Baseline. The single-core send and receive throughput
reaches 48Gbps and 17Gbps, respectively. Receive through-
put is much lower because the kernel stack’s RX processing
is much more CPU-intensive with interrupts. Note that if the
other cores of the NUMA node are not disabled, soft inter-
rupts (softirq) may be sent to those cores instead of the one
assigned to the NSM (or VM), thereby inflating the receive
throughput. Both systems achieve the line rate of 100G using
at least 3 vCPUs for send throughput as in Figure 10. For
receive, both achieve 91Gbps using 8 vCPUs as in Figure 11.
Short TCP connections. We also benchmark NetKernel’s
performance in handling short TCP connections using a cus-
tom server sending a short message as a response. The server
runs multiple worker threads that share the same listening
port. Each thread runs an epoll event loop. Our workload gen-
erates 10 million requests in total with a concurrency of 1000.
The connections are non-keepalive. The message size is 64B.
Socket option SO_REUSEPORT is always used for the kernel
stack. Figure 12 shows that NetKernel has the same multicore
scalability as Baseline: performance increases from ∼71Krps
with 1 vCPU to ∼400Krps with 8 vCPUs, i.e. 5.6x the single
core performance. To demonstrate NetKernel’s full capabil-
ity, we also run the mTCP NSM with 1, 2, 4, and 8 vCPUs.2

NetKernel with mTCP offers 167Krps, 313Krps, 562Krps,
and 979Krps respectively, and shows better scalability than
the kernel stack.

The results here show that NetKernel preserves the perfor-
mance and scalability of network stacks, including high per-
formance stacks like mTCP since our scalable queue design
can ensure NetKernel is not the bottleneck and the contention
is not severe in this situation.

7.3 Isolation

Isolation is important to ensure co-located users do not inter-
fere with each other, especially in a public cloud. It is different
from fair sharing: Isolation ensures a VM’s performance guar-
antee is met despite network dynamics, while fairness ensures
a VM obtains a fair share of the bottleneck capacity which
varies dynamically. We conduct an experiment to verify NetK-
ernel’s isolation guarantees. As discussed in §4.4, CoreEngine

2Using other numbers of vCPUs for mTCP causes stability problems even
without NetKernel.

uses round-robin to poll each VM’s NK device for basic fair-
ness. In addition, to achieve isolation we implement token
buckets in CoreEngine to limit the bandwidth of each VM,
taking into account varying message sizes. There are 3 VMs
now: VM1 is rated limited at 1Gbps, VM2 at 500Mbps, and
VM3 has unlimited bandwidth. They arrive and depart at dif-
ferent times. They are colocated on the same host running a
kernel stack NSM using 1 vCPU. The NSM is given a 10G
VF for simplicity of showing work conservation.

Figure 13 shows the time series of each VM’s through-
put, measured by our epoll server at 100ms intervals. VM1
joins the system at time 0 and leaves at 25s. VM2 comes
later at 4.5s and leaves at 21s. VM3 joins last and stays un-
til 30s. We can observe that NetKernel throttles VM1’s and
VM2’s throughput at their respective limits correctly despite
the dynamics. VM3 is also able to use all the remaining ca-
pacity of the 10G NSM: it obtains 9Gbps after VM2 leaves
and 10Gbps after VM1 leaves at 25s. Therefore, NetKernel
is able to achieve the same isolation in today’s clouds with
bandwidth caps.

0 5 10 15 20 25 30
Time (s)

0.0

2.5

5.0

7.5

10.0

T
hr

ou
gh

pu
t

(G
bp

s)

VM 1

VM 2

VM 3

Figure 13: VM 1 is capped at 1Gbps, VM2 at 500Mbps, and VM3 uncapped.
All VMs use the same kernel stack NSM. The NSM is assigned 10Gbps
bandwidth. NetKernel isolates VM1 and VM2 successfully while allowing
VM3 to obtain the remaining capacity.

7.4 Overhead
Latency. One may wonder if NetKernel with the NQE trans-
mission would add delay to TCP processing, especially in
handling short connections. Table 6 shows the latency statis-
tics when we run ab to generate 1K concurrent connections
to our epoll server for 64B messages. A total of 5 million
requests are used. NetKernel achieves the same latency as
Baseline. Even for the mTCP NSM, NetKernel preserves its
low latency due to the much simpler TCP stack processing and
various optimization [34]. The standard deviation of mTCP la-
tency is much smaller, implying that NetKernel itself provides
stable performance to the network stacks. We also investigate
the latency without the effect of connection concurrency. To
measure microsecond granularity latency, we use a custom
HTTP client instead of ab, which reports application-level
latency from the transmission of a request to the reception
of the response. The experiments show the latency of Base-
line and the NetKernel is 61.14 µs and 89.53 µs, respectively.
The latency overhead is mostly introduced by CoreEngine in
NetKernel.
CPU. Now to quantify NetKernel’s CPU overhead, we use the
epoll server at the VM side, and run clients from a different

Min Mean Stddev Median Max
Baseline 0 16 105.6 2 7019
NetKernel 0 16 105.9 2 7019
NetKernel, mTCP NSM 3 4 0.23 4 11

Table 6: Distribution of response times (ms) for 64B messages with 5 million
requests and 1K concurrency.

machine with fixed throughput or requests per second for both
NetKernel and Baseline with kernel TCP stack. We disable all
unnecessary background system services in both the VM and
NSM, and ensure the CPU usage is almost zero without run-
ning epoll servers. During the experiments, we measure the
total number of cycles spent by the VM in Baseline, and that
spent by the VM and NSM together in NetKernel. We then
report NetKernel’s CPU usage normalized over Baseline’s for
the same performance level in Tables 7 and 8.

Throughput 20Gbps 40Gbps 60Gbps 80Gbps 100Gbps
Normalized CPU usage 1.14 1.28 1.42 1.56 1.70

Table 7: Overhead for throughput. The NSM runs the Linux kernel TCP
stack. We use 8 TCP streams with 8KB messages. NetKernel’s CPU usage is
normalized over that of Baseline.

Requests per second (rps) 100K 200K 300K 400K 500K
Normalized CPU usage 1.06 1.05 1.08 1.08 1.09

Table 8: Overhead for short TCP connections. The NSM runs the kernel TCP
stack. We use 64B messages with a concurrency of 100.

We can see that to achieve the same throughput, NetKer-
nel incurs relatively high overhead especially as throughput
increases. To put things into perspective, we also measure
CPU usage when the client runs in a docker container with
the bridge networking mode. Docker incurs 13% CPU over-
head compared to Baseline to achieve 40 Gbps throughout
whereas NetKernel’s is 28%. The overhead here is due to the
extra memory copy from the hugepages to the NSM. It can
be optimized away by implementing zerocopy between the
hugepages and the NSM, which we are working on currently.

Table 8 shows NetKernel’s overhead with short TCP con-
nections. We can observe that the overhead ranges from 5%
to 9% in all cases and is mild. As the message is only 64B
here, the results verify that the NQE transmission overhead
in NK devices is small.

8 Discussion

How can I do netfilter now? Due to the removal of vNIC
and redirection from the VM’s own TCP stack, some network-
ing tools like netfilter are affected. Though our current design
does not address them, they may be supported by adding ad-
ditional callback functions to the network stack in the NSM.
When the NSM serves multiple VMs, it then becomes chal-
lenging to apply netfilter just for packets of a specific VM.
We argue that this is acceptable since most users wish to fo-
cus on their applications instead of tuning a network stack.
NetKernel does not aim to completely replace the current ar-
chitecture. Tenants may still use the VMs without NetKernel

if they wish to gain maximum flexibility on the network stack
implementation.
What about troubleshooting performance issues? In cur-
rent virtualized environment, operators cannot easily deter-
mine whether a performance issue is caused by the guest
network stack or the underlying infrastructure. With NetKer-
nel operators gain much visibility of the guest network stack,
which potentially facilitates debugging the performance is-
sues. For example operators can closely monitor their NSMs
to detect problems with the network stack; they can also de-
ploy additional mechanisms in the NSMs to monitor their
datacenter network [29,49], all without disrupting users at all.
Does NetKernel increase the attack surface? It is well-
known that shared memory design might suffer from side-
channel attacks where malicious tenants could temper with
other tenants’ data on the hugepages. In this regard, NetK-
ernel limits the visibility of NK devices into the hugepage
for guest VMs: each device can only access its own address
space. This is guaranteed by enforcing the address allocation
and isolation control at CoreEngine.
How about supporting stacks with non-socket API? There
are many fast network stacks with non-socket API such as
PASTE [32], Seastar [11], and IX [18]. As NetKernel keeps
the socket API, the central challenge to support these stacks
(as NSMs) is how to resolve the semantic differences. While
this requires case-by-case porting efforts, in general the Ser-
viceLib should take care of the semantic transformation be-
tween the APIs.
Future directions. We outline a few future directions that
require immediate attention with high potential: (1) Perfor-
mance isolation. When multiple guest VMs share the same
NSM, fine-grained performance isolation is imperative. In
addition, it is necessary and interesting to design charging
policies that promote fair use of the NSM and CoreEngine; (2)
Resource efficiency. Various aspects of NetKernel’s design
can be optimized for efficiency and practicality. The CPU
overhead of CoreEngine, mostly to poll the shared memory
queues for NQE transmission, can be optimized by offloading
to hardware like FPGA and SoC.

9 Related Work

We discuss related work besides those mentioned in §2.2.
There are many novel network stack designs to improve

performance. The kernel stack continues to receive optimiza-
tion in various aspects [42, 53, 64]. Userspace stacks based
on fast packet I/O are also gaining momentum [7, 11, 34, 40,
45, 48, 55, 65]. Beyond transport layer, novel flow schedul-
ing [16] and end-host based load balancing schemes [30, 37]
are developed to reduce flow completion times. These pro-
posals are targeting specific problems of the stack, and can
be potentially deployed as NSMs in NetKernel. This paper
takes on a broader and more fundamental issue: how can we
properly re-factor the network stack, so that new designs can

be easily deployed, and operating them in cloud can be more
efficient?

Snap [47] is a microkernel networking framework that
implements a range of network functions in userspace moti-
vated by the need of rapid development and high performance
packet processing in a private cloud. As NetKernel’s design
space and design choice are significantly different, it achieves
many advantages that Snap does not target, such as multi-
plexing, porting a network stack across OSes or from kernel
to user space, enforcing different network stack for different
VMs, etc.

Lastly, our earlier position paper [51] presents the vision
of network stack as a service. Here we provide the complete
design, implementation, and evaluation of a working system
in addition to several new use cases compared to [51].

10 Conclusion

We have presented NetKernel, a system that decouples the
network stack from the guest, therefore making it part of the
virtualized infrastructure in the cloud. NetKernel improves
network management efficiency for operator, and provides
deployment and performance gains for users. We experimen-
tally demonstrated new use cases enabled by NetKernel that
are otherwise difficult to realize in the current architecture.
Through testbed evaluation with 100G NICs, we showed that
NetKernel achieves the same performance and isolation as
today’s cloud.

We focused on efficiency benefits of NetKernel in this
paper since they seem most immediate. The idea of separating
network stack from the guest VM applies to public and private
clouds as well, and brings additional benefits that are more far-
reaching. For example, it facilitates innovation by allowing
new protocols in different layers of the stack to be rapidly
prototyped and experimented. It provides a direct path for
enforcing centralized control, so network functions like failure
detection [29] and monitoring [39, 49] can be integrated into
the network stack implementation. It opens up new design
space to more freely exploit end-point coordination [25, 54],
software-hardware co-design, and programmable data planes
[15, 43]. We encourage the community to fully explore these
opportunities in the future.

Acknowledgment

We thank the anonymous ATC reviewers and our shepherd
Michio Honda for their valuable comments. The project was
supported in part by the Hong Kong RGC GRF (CityU Project
#11210818). Dongsu was supported by MSRA Collaborative
Research 2016 Grant Award. Keith was supported by a Sloan
Research Fellowship and by Google, Huawei, VMware, Drop-
box, Amazon, and Facebook.

References

[1] Amazon EC2 Container Service.
https://aws.amazon.com/ecs/details/.

[2] Azure Container Service.
https://azure.microsoft.com/en-us/pricing/
details/container-service/.

[3] Busy Polling: Past, Present, Future.
https://netdevconf.info/2.1/papers/
BusyPollingNextGen.pdf.

[4] F-Stack: A high performance userspace stack based on
FreeBSD 11.0 stable. http://www.f-stack.org/.

[5] Google container engine. https://cloud.google.
com/container-engine/pricing.

[6] Intel Programmable Acceleration Card with Intel Arria
10 GX FPGA. https://www.intel.com/content/
www/us/en/programmable/products/boards_and_
kits/dev-kits/altera/
acceleration-card-arria-10-gx.html.

[7] Introduction to OpenOnload-Building Application
Transparency and Protocol Conformance into
Application Acceleration Middleware.
http://www.moderntech.com.hk/sites/default/
files/whitepaper/V10_Solarflare_OpenOnload_
IntroPaper.pdf.

[8] Mellanox Smart Network Adaptors. http://www.
mellanox.com/page/programmable_network_
adapters?mtag=programmable_adapter_cards.

[9] Netronome. https://www.netronome.com/.

[10] Open Source Kernel Enhancements for Low Latency
Sockets using Busy Poll.
http://caxapa.ru/thumbs/793343/Open_Source_
Kernel_Enhancements_for_Low-.pdf.

[11] Seastar. http://www.seastar-project.org/.

[12] mTCP.
https://github.com/eunyoung14/mtcp/tree/
2385bf3a0e47428fa21e87e341480b6f232985bd,
March 2018.

[13] The Open Group Base Specifications Issue 7, 2018
edition. IEEE Std 1003.1-2017.
http://pubs.opengroup.org/onlinepubs/
9699919799/functions/contents.html, 2018.

[14] M. Alizadeh, A. Greenberg, D. A. Maltz, J. Padhye,
P. Patel, B. Prabhakar, S. Sengupta, and M. Sridharan.
Data center TCP (DCTCP). In Proc. ACM SIGCOMM,
2010.

[15] M. T. Arashloo, M. Ghobadi, J. Rexford, and D. Walker.
HotCocoa: Hardware Congestion Control Abstractions.
In Proc. ACM HotNets, 2017.

[16] W. Bai, L. Chen, K. Chen, D. Han, C. Tian, and
H. Wang. PIAS: Practical information-agnostic flow
scheduling for data center networks. In Proc. USENIX
NSDI, 2015.

[17] H. Ballani, P. Costa, T. Karagiannis, and A. Rowstron.
Towards predictable datacenter networks. In
Proc. ACM SIGCOMM, 2011.

[18] A. Belay, G. Prekas, A. Klimovic, S. Grossman,
C. Kozyrakis, and E. Bugnion. IX: A Protected
Dataplane Operating System for High Throughput and
Low Latency. In Proc. USENIX OSDI, 2014.

[19] N. Cardwell, Y. Cheng, C. S. Gunn, S. H. Yeganeh, and
V. Jacobson. BBR: Congestion-Based Congestion
Control. Commun. ACM, 60(2):58–66, February 2017.

[20] B. Cronkite-Ratcliff, A. Bergman, S. Vargaftik,
M. Ravi, N. McKeown, I. Abraham, and I. Keslassy.
Virtualized Congestion Control. In Proc. ACM
SIGCOMM, 2016.

[21] M. Dalton, D. Schultz, J. Adriaens, A. Arefin, A. Gupta,
B. Fahs, D. Rubinstein, E. C. Zermeno, E. Rubow, J. A.
Docauer, J. Alpert, J. Ai, J. Olson, K. DeCabooter,
M. de Kruijf, N. Hua, N. Lewis, N. Kasinadhuni,
R. Crepaldi, S. Krishnan, S. Venkata, Y. Richter,
U. Naik, and A. Vahdat. Andromeda: Performance,
Isolation, and Velocity at Scale in Cloud Network
Virtualization. In Proc. USENIX NSDI, 2018.

[22] D. R. Engler, M. F. Kaashoek, and J. O’Toole, Jr.
Exokernel: An Operating System Architecture for
Application-level Resource Management. In
Proc. ACM SOSP, 1995.

[23] D. Firestone. VFP: A Virtual Switch Platform for Host
SDN in the Public Cloud. In Proc. NSDI, 2017.

[24] D. Firestone, A. Putnam, S. Mundkur, D. Chiou,
A. Dabagh, M. Andrewartha, H. Angepat, V. Bhanu,
A. Caulfield, E. Chung, H. K. Chandrappa,
S. Chaturmohta, M. Humphrey, J. Lavier, N. Lam,
F. Liu, K. Ovtcharov, J. Padhye, G. Popuri, S. Raindel,
T. Sapre, M. Shaw, G. Silva, M. Sivakumar,
N. Srivastava, A. Verma, Q. Zuhair, D. Bansal,
D. Burger, K. Vaid, D. A. Maltz, and A. Greenberg.
Azure Accelerated Networking: SmartNICs in the
Public Cloud. In Proc. USENIX NSDI, 2018.

[25] P. X. Gao, A. Narayan, G. Kumar, R. Agarwal,
S. Ratnasamy, and S. Shenker. pHost: Distributed
Near-optimal Datacenter Transport Over Commodity
Network Fabric. In Proc. ACM CoNEXT, 2015.

https://aws.amazon.com/ecs/details/
https://azure.microsoft.com/en-us/pricing/details/container-service/
https://azure.microsoft.com/en-us/pricing/details/container-service/
https://netdevconf.info/2.1/papers/BusyPollingNextGen.pdf
https://netdevconf.info/2.1/papers/BusyPollingNextGen.pdf
http://www.f-stack.org/
https://cloud.google.com/container-engine/pricing
https://cloud.google.com/container-engine/pricing
https://www.intel.com/content/www/us/en/programmable/products/boards_and_kits/dev-kits/altera/acceleration-card-arria-10-gx.html
https://www.intel.com/content/www/us/en/programmable/products/boards_and_kits/dev-kits/altera/acceleration-card-arria-10-gx.html
https://www.intel.com/content/www/us/en/programmable/products/boards_and_kits/dev-kits/altera/acceleration-card-arria-10-gx.html
https://www.intel.com/content/www/us/en/programmable/products/boards_and_kits/dev-kits/altera/acceleration-card-arria-10-gx.html
http://www.moderntech.com.hk/sites/default/files/whitepaper/V10_Solarflare_OpenOnload_IntroPaper.pdf
http://www.moderntech.com.hk/sites/default/files/whitepaper/V10_Solarflare_OpenOnload_IntroPaper.pdf
http://www.moderntech.com.hk/sites/default/files/whitepaper/V10_Solarflare_OpenOnload_IntroPaper.pdf
http://www.mellanox.com/page/programmable_network_adapters?mtag=programmable_adapter_cards
http://www.mellanox.com/page/programmable_network_adapters?mtag=programmable_adapter_cards
http://www.mellanox.com/page/programmable_network_adapters?mtag=programmable_adapter_cards
https://www.netronome.com/
http://caxapa.ru/thumbs/793343/Open_Source_Kernel_Enhancements_for_Low-.pdf
http://caxapa.ru/thumbs/793343/Open_Source_Kernel_Enhancements_for_Low-.pdf
http://www.seastar-project.org/
https://github.com/eunyoung14/mtcp/tree/2385bf3a0e47428fa21e87e341480b6f232985bd
https://github.com/eunyoung14/mtcp/tree/2385bf3a0e47428fa21e87e341480b6f232985bd
http://pubs.opengroup.org/onlinepubs/9699919799/functions/contents.html
http://pubs.opengroup.org/onlinepubs/9699919799/functions/contents.html

[26] D. B. Golub, D. P. Julin, R. F. Rashid, R. P. Draves,
R. W. Dean, A. Forin, J. Barrera, H. Tokuda, G. Malan,
and D. Bohman. Microkernel operating system
architecture and Mach. In Proc. the USENIX Workshop
on Micro-Kernels and Other Kernel Architectures,
1992.

[27] A. Greenberg. SDN in the Cloud. Keynote, ACM
SIGCOMM 2015.

[28] C. Guo, G. Lu, H. J. Wang, S. Yang, C. Kong, P. Sun,
W. Wu, and Y. Zhang. Secondnet: A data center
network virtualization architecture with bandwidth
guarantees. In Proc. ACM CoNEXT, 2010.

[29] C. Guo, L. Yuan, D. Xiang, Y. Dang, R. Huang,
D. Maltz, Z. Liu, V. Wang, B. Pang, H. Chen, Z.-W.
Lin, and V. Kurien. Pingmesh: A Large-Scale System
for Data Center Network Latency Measurement and
Analysis. In Proc. ACM SIGCOMM, 2015.

[30] K. He, E. Rozner, K. Agarwal, W. Felter, J. Carter, and
A. Akella. Presto: Edge-based Load Balancing for Fast
Datacenter Networks. In Proc. ACM SIGCOMM, 2015.

[31] K. He, E. Rozner, K. Agarwal, Y. J. Gu, W. Felter,
J. Carter, and A. Akella. AC/DC TCP: Virtual
Congestion Control Enforcement for Datacenter
Networks. In Proc. ACM SIGCOMM, 2016.

[32] M. Honda, G. Lettieri, L. Eggert, and D. Santry.
PASTE: A Network Programming Interface for
Non-Volatile Main Memory. In Proc. USENIX NSDI,
2018.

[33] J. Hwang, K. K. Ramakrishnan, and T. Wood. NetVM:
High performance and flexible networking using
virtualization on commodity platforms. In
Proc. USENIX NSDI, 2014.

[34] E. Jeong, S. Wood, M. Jamshed, H. Jeong, S. Ihm,
D. Han, and K. Park. mTCP: A Highly Scalable
User-level TCP Stack for Multicore Systems. In
Proc. USENIX NSDI, 2014.

[35] V. Jeyakumar, M. Alizadeh, D. Mazieres, B. Prabhakar,
C. Kim, and A. Greenberg. Eyeq: Practical network
performance isolation at the edge. In Proc. USENIX
NSDI, 2013.

[36] G. Judd. Attaining the Promise and Avoiding the
Pitfalls of TCP in the Datacenter. In Proc. USENIX
NSDI, 2015.

[37] N. Katta, M. Hira, A. Ghag, C. Kim, I. Keslassy, and
J. Rexford. CLOVE: How I Learned to Stop Worrying
About the Core and Love the Edge. In Proc. ACM
HotNets, 2016.

[38] J. Khalid, E. Rozner, W. Felter, C. Xu, K. Rajamani,
A. Ferreira, and A. Akella. Iron: Isolating
Network-based CPU in Container Environments. In
Proc. USENIX NSDI, 2018.

[39] A. Khandelwal, R. Agarwal, and I. Stoica. Confluo:
Distributed Monitoring and Diagnosis Stack for
High-speed Networks. In Proc. USENIX NSDI, 2019.

[40] D. Kim, T. Yu, H. Liu, Y. Zhu, J. Padhye, S. Raindel,
C. Guo, V. Sekar, and S. Seshan. FreeFlow:
Software-based Virtual RDMA Networking for
Containerized Clouds. In Proc. USENIX NSDI, 2019.

[41] K. LaCurts, J. C. Mogul, H. Balakrishnan, and
Y. Turner. Cicada: Introducing predictive guarantees for
cloud networks. In Proc. USENIX HotCloud, 2014.

[42] X. Lin, Y. Chen, X. Li, J. Mao, J. He, W. Xu, and Y. Shi.
Scalable Kernel TCP Design and Implementation for
Short-Lived Connections. In Proc. ASPLOS, 2016.

[43] Y. Lu, G. Chen, B. Li, K. Tan, Y. Xiong, P. Cheng,
J. Zhang, E. Chen, and T. Moscibroda. Multi-Path
Transport for RDMA in Datacenters . In Proc. USENIX
NSDI, 2018.

[44] A. Madhavapeddy, R. Mortier, C. Rotsos, D. Scott,
B. Singh, T. Gazagnaire, S. Smith, S. Hand, and
J. Crowcroft. Unikernels: Library operating systems for
the cloud. In Proc. ASPLOS, 2013.

[45] I. Marinos, R. N. Watson, and M. Handley. Network
stack specialization for performance. In Proc. ACM
SIGCOMM, 2014.

[46] J. Martins, M. Ahmed, C. Raiciu, V. Olteanu,
M. Honda, R. Bifulco, and F. Huici. ClickOS and the
Art of Network Function Virtualization. In
Proc. USENIX NSDI, 2014.

[47] M. Marty, M. de Kruijf, J. Adriaens, C. Alfeld,
S. Bauer, C. Contavalli, M. Dalton, N. Dukkipati, W. C.
Evans, S. Gribble, N. Kidd, R. Kononov, G. Kumar,
C. Mauer, E. Musick, L. Olson, M. Ryan, E. Rubow,
K. Springborn, P. Turner, V. Valancius, X. Wang, and
A. Vahdat. Snap: A microkernel approach to host
networking. In Proc. ACM SOSP, 2019.

[48] R. Mittal, V. T. Lam, N. Dukkipati, E. Blem, H. Wassel,
M. Ghobadi, A. Vahdat, Y. Wang, D. Wetherall, and
D. Zats. TIMELY: RTT-based Congestion Control for
the Datacenter. In Proc. ACM SIGCOMM, 2015.

[49] M. Moshref, M. Yu, R. Govindan, and A. Vahdat.
Trumpet: Timely and precise triggers in data centers. In
Proc. SIGCOMM, 2016.

[50] A. Narayan, F. Cangialosi, D. Raghavan, P. Goyal,
S. Narayana, R. Mittal, M. Alizadeh, and
H. Balakrishnan. Restructuring Endpoint Congestion
Control. In Proc. ACM SIGCOMM, 2018.

[51] Z. Niu, H. Xu, D. Han, P. Wang, and L. Liu. Netkernel:
Network stack as a service in the cloud. In Proc. ACM
HotNets, 2017.

[52] A. Panda, S. Han, K. Jang, M. Walls, S. Ratnasamy, and
S. Shenker. NetBricks: Taking the V out of NFV. In
Proc. USENIX OSDI, 2016.

[53] S. Pathak and V. S. Pai. ModNet: A Modular Approach
to Network Stack Extension. In Proc. USENIX NSDI,
2015.

[54] J. Perry, A. Ousterhout, H. Balakrishnan, D. Shah, and
H. Fugal. Fastpass: A Centralized “Zero-Queue”
Datacenter Network. In Proc. ACM SIGCOMM, 2014.

[55] S. Peter, J. Li, I. Zhang, D. R. K. Ports, D. Woos,
A. Krishnamurthy, T. Anderson, and T. Roscoe.
Arrakis: The Operating System is the Control Plane. In
Proc. USENIX OSDI, 2014.

[56] L. Popa, G. Kumar, M. Chowdhury, A. Krishnamurthy,
S. Ratnasamy, and I. Stoica. Faircloud: Sharing the
network in cloud computing. In Proc. ACM
SIGCOMM, 2012.

[57] L. Popa, P. Yalagandula, S. Banerjee, J. C. Mogul,
Y. Turner, and J. R. Santos. ElasticSwitch: Practical
Work-conserving Bandwidth Guarantees for Cloud
Computing. In Proc. ACM SIGCOMM, 2013.

[58] L. Rizzo, G. Lettieri, and V. Maffione. Speeding Up
Packet I/O in Virtual Machines. In Architectures for
Networking and Communications Systems, 2013.

[59] A. Saeed, N. Dukkipati, V. Valancius, V. The Lam,
C. Contavalli, and A. Vahdat. Carousel: Scalable Traffic
Shaping at End Hosts. In Proc. ACM SIGCOMM, 2017.

[60] A. Shieh, S. Kandula, A. Greenberg, C. Kim, and
B. Saha. Sharing the data center network. In
Proc. USENIX NSDI, 2011.

[61] L. Soares and M. Stumm. FlexSC: Flexible System
Call Scheduling with Exception-Less System Calls. In
Proc. USENIX OSDI, 2010.

[62] J. Son, Y. Xiong, K. Tan, P. Wang, Z. Gan, and S. Moon.
Protego: Cloud-Scale Multitenant IPsec Gateway. In
Proc. USENIX ATC, 2017.

[63] B. Stephens, A. Singhvi, A. Akella, and M. Swift.
Titan: Fair Packet Scheduling for Commodity
Multiqueue NICs. In Proc. USENIX ATC, 2017.

[64] K. Yasukata, M. Honda, D. Santry, and L. Eggert.
StackMap: Low-Latency Networking with the OS Stack
and Dedicated NICs. In Proc. USENIX ATC, 2016.

[65] Y. Zhu, H. Eran, D. Firestone, C. Guo, M. Lipshteyn,
Y. Liron, J. Padhye, S. Raindel, M. H. Yahia, and
M. Zhang. Congestion Control for Large-Scale RDMA
Deployments. In Proc. ACM SIGCOMM, 2015.

[66] D. Zhuo, K. Zhang, Y. Zhu, H. H. Liu, M. Rockett,
A. Krishnamurthy, and T. Anderson. Slim: OS Kernel
Support for a Low-Overhead Container Overlay
Network. In Proc. USENIX NSDI, 2019.

	Introduction
	Motivation
	Benefits and Tradeoffs
	Alternative Solutions

	Design Philosophy
	Design
	Transparent Socket API Redirection
	A Lightweight Semantics Channel
	NQE Switching across Lockless Queues
	Management with CoreEngine
	Processing Application Data
	Optimization

	Implementation
	Evaluation: New Use Cases
	Multiplexing
	Deploying mTCP without API Change
	Shared Memory Networking

	Evaluation: Microbenchmarks
	Setup
	Performance and Scalability
	Isolation
	Overhead

	Discussion
	Related Work
	Conclusion

