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ABSTRACT
The network stack is implemented inside virtual machines
(VMs) in today’s cloud. This paper presents a system called
NetKernel that decouples the network stack from the guest,
and offers it as an independent module implemented by the
cloud operator. NetKernel represents a new paradigm where
network stack is managed by the operator as part of the
virtualized infrastructure. It provides important efficiency
benefits: By gaining control and visibility of the network
stack, operator can perform network management more di-
rectly and flexibly, such as multiplexing VMs running dif-
ferent applications to the same network stack module to
save CPU cores, and enforcing fair bandwidth sharing with
distributed congestion control. Users also benefit from the
simplified stack deployment and better performance. For ex-
ample mTCP can be deployed without API change to support
nginx and redis natively, and shared memory networking
can be readily enabled to improve performance of colocat-
ing VMs. Testbed evaluation using 100G NICs shows that
NetKernel preserves the performance and scalability of both
kernel and userspace network stacks, and provides the same
isolation as the current architecture.

1 INTRODUCTION
Virtual machine (VM) is the predominant virtualization form
in today’s cloud due to its strong isolation guarantees. VMs
allow customers to run applications in a wide variety of oper-
ating systems (OSes) and configurations. VMs are also heav-
ily used by cloud operators to deploy internal services, such
as load balancing, proxy, VPN, etc., both in a public cloud
for tenants and in a private cloud for supporting various
business units of an organization. Lightweight virtualization
technologies such as containers are also provisioned inside
VMs in many production settings for isolation, security, and
management reasons [2, 3, 6].

VM based virtualization largely follows traditional OS de-
sign. In particular, the TCP/IP network stack is encapsulated
inside the VM as part of the guest OS as shown in Figure 1(a).

Applications own the network stack, which is separated
from the network infrastructure that operators own; they
interface using the virtual NIC abstraction. This architecture
preserves the familiar hardware and OS abstractions so a
vast array of workloads can be easily moved into the cloud.
It provides high flexibility to applications to customize the
entire network stack.

We argue that the current division of labor between appli-
cation and network infrastructure is becoming increasingly
inadequate. The central issue is that the operator has almost
zero visibility and control over the network stack. This leads
to many efficiency problems that manifest in various aspects
of running the cloud network.
Many network management tasks like monitoring, diag-

nosis, and troubleshooting have to be done in an extra layer
outside the VMs, which requires significant effort in design
and implementation [23, 54, 55]. Since these network func-
tions need to process packets at the end-host [29, 37, 45, 61],
they can be done more efficiently if the network stack were
opened up to the operator. More importantly, the operator is
unable to orchestrate resource allocation at the end-points of
the network fabric, resulting in low resource utilization. It re-
mains difficult today for the operator tomeet or define perfor-
mance SLAs despite much prior work [17, 28, 34, 39, 52, 53],
as she cannot precisely provision resources just for the net-
work stack or control how the stack consumes these re-
sources. Further, resources (e.g. CPU) have to be provisioned
on a per-VM basis based on the peak traffic; it is impossible to
coordinate across VM boundaries. This degrades the overall
utilization of the network stack since in practice traffic to
individual VMs is extremely bursty.
Even the simple task of maintaining or deploying a net-

work stack suffers from inefficiency today. Network stack
has critical impact on performance, and many optimizations
have been studied with numerous effective solutions, rang-
ing from congestion control [13, 19, 47], scalability [33, 40],
zerocopy datapath [5, 33, 51, 59, 60], NIC multiqueue sched-
uling [57], etc. Yet the operator, with sufficient expertise
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Figure 1: Decoupling network stack from the guest, and making it
part of the virtualized infrastructure.

and resources, still cannot deploy these extensions to im-
prove performance and reduce overheads. As a result, our
community is still finding ways to deploy DCTCP in the pub-
lic cloud [20, 31]. On the other hand, applications without
much knowledge of the underlying network or expertise on
networking are forced to juggle the deployment and mainte-
nance details. For example if one wants to deploy a new stack
like mTCP [33], a host of problems arise such as setting up
kernel bypass, testing with kernel versions and NIC drivers,
and porting applications to the new APIs. Given the intricacy
of implementation and the velocity of development, it is a
daunting task if not impossible to expect users, whether ten-
ants in a public cloud or first-party services in a private cloud,
to individually maintain the network stack themselves.
We thus advocate a new division of labor in a VM-based

cloud in this paper. We believe that network stack should
be managed as part of the virtualized infrastructure instead
of in the VM by application. The operator is naturally in a
better position to own the last mile of packet delivery, so it
can directly deploy, manage, and optimize the network stack,
and comprehensively improve the efficiency of running the
entire network fabric. Applications’ functionality and perfor-
mance requirements can be consolidated and satisfied with
several different network stacks provided by the operator.
As the heavy-lifting is taken care of, applications can just
use network stack as a basic service of the infrastructure and
focus on their business logic.

Specifically, we propose to decouple the VM network stack
from the guest as shown in Figure 1(b). We keep the network
APIs such as BSD sockets intact, and use them as the ab-
straction boundary between application and infrastructure.
Each VM is served by a network stack module (NSM) that
runs the network stack chosen by the user. Application data
are handled outside the VM in the NSM, whose design and
implementation are managed by the operator. Various net-
work stacks can be provided as different NSMs to ensure
applications with diverse requirements can be properly sat-
isfied. We do not enforce a single transport design, or trade
off flexibility of the existing architecture in our approach.

We make three specific contributions.
• We design and implement a system called NetKernel
to show that this new division of labor is feasible with-
out radical changes to application or infrastructure
(§3–§5). NetKernel provides transparent BSD socket
redirection so existing applications can run directly.
The socket semantics from the application are encap-
sulated into small queue elements and transmitted to
the corresponding NSM via lockless shared memory
queues.

• We present new use cases that are difficult to realize
today to show NetKernel’s potential benefits (§6). For
example, we show that NetKernel enables multiplex-
ing: one NSM can serve multiple VMs at the same
time and save over 40% CPU cores without degrading
performance using traces from a production cloud.

• We conduct comprehensive testbed evaluation with
commodity 100GNICs to show that NetKernel achieves
the same performance, scalability, and isolation as the
current architecture (§7). For example, the kernel stack
NSM achieves 100G send throughput with 3 cores; the
mTCP NSM achieves 1.1M RPS with 8 cores.

2 MOTIVATION
Decoupling the network stack from the guest OS, hence mak-
ing it part of the infrastructure, marks a clear departure from
the way networking is provided to VMs nowadays. In this
section we elaborate why this is a better architectural design
by presenting its benefits and contrasting with alternative
solutions. We discuss its potential issues in §8.

2.1 Benefits
We highlight key benefits of our vision with new use cases
we experimentally realize with NetKernel in §6.
Better efficiency inmanagement for the operator.Gain-
ing control over the network stack, the operator can now
perform network management more efficiently. For exam-
ple it can orchestrate the resource provisioning strategies
much more flexibly: For mission-critical workloads, it can
dedicate CPU resources to their NSMs to offer performance
SLAs in terms of throughput and RPS (requests per second)
guarantees. For elastic workloads, on the other hand, it can
consolidate their VMs to the same NSM (if they use the same
network stack) to improve its resource utilization. The op-
erator can also directly implement management functions
as an integral part of user’s network stack and improve the
effectiveness of management, compared to doing them in an
extra layer outside the guests.

Use case 1: Multiplexing (§6.1). Utilization of network stack
in VMs is very low most of the time in practice. Using a real
trace from a large cloud, we show that NetKernel enables
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multiple VMs to be multiplexed onto one NSM to serve the
aggregated traffic and saves over 40% CPU cores for the
operator without performance degradation.
Use case 2: Fair bandwidth sharing (§6.2). TCP’s notion

of flow-level fairness leads to poor bandwidth sharing in
data centers [55]. We show that NetKernel allows us to read-
ily implement VM-level congestion control [55] as an NSM
to achieve fair sharing regardless of number of flows and
destinations.
Deployment and performance gains for users. Making
network stack part of the virtualized infrastructure is also
beneficial for users in both public and private clouds. Op-
erator can directly optimize the network stack design and
implementation. Various kernel stack optimizations [40, 59],
high-performance userspace stacks [1, 18, 33, 51], and even
designs using advanced hardware [7, 9, 10, 41] can now be
deployed andmaintained transparently without user involve-
ment or application code change. Since the BSD socket is
the only abstraction exposed to the applications, it is now
feasible to adopt new stack designs independent of the guest
kernel or the network API. Our vision also opens up new
design space by allowing the network stack to exploit the
visibility into the infrastructure for performance benefits.

Use case 3: Deploying mTCP without API change (§6.3).
We show that NetKernel enables unmodified applications
in the VM to use mTCP [33] in the NSM, and improves
performance greatly due to mTCP’s kernel bypass design.
mTCP is a userspace stackwith newAPIs (includingmodified
epoll/kqueue). During the process, we also find and fix a
compatibility issue between mTCP and our NIC driver, and
save significant maintenance time and effort for users.
Use case 4: Shared memory networking (§6.4). When two

VMs of the same user are colocated on the same host, NetK-
ernel can directly detect this and copy their data via shared
memory to bypass TCP stack processing and improve through-
put. This is difficult to achieve today as VMs have no knowl-
edge about the underlying infrastructure [38, 62].
And beyond.We focus on efficiency benefits in this paper
since they seem most immediate. Making network stack part
of the virtualized infrastructure also brings additional bene-
fits that are more far-reaching. For example, it facilitates in-
novation by allowing new protocols in different layers of the
stack to be rapidly prototyped and experimented. It provides
a direct path for enforcing centralized control, so network
functions like failure detection [29] and monitoring [37, 45]
can be integrated into the network stack implementation.
It opens up new design space to more freely exploit end-
point coordination [25, 50], software-hardware co-design,
and programmable data planes [15, 41]. We encourage the
community to fully explore these opportunities in the future.

2.2 Alternative Solutions
We now discuss several alternative solutions and why they
are inadequate.
Why not just use containers? Containers are gaining pop-
ularity as a lightweight and portable alternative to VMs [4].
A container is essentially a process with namespace isolation.
Using containers can address some efficiency problems be-
cause the network stack is in the hypervisor instead of in the
containers. Without the guest OS, however, containers have
poor isolation [36] and are difficult to manage. Moreover,
containers are constrained to using the host network stack,
whereas NetKernel provides choices for applications on the
same host. This is important as data center applications have
diverse requirements that cannot be satisfied with a single
design.
In a word, containers or other lightweight virtualization

represent a more radical approach of removing the guest
kernel, which leads to several practical issues. Thus they
are commonly deployed inside VMs in production settings.
In fact we find that all major public clouds [2, 3, 6] require
users to launch containers inside VMs. Thus, our discussion
is centered around VMs that cover the vast majority of usage
scenarios in a cloud. NetKernel readily benefits containers
running inside VMs as well.
Why not on the hypervisor? Another possible approach
is to keep the VM intact, and add the network stack imple-
mentation outside on the hypervisor. Some existing work
takes this approach to realize a uniform congestion control
without changing VMs [20, 31]. This does allow the operator
to gain control on network stack. Yet the performance and
efficiency of this approach is even lower than the current
architecture because data are then processed twice in two
independent stacks, first by the VM network stack and then
the stack outside.
Whynot use customized OS images?Operators can build
customized OS images with the required network stacks for
users, which remedies the maintenance and deployment is-
sues. Yet this approach has many downsides. It is not trans-
parent: customers need to update these images on their own,
and deploying images causes downtime and disrupts appli-
cations. But more importantly, since even just a single user
will have vastly different workloads that require different en-
vironments (Linux or FreeBSD or Windows, kernel versions,
driver versions, etc.), the cost of testing and maintenance for
all these possibilities is prohibitive.

In contrast, NetKernel does not have these issues because
it breaks the coupling of the network stack to the guest OS.
Architecturally a network stack module can be used by VMs
with different guest OSes since BSD socket APIs are widely
supported, thereby greatly reducing development resources
required for operators. Maintenance is also transparent and

3



Technical report, 2019, online Z. Niu et al.

non-disruptive to customers as operators can roll out updates
in the background.

3 DESIGN PHILOSOPHY
NetKernel imposes three fundamental design questions around
the separation of network stack and the guest OS:
(1) How to transparently redirect socket API calls without

changing applications?
(2) How to transmit the socket semantics between the

VM and NSM whose implementation of the stack may
vary?

(3) How to ensure high performance with semantics trans-
mission (e.g., 100Gbps)?

These questions touch upon largely uncharted territory in
the design space. Thus our main objective in this paper is to
demonstrate feasibility of our approach on existing virtual-
ization platforms and showcase its potential. Performance
and overhead are not our primary goals. It is also not our
goal to improve any particular network stack design.

In answering the questions above, NetKernel’s design has
the following highlights.
Transparent Socket API Redirection. NetKernel needs
to redirect BSD socket calls to the NSM instead of the tenant
network stack. This is done by inserting into the guest a
library called GuestLib. The GuestLib provides a new socket
type called NetKernel socket with a complete implementa-
tion of BSD socket APIs. It replaces all TCP and UDP sockets
when they are created with NetKernel sockets, effectively
redirecting them without changing applications.
A Lightweight Semantics Channel. Different network
stacks may run as different NSMs, so NetKernel needs to
ensure socket semantics from the VM work properly with
the actual NSM stack implementation. For this purpose NetK-
ernel builds a lightweight socket semantics channel between
VM and its NSM. The channel relies on small fix-sized queue
elements as intermediate representations of socket seman-
tics: each socket API call in the VM is encapsulated into a
queue element and sent to the NSM, who would effectively
translate the queue element into the corresponding API call
of its network stack.
Scalable Lockless Queues. As NIC speed in cloud evolves
from 40G/50G to 100G [24] and higher, the NSM has to use
multiple cores for the network stack to achieve line rate.
NetKernel thus adopts scalable lockless queues to ensure
VM-NSM socket semantics transmission is not a bottleneck.
Each core services a dedicated set of queues so performance
is scalable with number of cores. More importantly, each
queue is memory shared with a software switch, so it can be
lockless with only a single producer and a single consumer
to avoid expensive lock contention [32, 33, 40].
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Figure 2: NetKernel design overview.

Switching the queue elements offers important benefits
beyond lockless queues. It facilitates a flexible mapping be-
tween VM and NSM: a NSM can support multiple VMs with-
out adding more queues compared to binding the queues
directly between VM and NSM. In addition, it allows dy-
namic resource management: cores can be readily added to
or removed from a NSM, and a user can switch her NSM
on the fly. The CPU overhead of software switching can be
addressed by hardware offloading [24, 27], which we discuss
in §7.8 in more detail.
VM Based NSM. Lastly we discuss an important design
choice regarding the NSM. The NSM can take various forms.
It may be a full-fledged VM with a monolithic kernel. Or
it can be a container or module running on the hypervisor,
which is appealing because it consumes less resource and
offers better performance. Yet it entails porting a complete
TCP/IP stack to the hypervisor. Achieving memory isolation
among containers or modules are also difficult [48]. More
importantly, it introduces another coupling between the net-
work stack and the hypervisor, which defeats the purpose
of NetKernel. Thus we choose to use a VM for NSM. VM
based NSM readily supports existing kernel and userspace
stacks from various OSes. VMs also provide good isolation
and we can dedicate resources to a NSM to guarantee per-
formance. VM based NSM is the most flexible: we can run
stacks independent of the hypervisor.

4 DESIGN
Figure 2 depicts NetKernel’s architecture. The BSD socket
APIs are transparently redirected to a complete NetKernel
socket implementation in GuestLib in the guest kernel (§4.1).
The GuestLib can be deployed as a kernel patch and is the
only change we make to the user VM. Network stacks are
implemented by the provider on the same host as Network
Stack Modules (NSMs), which are individual VMs in our
current design. Inside the NSM, a ServiceLib interfaces with
the network stack. The NSM connects to the vSwitch, be it
a software or a hardware switch, and then the pNICs. Thus
our design also supports SR-IOV.
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All socket operations and their results are translated into
NetKernel Queue Elements (NQEs) by GuestLib and Ser-
viceLib (§4.2). For NQE transmission, GuestLib and ServiceLib
each has a NetKernel device, or NK device in the follow-
ing, consisting of one or more sets of lockless queues. Each
queue set has a send queue and receive queue for operations
with data transfer (e.g. send()), and a job queue and com-
pletion queue for control operations without data transfer
(e.g. setsockopt()). Each NK device connects to a software
switch called CoreEngine, which runs on the hypervisor and
performs actual NQE switching (§4.3). The CoreEngine is
also responsible for various management tasks such as set-
ting up the NK devices, ensuring isolation among VMs, etc.
(§4.4) A unique set of hugepages are shared between each
VM-NSM tuple for application data exchange. A NK device
also maintains a hugepage region that is memory mapped
to the corresponding application hugepages as shown in
Figure 2 (§4.5).

For ease of presentation, we assume both the user VM and
NSM run Linux, and the NSM uses the kernel stack.

4.1 Transparent Socket API Redirection
We first describe how NetKernel’s GuestLib interacts with
applications to support BSD socket semantics transparently.
Kernel Space API Redirection. There are essentially two
approaches to redirect BSD socket calls to NSM, each with
its unique tradeoffs. One is to implement it in userspace
using LD_PRELOAD for example. The advantages are: (1) It
is efficient without syscall overheads and performance is
high [33]; (2) It is easy to deploy without kernel modification.
However, this implies each application needs to have its
own redirection service, which limits the usage scenarios.
Another way is kernel space redirection, which naturally
supports multiple applications without IPC. The flip side is
that performance may be lower due to context switching
and syscall overheads.

We opt for kernel space API redirection to support most of
the usage scenarios, and leave userspace redirection as future
work. GuestLib is a kernel module deployed in the guest.
This is feasible by distributing images of para-virtualizated
guest kernels to users, a practice providers are already doing
nowadays. Kernel space redirection also allows NetKernel to
work directly with I/O event notification syscalls like epoll.
NetKernel Socket API. GuestLib creates a new type of
sockets—SOCK_NETKERNEL, in addition to TCP (SOCK_STREAM)
and UDP (SOCK_DGRAM) sockets. It registers a complete im-
plementation of BSD socket APIs as shown in Table 1 to the
guest kernel. When the guest kernel receives a socket()
call to create a new TCP socket say, it replaces the socket
type with SOCK_NETKERNEL, creates a new NetKernel socket,

and initializes the socket data structure with function point-
ers to NetKernel socket implementation in GuestLib. The
sendmsg() for example now points to nk_sendmsg() in
GuestLib instead of tcp_sendmsg().

Table 1: NetKernel socket implementation.

inet_stream_ops netkernel_pro
bind inet_bind() nk_bind()
connect inet_connect() nk_connect()
accept inet_accept() nk_accept()
poll tcp_poll() nk_poll()
ioctl inet_ioctl() nk_ioctl()
listen inet_listen() nk_listen()
shutdown inet_shutdown() nk_shutdown()
setsockopt sock_common_setsockopt() nk_setsockopt()
recvmsg tcp_recvmsg() nk_recvmsg()
sendmsg tcp_sendmsg() nk_sendmsg()

4.2 A Lightweight Socket Semantics
Channel

Socket semantics are contained in NQEs and carried around
between GuestLib and ServiceLib via their respective NK
devices.
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Figure 3: Structure of a NQE. Here socket ID denotes a pointer to
the sock struct in the user VM or NSM, and is used for NQE trans-
mission with VM ID and queue set ID in §4.3; op_data contains data
necessary for socket operations, such as ip address for bind; data
pointer is a pointer to application data in hugepages; and size is
the size of pointed data in hugepages.
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Figure 4: NetKernel socket implementation in GuestLib redirects
socket API calls. GuestLib translates socket API calls to NQEs and
ServiceLib translates results into NQEs as well (not shown here).

NQE and Socket Semantics Translation. Figure 3 shows
the structure of a NQE with a fixed size of 32 bytes. Transla-
tion happens at both ends of the semantics channel: GuestLib
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encapsulates the socket semantics into NQEs and sends to
ServiceLib, which then invokes the corresponding API of
its network stack to execute the operation; the execution
result is again turned into a NQE in ServiceLib first, and then
translated by GuestLib back into the corresponding response
of socket APIs.
For example in Figure 4, to handle the socket() call in

the VM, GuestLib creates a new NQE with the operation
type and information such as its VM ID for NQE transmis-
sion. The NQE is transmitted by GuestLib’s NK device. The
socket() call now blocks until a response NQE is received.
After receiving the NQE, ServiceLib parses the NQE from
its NK device, invokes the socket() of the kernel stack to
create a new TCP socket, prepares a new NQE with the ex-
ecution result, and enqueues it to the NK device. GuestLib
then receives and parses the response NQE and wakes up the
socket() call. The socket() call now returns to application
with the NetKernel socket file descriptor (fd) if a TCP socket
is created at the NSM, or with an error number consistent
with the execution result of the NSM.

We defer the handling of application data to §4.5.
Queues for NQE Transmission. NQEs are transmitted via
one or more sets of queues in the NK devices. A queue set has
four independent queues: a job queue for NQEs representing
socket operations issued by the VM without data transfer, a
completion queue for NQEs with execution results of control
operations from the NSM, a send queue for NQEs represent-
ing operations issued by VM with data transfer; and a receive
queue for NQEs representing events of newly received data
from NSM. Queues of different NK devices have strict cor-
respondence: the NQE for socket() for example is put in
the job queue of GuestLib’s NK device, and sent to the job
queue of ServiceLib’s NK device.
We now present the working of I/O event notification

mechanisms like epoll with the receive queue. Suppose an
application issues epoll_wait() to monitor some sockets.
Since all sockets are now NetKernel sockets, the nk_poll()
is invoked by epoll_wait() and checks the receive queue to
see if there is any NQE for this socket. If yes, this means there
are new data received, epoll_wait() then returns and the
application issues a recv() call with the NetKernel socket
fd of the event. This points to nk_recvmsg() which parses
the NQE from receive queue for the data pointer, copies data
from the hugepage directly to the userspace, and returns.
If nk_poll() does not find any relevant NQE, it sleeps

until CoreEngine wakes up the NK device when new NQEs
arrive to its receive queue. GuestLib then parses the NQEs
to check if any sockets are in the epoll instances, and wakes
up the epoll to return to application. An epoll_wait()can
also be returned by a timeout.
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Figure 5: The socket semantics channel with epoll as an example.
GuestLib and ServiceLib translate semantics to NQEs, and queues
in the NK devices perform NQE transmission. Job and completion
queues are for socket operations and execution results, send queues
are for socket operations with data, and receive queues are for
events of newly received data. Application data processing is not
shown.

4.3 NQE Switching across Lockless Queues
We now elaborate how NQEs are switched by CoreEngine
and how the NK devices interact with CoreEngine.
Scalable Queue Design. The queues in a NK device is scal-
able: there are one dedicated queue set per vCPU for both
VM and NSM, so NetKernel performance scales with CPU re-
sources. Each queue set is sharedmemorywith the CoreEngine,
essentially making it a single producer single consumer
queue without lock contention. VM and NSM may have
different numbers of queue sets.
Switching NQEs in CoreEngine. NQEs are load balanced
across multiple queue sets with the CoreEngine acting as a
switch. CoreEngine maintains a connection table as shown in
Figure 6, which maps the tuple ⟨VM ID, queue set ID, socket
ID⟩ to the corresponding ⟨NSM ID, queue set ID, socket ID⟩
and vice versa. Here a socket ID corresponds to a pointer to
the sock struct in the user VM or NSM. We call them VM
tuple and NSM tuple respectively. NQEs only contain VM
tuple information.
Using the running example of the socket() call, we can

see how CoreEngine uses the connection table. The process
is also shown in Figure 6. (1) When CoreEngine processes the
socket NQE from VM1’s queue set 1, it realizes this is a new
connection, and inserts a new entry to the table with the VM
tuple from the NQE. (2) It checks which NSM should handle
it,1 performs hashing based on the three tuple to determine
which queue set (say 2) to switch to if there are multiple
queue sets, and copies the NQE to the NSM’s corresponding
job queue. CoreEngine adds the NSM ID and queue set ID to
the new entry. (3) ServiceLib gets the NQE and copies the

1A user VM to NSM mapping is determined either by the users offline or
some load balancing scheme dynamically by CoreEngine.
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Figure 6: NQE switching with CoreEngine.

VM tuple to its response NQE, and adds the newly created
connection ID in the NSM to the op_data field of response
NQE. (4) CoreEngine parses the response NQE, matches
the VM tuple to the entry and adds the NSM socket ID to
complete it, and copies the response NQE to the completion
queue 1 of the corresponding VM1 as instructed in the NQE.
Later NQEs for this VM connection can be processed by the
correct NSM connection and vice versa. Note ServiceLib pins
its connections to its vCPUs and queue sets, thus processing
the NQE and sending the response NQE is done on the same
CPU.

The connection table allows flexible multiplexing and de-
multiplexing with the socket ID information. For example
one NSM can serve multiple VMs using different sockets.
CoreEngine uses polling across all queue sets to maximize
performance.

4.4 Management with CoreEngine
CoreEngine acts as the control plane of NetKernel and carries
out many control tasks beyond NQE switching.
NKDevice and Queue Setup. CoreEngine allocates shared
memory for the queue sets and setts up the NK devices ac-
cordingly when a VM or NSM starts up, and de-allocates
when they shut down. Queues can also be dynamically added
or removed with the number of vCPUs.
Isolation. CoreEngine sits in an ideal position to carry out
isolation among VMs, a task essential in public clouds with
VMs sharing one NSM. In our design CoreEngine polls each
queue set in a round-robin fashion to ensure the basic fair
sharing. Providers can implement other forms of isolation
mechanisms to rate limit a VM in terms of bandwidth or the
number of NQEs (i.e. operations) per second, which we also
experimentally show in §7.6. Note that CoreEngine isolation
happens for egress; ingress isolation at the NSM in general
is more challenging and may need to resort to physical NIC
queues [21].

4.5 Processing Application Data
So far we have covered API redirection, socket semantics
transmission, NQE switching, and CoreEngine management
in NetKernel. We now discuss the last missing piece: how
application data are actually processed in the system.
SendingData.Application data are transmitted by hugepages
shared between the VM and NSM. Their NK devices main-
tain a hugepage region that is mmaped to the application
hugepages. For sending data with send(), GuestLib copies
data from userspace directly to the hugepage, and adds a data
pointer to the send NQE. It also increases the send buffer us-
age for this socket similar to the send buffer size maintained
in an OS. The send() now returns to the application. Ser-
viceLib invokes the tcp_sendmsg() provided by the kernel
stack upon receiving the send NQE. Data are obtained from
the hugepage, processed by the network stack and sent via
the vNIC. A new NQE is generated with the result of send
at NSM and sent to GuestLib, who then decreases the send
buffer usage accordingly.
Receiving Data. Now for receiving packets in the NSM, a
normal network stack would send received data to userspace
applications. In order to send received data to the user VM,
ServiceLib then copies the data chunk to huge pages and
create a new NQE to the receive queue, which is then sent to
the VM. It also increases the receive buffer usage for this con-
nection, similar to the send buffer maintained by GuestLib
described above. The rest of the receive process is already
explained in §4.2. Note that application uses recv() to copy
data from hugepages to their own buffer.
ServiceLib.As discussed ServiceLib deals with much of data
processing at the NSM side so the network stack works in
concert with the rest of NetKernel. One thing to note is that
unlike the kernel space GuestLib, ServiceLib should live in
the same space as the network stack to ensure best perfor-
mance.We have focused on a Linux kernel stackwith a kernel
space ServiceLib here. The design of a userspace ServiceLib
for a userspace stack is similar in principle. We implement
both types of stacks as NSMs in §5. ServiceLib polls all its
queues whenever possible for maximum performance.

4.6 Optimization
We present several best-practice optimizations employed in
NetKernel to improve efficiency.
Pipelining.NetKernel applies pipelining in general between
VM and NSM for performance. For example on the VM
side, a send() returns immediately after putting data to the
hugepages, instead of waiting for the actual send result from
the NSM. Similarly the NSM would handle the accept()
by accepting a new connection and returning immediately,
before the corresponding NQE is sent to GuestLib and then
application to process. Doing so does not break BSD socket
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semantics. Take send() for example. A successful send()
does not guarantee delivery of the message [12]; it merely
indicates the message is written to socket buffer successfully.
In NetKernel a successful send() indicates the message is
written to buffer in the hugepages successfully. As explained
in §4.5 the NSM sends the result of send back to the VM to
indicate if the socket buffer usage can be decreased or not.
Interrupt-Driven Polling. We adopt an interrupt-driven
polling design for NQE event notification to GuestLib’s NK
device. This is to reduce the overhead of GuestLib and user
VM. When an application is waiting for events e.g. the result
of the socket() call or receive data for epoll, the device will
first poll its completion queue and receive queue. If no new
NQE comes after a short time period (20µs in our experi-
ments), the device sends an interrupt to CoreEngine, notify-
ing that it is expecting NQE, and stops polling. CoreEngine
later wakes up the device, which goes back to polling mode
to process new NQEs from the completion queue.

Interrupt-driven polling presents a favorable trade-off be-
tween overhead and performance compared to pure polling
based or interrupt based design. It saves precious CPU cycles
when load is low and ensures the overhead of NetKernel is
very small to the user VM. Performance on the other hand
is competent since the response NQE is received within the
polling period in most cases for blocking calls, and when
the load is high polling automatically drives the notification
mechanism. As explained before CoreEngine and ServiceLib
both use busy polling to maximize performance.
Batching. As a common best-practice, batching is used in
many parts of NetKernel for better throughput. CoreEngine
uses batching whenever possible for polling from and copy-
ing into the queues. The NK devices also receive NQEs in a
batch for both GuestLib and ServiceLib.

5 IMPLEMENTATION
Our implementation is based on QEMU KVM 2.5.0 and Linux
kernel 4.9 for both the host and the guest OSes, with over
11K LoC. We plan to open source our implementation.
GuestLib.We add the SOCK_NETKERNEL socket to the kernel
(net.h), and modify socket.c to rewrite the SOCK_STREAM
to SOCK_NETKERNEL during the socket creation. We imple-
ment GuestLib as a kernel module with two components:
Guestlib_core and nk_driver. Guestlib_core is mainly for
Netkernel sockets and NQE translation, and nk_driver is
for NQE communications via queues. Guestlib_core and
nk_driver communicate with each other using function calls.
ServiceLib and NSM.We also implement ServiceLib as two
components: Servicelib_core and nk_driver. Servicelib_core
translates NQEs to network stack APIs, and the nk_driver is
identical with the one in GuestLib. For the kernel stack NSM,
Servicelib_core calls the kernel APIs directly to handle socket

operations without entering userspace. We create an inde-
pendent kthread to poll the job queue and send queue for
NQEs to avoid kernel stuck. Some BSD socket APIs can not
be invoked in kernel space directly. We use EXPORT_SYMBOLS
to export the functions for ServiceLib. Meanwhile, the bound-
ary check between kernel space and userspace is disabled.
We use per-core epoll_wait() to obtain incoming events
from the kernel stack.

We also port mTCP [11] as a userspace stack NSM. It uses
DPDK 17.08 as the packet I/O engine. The DPDK driver has
not been tested for 100G NICs and we fixed a compatibility
bug during the process; more details are in §6.3. For sim-
plicity, we maintain the two-thread model and per-core data
structure in mTCP. We implement the NSM in mTCP’s ap-
plication thread at each core. The per-core mTCP thread (1)
translates NQEs polled from the NK device to mTCP socket
APIs, and (2) responds NQEs to the tenant VM based on
the network events collected by mtcp_epoll_wait(). Since
mTCP works in non-blocking mode for performance en-
hancement, we buffer send operations at each core and set
the timeout parameter to 1ms in mtcp_epoll_wait() to
avoid starvation when polling NQE requests.
Queues andHuge Pages. The huge pages are implemented
based on QEMU’s IVSHMEM. The page size is 2 MB and we
use 128 pages. The queues are ring buffers implemented as
much smaller IVSHMEM devices. Together they form a NK
device which is a virtual device to the VM and NSM.
CoreEngine. The CoreEngine is a daemon with two threads
on the KVM hypervisor. One thread listens on a pre-defined
port to handle NK device (de)allocation requests, namely 8-
byte network messages of the tuples ⟨ce_op, ce_data⟩. When
a VM (or NSM) starts (or terminates), it sends a request to
CoreEngine for registering (or deregistering) a NK device.
If the request is successfully handled, CoreEngine responds
in the same message format. Otherwise, an error code is
returned. The other thread polls NQEs in batches from all
NK devices and switches them as described in §4.3.

6 NEW USE CASES
To demonstrate the potential of NetKernel, we present some
new use cases that are realized in our implementation. Details
of our testbed is presented in §7.1. The first two use cases
show benefits for the operator, while the next two show
benefits for users.

6.1 Multiplexing
Here we describe a new use case where the operator can
optimize resource utilization by serving multiple bursty VMs
with one NSM.
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To make things concrete we draw upon a user traffic trace
collected from a large cloud in September 2018. The trace con-
tains statistics of tens of thousands of application gateways
(AGs) that handle tenant (web) traffic in order to provide load
balancing, proxy, and other services. The AGs are internally
deployed as VMs by the operator. We find that the AG’s av-
erage utilization is very low most of the time. Figure 7 shows
normalized traffic processed by three most utilized AGs (in
the same datacenter) in our trace with 1-minute intervals for
a 1-hour period. We can clearly see the bursty nature of the
traffic. Yet it is very difficult to consolidate their workloads in
current cloud because they serve different customers using
different configurations (proxy settings, LB strategies, etc.),
and there is no way to separate the application logic with
the underlying network stack. The operator has to deploy
AGs as independent VMs, reserve resources for them, and
charge customers accordingly.
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Figure 7: Traffic of three most
utilized application gateways
(AGs) in our trace. They are
deployed as VMs.
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Figure 8: Per-core RPS compari-
son. Baseline uses 12 cores for 3
AGs, while NetKernel with mul-
tiplexing only needs 9 cores.

NetKernel enables multiplexing across AGs running dis-
tinct services, since the common TCP stack processing is
now separated into the NSM. Using the three most utilized
AGs which have the least benefit from multiplexing as an ex-
ample, without NetKernel each needs 4 cores in our testbed
to handle their peak traffic, and the total per-core requests
per second (RPS) of the system is depicted in Figure 8 as
Baseline. Then in NetKernel, we deploy 3 VMs each with 1
core to replay the trace as the AGs, and use a kernel stack
NSM with 5 cores which is sufficient to handle the aggregate
traffic. Totally 9 cores are used including CoreEngine, rep-
resenting a saving of 3 cores in this case. The per core RPS
is thus improved by 33% as shown in Figure 8. Each AG has
exactly the same RPS performance without any packet loss.
In the general case multiplexing these AGs brings even

more gains since their peak traffic is far from their capacity.
For ease of exposition we assume the operator reserves 2
cores for each AG. A 32-core machine can host 16 AGs. If
we use NetKernel with 1 core for CoreEngine and a 2-core
NSM, we find that we can always pack 29 AGs each with
1 core for the application logic as depicted in Table 2, and
the maximum utilization of the NSM would be well under

60% in the worst case for ∼97% of the AGs in the trace. Thus
one machine can run 13 or 81.25% more AGs now, which
means the operator can save over 40% cores for supporting
this workload. This implies salient financial gains for the
operator: according to [24] one physical core has a maximum
potential revenue of $900/yr.

Baseline NetKernel
Total # Cores 32 32
NSM 0 2
CoreEngine 0 1
# AGs 16 29

Table 2: NetKernel multiplexes more AGs per machine and saves
over 40% cores.

6.2 Fair Bandwidth Sharing
TCP is designed to achieve flow-level fairness for bandwidth
sharing in a network. This leads to poor fairness in a cloud
where a misbehaved VM can hog the bandwidth by say us-
ing many TCP flows. Distributed congestion control at an
entity-level (VM, process, etc.) such as Seawall [55] has been
proposed and implemented in a non-virtualized setting. Yet
using Seawall in a cloud has many difficulties: the provider
has to implement it on the vSwitch or hypervisor and make it
work for various guest OSes. The interaction with the VM’s
own congestion control logic makes it even harder [31].
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Figure 9: By sharing a unified congestion window to same destina-
tion, a NSM can achieve VM fairness.

NetKernel allows schemes like Seawall to be easily im-
plemented as a new NSM and effectively enforce VM-level
fair bandwidth sharing. Our proof-of-concept runs a simple
VM-level congestion control in the NSM: One VM maintains
a global congestion window shared among all its connec-
tions to different destinations. Each individual flow’s ACK
advances the shared congestion window, and when sending
data, each flow cannot send more than 1/n of the shared
window where n is the number of active flows. We then
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# vCPUs 1 2 4
Kernel stack NSM 71.9K 133.6K 200.1K
mTCP NSM 98.1K 183.6K 379.2K

Table 3: Performance of unmodified nginx using ab with 64B html
files, a concurrency of 100, and 10M requests in total. The NSM and
VM use the same number of vCPUs.

run experiments with 2 VMs: a well-behaved VM that has
8 active flow, and a selfish VM that uses varying number of
active flows. Figure 9 presents the results. NetKernel with
our VM-level congestion control NSM is able to enforce an
equal share of bandwidth between two VMs regardless of
number of flows. We leave the implementation of a complete
general solution such as Seawall in NetKernel as future work.

6.3 Deploying mTCP without API Change
We now focus on use cases of deployment and performance
benefits for users.
Most userspace stacks use their own APIs and require

applications to be ported [1, 5, 33]. For example, to use
mTCP an application has to use mtcp_epoll_wait() to fetch
events [33]. The semantics of these APIs are also different
from socket APIs [33]. These factors lead to expensive code
changes and make it difficult to use the stack in practice.
Currently mTCP is ported for only a few applications, and
does not support complex web servers like nginx.

With NetKernel, applications can directly take advantage
of userspace stacks without any code change. To show this,
we deploy unmodified nginx in the VM with the mTCP NSM
we implement, and benchmark its performance using ab.
Both VM and NSM use the same number of vCPUs. Table 3
depicts that mTCP provides 1.4x–1.9x improvements over
the kernel stack NSM across various vCPU setting.

NetKernel also mitigates the maintenance efforts required
from tenants. We provide another piece of evidence with
mTCP here. When compiling the DPDK version required
by mTCP on our testbed, we could not set the RSS (receive
side scaling) key properly to the mlx5_core driver for our
NIC and mTCP performance was very low. After discussing
with mTCP developers, we were able to attribute this to the
asymmetric RSS key used in the NIC, and fixed the prob-
lem by modifying the code in DPDK mlx5 driver. We have
submitted our fix to mTCP community. Without NetKernel
tenants would have to deal with such technical complication
by themselves. Now they are taken care of transparently,
saving much time and effort for many users.

6.4 Shared Memory Networking
In the existing architecture, a VM’s traffic always goes though
its network stack, then the vNIC, and the vSwitch, even when
the other VM is on the same host. It is difficult for both users
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Figure 10: Using shared memory NSM for NetKernel for traffic be-
tween two colocating VMs of the same user. NetKernel uses 2 cores
for each VM, 2 cores for the NSM, and 1 core for CoreEngine. Base-
line uses 2 core for the sending VM, 5 cores for receiving VM, and
runs TCP Cubic. Both schemes use 8 TCP connections.

and operator to optimize for this case, because the VM has
no information about where the other endpoint is. The hy-
pervisor cannot help either as the data has already been
processed by the TCP/IP stack. With NetKernel the NSM is
part of the infrastructure, the operator can easily detect the
on-host traffic and use shared memory to copy data for the
two VMs. We build a prototype NSM to demonstrate this
idea: When a socket pair is detected as an internal socket pair
by the GuestLib, and the two VMs belong to the same user, a
shared memory NSM takes over their traffic. This NSM sim-
ply copies the message chunks between their hugepages and
bypasses the TCP stack processing. As shown in Figure 10,
with 7 cores in total, NetKernel with shared memory NSM
can achieve 100Gbps, which is ∼2x of Baseline using TCP
Cubic.

7 EVALUATION
We seek to examine a few crucial aspects of NetKernel in
our evaluation: (1) microbenchmarks of NQE switching and
data copying §7.2; (2) basic performance with the kernel
stack NSM §7.3; (3) scalability with multiple cores §7.4 and
multiple NSMs §7.5; (4) isolation of multiple VMs §7.6; (5)
latency of short connections §7.7; and (6) overhead of the
system §7.8.

7.1 Setup
Our testbed servers each have two Xeon E5-2698 v3 16-core
CPUs clocked at 2.3 GHz, 256 GBmemory at 2133MHz, and a
Mellanox ConnectX-4 single port 100G NIC. Hyperthreading
is disabled. We compare to the status quo where an appli-
cation uses the kernel TCP stack in its VM, referred to as
Baseline in the following. We designate NetKernel to refer to
the common setting where we use the kernel stack NSM in
our implementation. When mTCP NSM is used we explicitly
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mark the setting in the figures. CoreEngine uses one core
for NQE switching throughout the evaluation. Unless stated
otherwise, Baseline and NetKernel use 1 vCPU for the VM,
and NetKernel uses 1 vCPU for the NSM. The same TCP
parameter settings are used for both systems.

7.2 Microbenchmarks
We first microbenchmark NetKernel regarding NQE and data
transmission performance.
NQE switching. NQEs are transmitted by CoreEngine as
a software switch. It is important that CoreEngine offers
enough horsepower to ensure performance at 100G. We mea-
sure CoreEngine throughput defined as the number of 32-
byte NQEs copied from GuestLib’s NK device queues to the
ServiceLib’s NK device queues with two copy operations. Fig-
ure 11 shows the results with varying batch sizes. CoreEngine
achieves ∼8M NQEs/s throughput without batching. With a
small batch size of 4 or 8 throughput reaches 41.4M NQEs/s
and 65.9M NQEs/s, respectively, which is sufficient for most
applications.2 More aggressive batching provides through-
put up to 198M NQEs/s. We use a batch size of 4 in all the
following experiments.
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Figure 11: CoreEngine switching
throughput using a single core
with different batch sizes.
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Figure 12: Message copy through-
put via hugepages with different
message sizes.

Memory copy.We also measure the memory copy through-
put between GuestLib and ServiceLib via hugepages. A mem-
ory copy in this experiment includes the following: (0) ap-
plication in the VM issues a send() with data, (1) GuestLib
gets a pointer from the hugepages, (2) copies the message
to hugepages, (3) prepares a NQE with the data pointer, (4)
CoreEngine copies the NQE to ServiceLib, (5) ServiceLib ob-
tains the data pointer and puts it back to the hugepages. Thus
it measures the effective application-level throughput using
NetKernel (including NQE transmission) without network
stack processing.

Observe from Figure 12 that NetKernel delivers over 100G
throughput with messages larger than 4KB: with 8KB mes-
sages 144G is achievable. Thus NetKernel provides enough
raw performance to the network stack and is not a bottleneck
to the emerging 100G deployment in public clouds.
264Mpps provides more than 100G bandwidth with an average message
size of 192B.

7.3 Basic Performance with Kernel Stack
We now look at NetKernel’s basic performance with Linux
kernel stack. The results here are obtained with a 1-core
VM and 1-core NSM; all other cores of the CPU are disabled.
Baseline uses one core for the VM.
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Figure 13: Single TCP stream
send throughput with the ker-
nel stack NSM. The NSM uses 1
vCPU.
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Figure 14: Single TCP stream re-
ceive throughput with the ker-
nel stack NSM. The NSM uses 1
vCPU.

Single TCP Stream. We benchmark the single stream TCP
throughput with different message sizes. The results are av-
eraged over 5 runs each lasting 30 seconds. Figure 13 depicts
the send throughput and Figure 14 receive throughput. We
find that NetKernel performs on par with Baseline in all cases.
Send throughput reaches 30.9Gbps and receive throughput
tops at 13.6Gbps in NetKernel. Receive throughput is much
lower because the kernel stack’s RX processing is much more
CPU-intensive with interrupts. Note that if the other cores
of the NUMA node are not disabled, soft interrupts (softirq)
may be sent to those cores instead of the one assigned to the
NSM (or VM), thereby inflating the receive throughput.3
Multiple TCP Streams.We look at throughput for 8 TCP
streams on the same single-core setup as above. Figures 15
and 16 show the results. Send throughput tops at 55.2Gbps,
and receive throughput tops at 17.4Gbpswith 16KBmessages.
NetKernel achieves the same performance with Baseline.
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Figure 15: 8-stream TCP send
throughput with the kernel
stack NSM. The NSM uses 1
vCPU.
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Figure 16: 8-stream TCP receive
throughput with the kernel
stack NSM. The NSM uses 1
vCPU.

Short TCP Connections. We also benchmark NetKernel’s
performance in handling short TCP connections using a
3We observe 30.6Gbps receive throughput with 16KB messages in both
NetKernel and Baseline when leaving the other cores on.
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server sending a short message as a response. The servers
are multi-threaded using epoll with a single listening port.
Our workload generates 10 million requests in total with a
concurrency of 1000. The connections are non-keepalive. Ob-
serve from Figure 17 that NetKernel achieves ∼70K requests
per second (rps) similar to Baseline, when the messages are
smaller than 1KB. For larger message sizes performance de-
grades slightly due to more expensive memory copies for
both systems.
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Figure 17: RPS with the kernel stack NSM using 1 vCPU.

7.4 Network Stack Scalability
Here we focus on the scalability of network stacks in NetK-
ernel.
Throughput. We use 8 TCP streams with 8KB messages to
evaluate the throughput scalability of the kernel stack NSM.
Results are averaged over 5 runs each lasting 30 seconds.
Figure 18 shows that both systems achieve the line rate of
100G using 3 vCPUs ormore for send throughput. For receive,
both achieve 91Gbps using 8 vCPUs as shown in Figure 19.
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Figure 18: Send throughput of 8
TCP streams with varying num-
bers of vCPUs. Message size
8KB.
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Figure 19: Receive throughput
of 8 TCP streams with varying
numbers of vCPUs.Message size
8KB.

Short TCP Connections. We also evaluate scalability of
handling short connections. The same epoll servers described
before are used here with 64B messages. Results are averaged
over a total of 10 million requests with a concurrency of 1000.
Socket option SO_REUSEPORT is always used.
Figure 20 shows that NetKernel has the same scalability

as Baseline: performance increases to ∼400Krps with 8 vC-
PUs, i.e. 5.7x the single core performance. More interestingly,

to demonstrate NetKernel’s full capability, we also run the
mTCPNSMwith 1, 2, 4, and 8 vCPUs.4 NetKernel with mTCP
offers 190Krps, 366Krps, 652Krps, and 1.1Mrps respectively,
and shows better scalability than kernel stack.
The results show that NetKernel preserves the scalabil-

ity of different network stacks, including high performance
stacks like mTCP.
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Figure 20: Performance of TCP short connections with varying
number of vCPUs. Message size 64B. Both kernel stack and mTCP
NSMs are used.

7.5 NetKernel Scalability
We now investigate the scalability of our design. In par-
ticular, we look at whether adding more NSMs can scale
performance. Different from the previous section where we
focus on the scalability of a network stack, here we aim to
show the scalability of NetKernel’s overall design.
We use the same epoll servers in this set of experiments.

The methodology is the same as §7.4, with 8 connections
and 8KB messages for throughput experiments and 10 mil-
lions of requests with 64B messages for short connections
experiments. Each kernel stack NSM now uses 2 vCPUs. The
servers in different NSMs listen on different ports and does
not share an accept queue. We vary the number of NSMs to
serve this 1-core VM.

# of 2-vCPU NSMs 1 2 3 4
Send throughput (Gbps) 85.1 94.0 94.1 94.2
Receive throughput (Gbps) 33.6 61.2 91.0 91.0
Requests per sec (x103) 131.6 260.4 399.1 520.1

Table 4: Throughput scaling and short connections with varying
numbers of NetKernel with kernel stackNSM eachwith two vCPUs.

Table 4 shows the throughput scaling results. Throughput
for send is already 85.1Gbps with 2 vCPUs (recall Figure 18),
and adding NSMs does not improve it beyond 94.2Gbps.
Throughput for receive shows almost linear scalability on the
4Using other numbers of vCPUs for mTCP causes stability problems even
without NetKernel.
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other hand. Performance of short connections also exhibits
near linear scalability: One NSM provides 131.6Krps, 2 NSMs
260.4Krps, and 4 NSMs 520.1Krps which is 4x better. The
results indicate that NetKernel’s design is highly scalable;
reflecting on results in §7.4, the network stack’s scalability
limits its multicore performance.

7.6 Isolation
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Figure 21: VM 1 is capped at 1Gbps, VM2 at 500Mbps, and VM3 un-
capped. All VMs use the same kernel stack NSM. The NSM is as-
signed 10Gbps bandwidth. NetKernel isolatesVM1 andVM2 success-
fully while allowing VM3 to obtain the remaining capacity.

Isolation is important in public clouds to ensure co-located
tenants do not interfere with each other. We conduct an ex-
periment to verify NetKernel’s isolation guarantee. As dis-
cussed in §4.4, CoreEngine uses round-robin to poll each
VM’s NK device. In addition, for this experiment we imple-
ment token buckets in CoreEngine to limit the bandwidth of
each VM, taking into account varying message sizes. There
are 3 VMs now: VM1 is rated limited at 1Gbps, VM2 at
500Mbps, and VM3 has unlimited bandwidth. They arrive
and depart at different times. They are colocated on the same
host running a kernel stack NSM using 1 vCPU. The NSM is
given a 10G VF for simplicity of showing work conservation.

Figure 21 shows the time series of each VM’s throughput,
measured by our epoll servers at 100ms intervals. VM1 joins
the system at time 0 and leaves at 25s. VM2 comes later at 4.5s
and leaves at 21s. VM3 joins last and stays until 30s. Observe
that NetKernel throttles VM1’s and VM2’s throughput at
their respective limits correctly despite the dynamics. VM3
is also able to use all the remaining capacity of the 10G
NSM: it obtains 9Gbps after VM2 leaves and 10Gbps after
VM1 leaves at 25s. Therefore, NetKernel is able to achieve
the same isolation in today’s public clouds with bandwidth
caps. More complex isolation mechanisms can be applied in
NetKernel, which is beyond the scope of this paper.

7.7 Latency
One may wonder if NetKernel with the NQE transmission
would add delay to TCP processing, especially in handling

short connections. Table 5 shows the latency statistics when
we run ab to generate 1K concurrent connections to the epoll
server for 64Bmessages. A total of 5 million requests are used.
NetKernel achieves virtually the same latency as Baseline.
Even for the mTCP NSM, NetKernel preserves its low latency
due to the much simpler TCP stack processing and various
optimization [33]. The standard deviation of mTCP latency is
much smaller, implying that NetKernel itself provides stable
performance to the network stacks.

Min Mean Stddev Median Max
Baseline 0 16 105.6 2 7019
NetKernel 0 16 105.9 2 7019
NetKernel, mTCP NSM 3 4 0.23 4 11

Table 5: Distribution of response times (ms) for 64B messages with
5 million requests and 1K concurrency.

7.8 Overhead
We finally investigate NetKernel’s CPU overhead. To quan-
tify it, we use the epoll servers at the VM side, and run clients
from a different machine with fixed throughput or requests
per second for both NetKernel and Baseline with kernel TCP
stack. We disable all unnecessary background system ser-
vices in both the VM and NSM, and ensures the CPU usage is
almost zero without running our servers. During the experi-
ments, we measure the total number of cycles spent by the
VM in Baseline, and the total cycles spent by the VM and the
NSM together in NetKernel. We then report NetKernel’s CPU
usage normalized over Baseline’s for the same performance
level in Tables 6 and 7.

Throughput 20Gbps 40Gbps 60Gbps 80Gbps 100Gbps
Normalized CPU usage 1.14 1.28 1.42 1.56 1.70

Table 6: Overhead for throughput. The NSM runs the Linux kernel
TCP stack. We use 8 TCP streams with 8KB messages. NetKernel’s
CPU usage is normalized over that of Baseline.

Requests per second (rps) 100K 200K 300K 400K 500K
Normalized CPU usage 1.06 1.05 1.08 1.08 1.09

Table 7: Overhead for short TCP connections. The NSM runs the
Linux kernel TCP stack. We use 64B messages with a concurrency
of 100.

We can see that to achieve the same throughput, NetKernel
incurs relatively high overhead especially as throughput
increases. This is due to the extra memory copy from the
hugepages to the NSM. This overhead can be optimized away
by implementing zerocopy between the hugepages and the
NSM, which we are working on currently.
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Table 7 shows NetKernel’s overhead with short TCP con-
nections. Observe that the overhead ranges from 5% to 9% in
all cases and is fairly mild. As the message is only 64B here,
the results verify that the NQE transmission overhead of the
NK devices is small.
Lastly, throughout all experiments of our evaluation we

dedicated one core to CoreEngine, which is another over-
head. As we focus on showing feasibility and potential of
NetKernel in this paper, we resort to software NQE switch-
ing which attributes to the polling overhead. It is possible
to explore hardware offloading using FPGAs for example to
attack this overhead, just like offloading the vSwitch pro-
cessing to SmartNICs [23, 24]. This way CoreEngine does
not consume CPU for the majority of the NQEs: only the
first NQE of a new connection needs to be handled in CPU
(direct to a proper NSM as in §4.3).

To quickly recap, current NetKernel implementation in-
curs CPU overheads especially for extra data copy andCoreEngine.
We believe, however, they are not inevitable when separating
the network stack from the guest OS. They can be largely
mitigated using known implementation techniques which is
left as future work. In addition, as shown in §6.1 multiplexing
can be used in NetKernel’s current implementation to actu-
ally save CPU compared to dedicating cores to individual
VMs.

8 DISCUSSION
NetKernel marks a significant departure from the way net-
working is provided to VMs nowadays. One may have the
following concerns which we address now.
Howabout security?Onemay have security concerns with
NetKernel’s approach of using the provider’s NSM to han-
dle tenant traffic. Security impact is minimal because most
of the security protocols such as HTTPS/TLS work at the
application layer. They can work as usual with NetKernel.
One exception is IPSec. Due to the certificate exchange is-
sue, IPSec does not work directly in our design. However, in
practice IPSec is usually implemented at dedicated gateways
instead of end-hosts [56]. Thus we believe the impact is not
serious.
How about fate-sharing?Making network stack a service
introduces some more additional fate-sharing, say when
VMs share the same NSM. We believe this is not serious
because cloud customers already have fate-sharing with the
vSwitch, hypervisor, and the complete virtual infrastructure.
The efficiency, performance, and convenience benefits of our
approach as demonstrated before outweigh the marginal in-
crease of fate-sharing; the success of cloud computing these
years is another strong testament to this tradeoff.

How can I do netfilter now? Due to the removal of vNIC
and redirection from the VM’s own TCP stack, some net-
working tools like netfilter are affected. Though our current
design does not address them, they may be supported by
adding additional callback functions to the network stack
in the NSM. When the NSM serves multiple VMs, it then
becomes challenging to apply netfilter just for packets of
a specific VM. We argue that this is acceptable since most
tenants wish to focus on their applications instead of tuning
a network stack. NetKernel does not aim to completely re-
place the current architecture. Tenants may still use the VMs
without NetKernel if they wish to gain maximum flexibility
on the network stack implementation.
Can hardware offloading be supported? Providers are
exploring how to offload certain networking tasks, such
as congestion control, to hardware like FPGA [15] or pro-
grammable NICs [46]. NetKernel is not at odds with this
trend. It actually provides better support for hardware of-
floading compared to the legacy architecture. The provider
can fully control how the NSM utilizes the underlying hard-
ware capabilities. NetKernel can also exploit hardware accel-
eration for NQE switching as discussed in §7.8.

9 RELATEDWORK
We survey several lines of closely related work.

There has been emerging interest on providing proper
congestion control abstractions in our community. CCP [47]
for examples puts forth a common API to expose various con-
gestion control signals to congestion control algorithms in-
dependent of the data path. HotCocoa proposes abstractions
for offloading congestion control to hardware [15]. They fo-
cus on congestion control while NetKernel focuses on stack
architecture. They are thus orthogonal to our work and can
be deployed as NSMs in NetKernel to reduce the effort of
porting different congestion control algorithms.
Some work has looked at how to enforce a uniform con-

gestion control logic across tenants without modifying VMs
[20, 31]. The differences between this line of work and ours
are clear: these approaches require packets to go through
two different stacks, one in the guest kernel and another in
the hypervisor, leading to performance and efficiency loss.
NetKernel does not suffer from these problems. In addition,
they also focus on congestion control while our work targets
the entire network stack.
In a broader sense, our work is also related to the de-

bate on how an OS should be architected in general, and
microkernels [26] and unikernels [22, 42] in particular. Mi-
crokernels take a minimalist approach and only implement
address space management, thread management, and IPC in
the kernel. Other tasks such as file systems and I/O are done
in userspace [58]. Unikernels [22, 42] aim to provide various
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OS services as libraries that can be flexibly combined to con-
struct an OS. Different from these works that require radical
changes to the OS, we seek to flexibly provide the network
stack as a service without re-writing the existing guest ker-
nel or the hypervisor. In other words, our approach brings
some key benefits of microkernels and unikernels without a
complete overhaul of existing virtualization technology. Our
work is also in line with the vision presented in the position
paper [14]. We provide the complete design, implementation,
and evaluation of a working system in addition to several
new use cases compared to [14].
Lastly, there are many novel network stack designs that

improve performance. The kernel TCP/IP stack continues
to witness optimization efforts in various aspects [40, 49,
59]. On the other hand, since mTCP [33] userspace stacks
based on high performance packet I/O have been quickly
gaining momentum [1, 8, 38, 43, 44, 51, 60]. Beyond transport
layer, novel flow scheduling [16] and end-host based load
balancing schemes [30, 35] are developed to reduce flow
completion times. These proposals are for specific problems
of the stack, and can be potentially deployed as network
stack modules in NetKernel. This paper takes on a broader
and fundamental issue: how can we properly re-factor the
VM network stack, so that different designs can be easily
deployed, and operating them can be more efficient?

10 CONCLUSION
We have presented NetKernel, a system that decouples the
network stack from the guest, therefore making it part of the
virtualized infrastructure in the cloud. NetKernel improves
network management efficiency for operator, and provides
deployment and performance gains for users. We experimen-
tally demonstrated new use cases enabled by NetKernel that
are otherwise difficult to realize in the current architecture.
Through testbed evaluation with 100G NICs, we showed that
NetKernel achieves the same performance and isolation as
today’s cloud. We will open source our implementation after
paper review.

NetKernel opens up new design space with many possibil-
ities. As future work we are implementing zerocopy to the
NSM, and exploring using hardware queues of a SmartNIC to
offload CoreEngine and eliminate CPU overhead as in §7.8.

This work does not raise any ethical issues.
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