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Abstract— This paper presents a system called NetKernel that
decouples the network stack from the guest virtual machine and
offers it as an independent module. NetKernel represents a new
paradigm where network stack can be managed as part of the vir-
tualized infrastructure. It provides important efficiency benefits:
By gaining control and visibility of the network stack, operators
can perform network management more directly and flexibly,
such as multiplexing VMs running different applications to the
same network stack module to save CPU cores, and enforcing fair
bandwidth sharing. Users also benefit from the simplified stack
deployment and better performance: For example mTCP can
be deployed without API change to support nginx natively, and
shared memory networking can be readily enabled to improve
performance of colocated VMs. Testbed evaluation using 100G
NICs shows that NetKernel preserves the performance and
scalability of both kernel and userspace network stacks, and
provides the same isolation as the current architecture.

Index Terms— Network
re-architecting.

stack, virtualization, VM,

I. INTRODUCTION

IRTUAL machines (VMs) are the predominant virtual-

ization form in today’s cloud due to their strong isolation
guarantees. VMs allow customers to run applications in a wide
variety of operating systems (OSes) and configurations. VMs
are also heavily used by cloud operators to deploy internal
services, such as load balancing, proxy, VPN, etc., both in
a public cloud for tenants and in a private cloud for various
business units of an organization.
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VM based virtualization largely follows traditional OS
design. In particular, the TCP/IP network stack is encapsu-
lated inside the VM as part of the guest OS as shown in
Figure 1(a). Applications interface with the network stack,
which is transparent for operators, using the virtual NIC
abstraction. This architecture preserves the familiar hardware
and OS abstractions so a vast array of workloads can be easily
moved into the cloud. It also provides high flexibility for
applications to customize the entire network stack.

We argue that the current division of labor between appli-
cation and network infrastructure is becoming increasingly
inadequate, especially in a private cloud setting. The central
issue is that the network stack is controlled solely by individual
guest VM; the operator has almost zero visibility or control.
This leads to efficiency problems that manifest in various
aspects of running the cloud network. Firstly, the operator
is unable to orchestrate resource allocation at the end-points
of the network fabric, resulting in low resource utilization.
It remains difficult today for the operator to meet or define
performance SLAs despite much prior work [15], [33], [40],
[54], [55], as she cannot precisely provision resources just
for the network stack or control how the stack consumes
these resources. Further, resources (e.g. CPU) have to be
provisioned on a per-VM basis based on the peak traffic; it is
impossible to coordinate across VM boundaries. This degrades
the overall utilization of the network stack since in practice
traffic to individual VMs is extremely bursty. Also, many
network management tasks like monitoring, diagnosis, and
troubleshooting have to be performed in an extra layer outside
the guest VMs, which requires significant efforts in design
and implementation [21], [58], [59]. They can be done more
efficiently if the network stack is opened up to the operator.

Even the simple task of maintaining or deploying a network
stack suffers from much inefficiency today. Numerous new
stack designs and optimizations ranging from congestion con-
trol [12], [17], [48], scalability [32], [41], zerocopy datapath
[41, [32], [53], [64], NIC multiqueue scheduling [63], etc.
have been proposed in our community. Yet the operator, with
sufficient expertise and resources, could not easily deploy
these solutions in a virtualized cloud to improve performance
and reduce overheads because it does not own or control the
network stack. As a result, our community is still finding
ways to deploy DCTCP in the public cloud [18], [29], [34].
On the other hand, applications without much knowledge of
the underlying network or expertise on networking are forced
to juggle the deployment and maintenance details. For example
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Fig. 1. Decoupling network stack from the guest, and making it part of the

virtualized infrastructure.

if one wants to deploy a new stack like mTCP [32], he faces a
host of problems such as setting up kernel bypass, testing with
kernel versions and NIC drivers, and porting applications to
the new APIs. Given the intricacy of implementation and the
velocity of development, it is a daunting task for individual
users, whether tenants in a public cloud or first-party services
in a private cloud, to maintain the network stack all by
themselves.

To address these limitations, we advocate the separation of
network stack from the guest OS as a new paradigm, in which
the network stack is coupled into the virtualized infrastructure
of cloud. Operators can directly deploy, manage, optimize the
network stack, and comprehensively promote the efficiency
without affecting applications’ execution. As the heavy-lifting
is taken care of, applications can just use network stack as a
basic service of the infrastructure and focus on their business
logic.

More concretely, as shown in Figure 1(b), we propose to
decouple the VM network stack from the guest OS. We keep
the network APIs such as BSD sockets intact, and use them
(instead of VNIC) as the abstraction boundary between appli-
cation and infrastructure. Each VM is served by an external
network stack module (NSM) that runs the network stack
chosen by the user, e.g., the kernel-bypass stack mTCP or the
improved kernel stack FastSocket [41]. Application data are
handled in the NSM, which is designed and implemented by
the operator. Various network stacks can be provided as dif-
ferent NSMs to ensure applications with diverse requirements
can work. This new paradigm does not necessarily enforce
a single transport design, or trade off such flexibility of the
existing architecture.

We make three specific contributions in this paper.

o We design and implement NetKernel that demonstrates
our new approach is feasible on existing KVM virtual-
ization platforms (§3—§5). NetKernel provides transparent
BSD socket redirection so existing applications can run
directly.

o We present NetKernel’s benefits by showcasing novel
use cases that are difficult. For example, we show that
NetKernel enables multiplexing: One NSM can serve
multiple VMs at the same time and save over 40% CPU
cores without degrading performance using traces from a
production cloud.
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e We conduct a comprehensive testbed evaluation with
commodity 100GbE NICs to show that NetKernel
achieves the same scalability and isolation as the current
architecture: Using a Linux kernel stack NSM, it reaches
100G send throughput with 3 cores; using an mTCP NSM
it achieves 979K RPS with 8 cores which almost doubles
that of the kernel stack NSM.

NetKernel’s official website is https://netkernel.net.

II. MOTIVATION
Decoupling the network stack from the guest OS and
making it part of the infrastructure marks a clear departure
from the way networking is provided to VMs nowadays. In this
section we elaborate why this is a better architectural design
by presenting its benefits and tradeoffs, and contrasting it with
alternative solutions.

A. Benefits and Tradeoffs

We highlight key benefits of our vision with several new use
cases that we experimentally realize with NetKernel in §7.

Better efficiency in management for the operator. Gain-
ing control over the network stack, the operator can now
perform network management more efficiently. For example
it can orchestrate the resource provisioning strategies more
flexibly: For mission-critical workloads, it can dedicate CPU
resources to their NSMs to offer performance SLAs in terms
of throughput and RPS (requests per second) guarantees. For
elastic workloads, on the other hand, it can consolidate their
VMs to the same NSM (if they use the same network stack) to
improve its resource utilization. The operator can also directly
implement management functions as an integral part of user’s
network stack, compared to doing them in an extra layer
outside the guest OS.

Use case 1: Multiplexing (§7.1). Utilization of network stack
in VMs is very low most of the time in practice. Using a
real trace from a large cloud, we show that NetKernel enables
multiple VMs to be multiplexed onto one NSM to serve the
aggregated traffic and saves over 40% CPU cores for the
operator without performance degradation.

Use case 2: Fair bandwidth sharing (§7.2). TCP’s notion
of flow-level fairness leads to poor bandwidth sharing in data
centers [59]. We show that NetKernel can facilitate VM-level
congestion control [59] in a NSM, achieving fair sharing
regardless of the number of flows.

Deployment and performance gains for users. Making
network stack part of the virtualized infrastructure is also bene-
ficial for users in both public and private clouds. Various kernel
stack optimizations [41], [64], high-performance userspace
stacks [9], [16], [32], [53], and even designs using advanced
hardware [6], [7], [42] can now be deployed and maintained
transparently without user involvement or application code
change. For instance, DCTCP can now be deployed across the
board easily in a public cloud. Since the BSD socket is the
only abstraction exposed to the applications, it is now feasible
to adopt new stack designs independent of the guest kernel
or the network API. Our vision also opens up new design
space by allowing the network stack to exploit visibility of
the infrastructure for performance benefits.
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TABLE I

COMPARISON OF DIFFERENT NETWORK STACK ARCHITECTURES DEPENDING ON WHERE THE STACK IS. THE CURRENT ARCHITECTURE IS A
GUEST-BASED PARADIGM WHERE THE NETWORK STACK IS PART OF THE GUEST OS OF A VM

Paradigm Scenario Multiplexing | New Stack Deployment v{z)legciﬁzgtcrigﬁie
Guest-based VM X Require user effort X
Host-based Container v Limited by host OS v

Application-based | Library OS X Require user effort X

NetKernel VM + NSM v v v

Use case 3: Deploying mTCP without API change (§7.3).
We show that NetKernel enables unmodified applications
in the VM to use mTCP [32] in the NSM, and improves
performance greatly due to mTCP’s kernel bypass design.
mTCP is a userspace stack with new APIs (including modified
epoll/kgueue). During the process, we also find and fix a
compatibility issue between mTCP and our NIC driver, and
save significant maintenance time and effort for users.

Use case 4: Shared memory networking (§7.4). When two
VMs of the same user are colocated on the same host, NetK-
ernel can detect this and copy their data via shared memory
to bypass TCP stack processing and improve throughput. This
is difficult to achieve today as VMs have no knowledge about
the underlying infrastructure [39], [65].

Tradeoffs. We are conscientious of the tradeoffs our
approach brings about. For example, due to the removal of
vNIC and redirection from the VM’s own network stack, some
networking tools like netfilter are affected. This is acceptable
since most users wish to focus on their applications instead
of tuning a network stack. If they wish to gain maximum
control over the network stack they can still use VMs without
NetKernel. Also, additional fate-sharing may be introduced
by our approach say when multiple VMs share the same
NSM. We believe this is not serious because cloud users
already have fate-sharing with the vSwitch, hypervisor, and
the complete virtual infrastructure. The efficiency benefits of
our approach as demonstrated outweigh the marginal increase
of fate-sharing; the success of cloud computing these years is
another strong testament to this tradeoff. NetKernel enforces
another level of indirection in order to achieve flexibility which
does not cause performance degradation in most cases as we
will show in §6, and part of it can run on hardware for more
efficiency (see §8). Lastly, one may have security concerns
with using the NSM to handle tenant traffic. Most of the
security protocols such as HTTPS/TLS work at the application
layer and are not affected. One exception is IPSec. Due to an
issue with exchanging certificates, IPSec does not work in
our approach. However, in practice IPSec is implemented at
dedicated gateways instead of end-hosts [61]. Thus we believe
the impact is not serious. More discussion on security can be
found in §8.

B. Alternative Solutions

We now discuss several alternative architectures depending
on where the network stack resides, and why they are inade-
quate compared to NetKernel as summarized in Table 1. Note
that none of them provides all four key benefits as NetKernel
does.

Host-based containers. The first alternative is the container
scenario in the cloud, where the network stack runs on the
host machine (a.k.a. host-based). A container is essentially a
process with namespace isolation: It shares the host’s network
stack in the hypervisor. Therefore containers can achieve some
of NetKernel’s benefits, i.e., multiplexing and performance
optimization with infrastructure, since the operator can access
the hypervisor. However, container has tight coupling with
the host OS which makes the stack deployment difficult.
A Windows application in a container cannot use the Linux-
based mTCP, unless the operator ports mTCP to Windows.
With NetKernel no such porting is needed: mTCP can run in
a Linux-based NSM and serve a Windows user as the only
coupling is the BSD socket APIs.

We also note that currently containers have performance
isolation problems [37] and as a result are usually constrained
to be deployed inside VMs in production settings. In fact we
find that all major public clouds [1], [2], [5] require users
to launch containers inside VMs. Thus, our work is centered
around VMs that cover the majority of usage scenarios in
a cloud. NetKernel readily benefits containers running inside
VMs as well.

Application-based. Another alternative is to move the
network stack upwards by taking an application-based par-
adigm. A representative scenario is library OS including
unikernels [20], [43] and microkernels [25], where many OS
services including the network stack are packaged as libraries
and compiled with the application in userspace. Similar to
the guest-based paradigm, users who are unwilling to know
any details of the network stack still have to deploy the
network stack by themselves though the I/O performance can
be improved with unikernels [45] and microkernels. Unex-
pected security risks also exist as these stacks reside in the
application address space and bypass the kernel check. In
addition, application-based paradigm is a clean-slate approach
and requires radical changes to both the virtualization software
and user applications. NetKernel can flexibly decouple the
network stack from the guest without re-writing existing
applications or hypervisor.

IIT1. DESIGN PHILOSOPHY
NetKernel answers three fundamental design questions
regarding the separation of network stack from the guest OS:
1) How should socket API calls be transparently redirected
without changing applications?
2) How should the socket semantics be transmitted between
the VM and NSM whose implementation of the stack
may vary?
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3) How to ensure high performance with semantics trans-
mission (e.g., 100 Gbps)?

These questions touch upon a largely uncharted territory in
the design space. Thus our main objective in this paper is to
demonstrate feasibility of our approach on existing virtualiza-
tion platforms and showcase its potential. Performance and
overhead are not our primary goals. It is also not our goal to
improve any particular network stack design.

In answering the questions above, NetKernel’s design has
the following highlights.

1) Transparent socket API redirection. NetKernel needs
to redirect BSD socket calls to the NSM instead of the tenant
network stack. This is done by inserting into the guest a library
called GuestLib. The GuestLib provides a new socket type
called NetKernel socket with a complete implementation of
BSD socket APIs. It replaces all TCP and UDP sockets when
they are created with NetKernel sockets, effectively redirecting
them without changing applications.

2) A lightweight semantics channel. Different network
stacks may run as different NSMs, so NetKernel needs to
ensure socket semantics from the VM work properly with the
actual NSM stack implementation. For this purpose NetKernel
builds a lightweight socket semantics channel between VM
and its NSM. The channel relies on small fix-sized queue
elements as intermediate representations of socket semantics:
Each socket API call in the VM is encapsulated into a queue
element and sent to the NSM, who would effectively translate
the queue element into the corresponding API call of its
network stack.

3) Scalable lockless queues. As NIC speed in cloud evolves
from 40G/50G to 100G [22] and higher, the NSM has to
use multiple cores for the network stack to achieve line rate.
NetKernel thus adopts scalable lockless queues to ensure
VM-NSM socket semantics transmission is not a bottleneck.
Each core services a dedicated set of queues so performance is
scalable with number of cores. More importantly, each queue
is memory shared with a software switch, so it can be lockless
with only a single producer and a single consumer to avoid
expensive lock contention [31], [32], [41].

Switching the queue elements offers important benefits
beyond lockless queues. It facilitates a flexible mapping
between VM and NSM: An NSM can support multiple VMs
without adding more queues compared to binding the queues
directly between VM and NSM. In addition, it allows dynamic
resource management: CPU cores can be readily added to or
removed from an NSM, and a user can switch her NSM on the
fly. The CPU overhead of software switching can be addressed
by hardware offloading [22], [26], which we discuss in §6.4
in more detail.

VM based NSM. Lastly we discuss an important design
choice regarding the NSM. The NSM can take various forms.
It may be a full-fledged VM with a monolithic kernel.
Or it can be a container or module running on the hypervisor,
which is appealing because it consumes less resource and
offers better performance. NetKernel is compatible with both
hypervisor- and VM-based NSMs, and we currently choose
to use VM-based NSMs. VM based NSM readily supports
existing kernel and userspace stacks from various OSes. VMs
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also provide good isolation and we can dedicate resources to
an NSM to guarantee performance. VM based NSM is the
most flexible: We can run various network stacks independent
of the hypervisor.

IV. DESIGN

Figure 2 depicts NetKernel’s architecture. The BSD socket
APIs are transparently redirected to a complete NetKernel
socket implementation in GuestLib in the guest kernel (§4.1).
Network stacks are implemented by the operator on the same
host as Network Stack Modules (NSMs), which are individual
VMs in our current design. Inside the NSM, a ServiceLib
interfaces with the network stack. The NSM connects to the
vSwitch, be it a software/hardware switch, and then the pNICs.
Thus our design also supports SR-IOV.

All socket operations and their results are translated
into NetKernel Queue Elements (NQEs) by GuestLib and
ServiceLib (§4.2). For NQE transmission, GuestLib and Ser-
viceLib each has a NetKernel device, or NK device in the
following, consisting of one or more sets of lockless queues.
Each queue set has a send queue and receive queue for
operations with data transfer (e.g. send () ), and a job queue
and completion queue for control operations without data
transfer (e.g. setsockopt ()). Each NK device connects
to a software switch called CoreEngine, which runs on the
hypervisor and performs actual NQE switching (§4.3). The
CoreEngine is also responsible for various management tasks
such as setting up the NK devices, ensuring isolation among
VMs, etc. (§4.4) A unique set of hugepages are shared between
each VM-NSM tuple for application data exchange. A NK
device also maintains a hugepage region that is memory
mapped to the corresponding application hugepages as in
Figure 2 (§4.5). Note that as the socket API that copies data is
preserved, misbehaving applications cannot pose security risks
on NetKernel, this is the same as original kernel design. We
discuss additional security implications of NetKernel in §8.

For ease of presentation, we assume both the user VM and
NSM run Linux, and the NSM uses the kernel stack.

A. Transparent Socket API Redirection
We first describe how NetKernel’s GuestLib interacts with
applications to support BSD socket semantics transparently.
NetKernel socket API. GuestLib creates a new type
of sockets—SOCK_NETKERNEL, in addition to TCP
(SOCK_STREAM) and UDP (SOCK_DGRAM) sockets.
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TABLE II 1B 1B 1B 4B 8B 8B 4B 5B
NETKERNEL SOCKET IMPLEMENTATION e | VMID Quere | o 5 | op_data datapointer | size | rsved

syscall inet_stream_ops netkernel_pro
bind inet_bind () nk_bind ()
connect inet_connect () nk_connect ()
accept inet_accept () nk_accept ()
poll tcp_poll () nk_poll ()

ioctl inet_ioctl () nk_ioctl ()
listen inet_listen () nk_listen ()
shutdown | inet_shutdown () nk_shutdown ()
setsockopt sock_common_setsockopt () nk_setsockopt ()
recvmsg tcp_recvmsg () nk_recvmsg ()
sendmsg tcp_sendmsg () nk_sendmsg ()

It registers a complete implementation of BSD socket APIs as
shown in Table II to the guest kernel. When the guest kernel
receives a socket () call to create a new TCP socket say,
it replaces the socket type with SOCK_NETKERNEL, creates a
new NetKernel socket, and initializes the socket data structure
with function pointers to NetKernel socket implementation
in GuestLib. The sendmsg () for example now points to
nk_sendmsg () in GuestLib instead of tcp_sendmsg ().

Kernel space API redirection. There are essentially two
approaches to redirect BSD socket calls to NSM, each with
its unique tradeoffs. One is to implement it in userspace using
LD_PRELOAD for example. The advantages are: (1) It is effi-
cient without syscall overheads and performance is high [32];
(2) It is easy to deploy without kernel modification. However,
this implies each application needs to have its own redirection
service, which limits the usage scenarios. Another way is
kernel space redirection, which naturally supports multiple
applications without IPC. The flip side is that performance
may be lower due to context switching and syscall overheads.

We opt for kernel space API redirection to support most
of the usage scenarios, and leave userspace redirection as
future work. This is feasible by distributing images of
para-virtualizated guest kernels to users, a practice operators
are already doing nowadays. Note that kernel space redirection
follows the asynchronous syscall model [60] to get better
performance.

Guest change. The GuestLib can be deployed as a kernel
patch as the kernel space redirection is implemented as a
kernel module. NetKernel supports zero code change for the
guest applications, and an application can use NetKernel by
only setting the socket type as SOCK_NETKERNEL when
invoking the socket () syscall.

B. A Lightweight Semantics Channel

Socket semantics are contained in NQEs and carried around
between GuestLib and ServiceLib via their respective NK
devices.

NQE and socket semantics translation. Figure 3 shows the
structure of a NQE with a fixed size of 32 bytes. Translation
happens at both ends of the semantics channel: GuestLib
encapsulates the socket semantics into NQEs and sends to
ServiceLib, which then invokes the corresponding API of its
network stack to execute the operation; the execution result
is again turned into a NQE in ServiceLib first, and then
translated by GuestLib back into the corresponding response
of socket APIs.

Fig. 3. Structure of a NQE. Here socket ID denotes a pointer to the sock
struct in the user VM or NSM, and is used for NQE transmission with
VM ID and queue set ID in §4.3; op_data contains data necessary for
socket operations, such as IP address for bind; data pointer is a pointer
to application data in hugepages; and size is the size of pointed data in
hugepages.

Tenant VM
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Fig. 4. NetKernel socket implementation in GuestLib redirects socket API
calls. GuestLib translates socket API calls to NQEs and ServiceLib translates
results into NQEs as well (not shown here).

For example in Figure 4, to handle the socket () call in
the VM, GuestLib creates a new NQE with the operation type
and information such as its VM ID for NQE transmission. The
NQE is transmitted by GuestLib’s NK device. The socket ()
call now blocks until a response NQE is received. After receiv-
ing the NQE, ServiceLib parses the NQE from its NK device,
invokes the socket () of the kernel stack to create a new
TCP socket, prepares a new NQE with the execution result,
and enqueues it to the NK device. GuestLib then receives
and parses the response NQE and wakes up the socket ()
call. The socket () call now returns to application with
the NetKernel socket file descriptor (fd) if a TCP socket is
created at the NSM, or with an error number consistent with
the execution result of the NSM.

We defer the handling of application data to §4.5.

Queues for NQE transmission. NQEs are transmitted via
one or more sets of queues in the NK devices. A queue
set has four independent queues: A job queue for NQEs
representing socket operations issued by the VM without data
transfer, a completion queue for NQEs with execution results
of control operations from the NSM, a send queue for NQEs
representing operations issued by VM with data transfer; and a
receive queue for NQEs representing events of newly received
data from NSM. Queues of different NK devices have strict
correspondence: The NQE for socket () for example is put
in the job queue of GuestLib’s NK device, and sent to the job
queue of ServiceLib’s NK device. Note that this won’t increase
the number of queues that are serviced by the network stacks
(e.g., mTCP).

We now present the working of I/O event notification
mechanisms like epoll with the receive queue. Figure 5 depicts
the details. Suppose an application issues epoll_wait ()
to monitor some sockets. Since all sockets are now NetKernel
sockets, the nk_poll () is invoked by epoll_wait () and
checks the receive queue to see if there is any NQE for
this socket. If yes, this means there are new data received,

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on June 06,2022 at 02:53:16 UTC from IEEE Xplore. Restrictions apply.



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

6

pTTTTOTTTTTI T N s T N

i Tenant VM ' ' NSM !

! © ' ' Network Stack

H 11 wait() recv() ;

| epoll x

i \ \

nk_poll()v v Sy
erviceLi
GuestLib l nk_recvmsg () )
,,,,,,, @)\
NetKernel
devices
3)
data received
(5)  Receive Completion Send  Job Receive Completion Send  Job
CoreEngine wakes queue  queue  queue queue - queue queue  queue queue
up the device AN .. ey
[ o= PSRty
Fig. 5. The socket semantics channel with epoll as an example. GuestLib

and ServiceLib translate semantics to NQEs, and queues in the NK devices
perform NQE transmission. Job and completion queues are for socket opera-
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epoll_wait () then returns and the application issues a
recv () call with the NetKernel socket fd of the event.
This points to nk_recvmsg () which parses the NQE from
receive queue for the data pointer, copies data from the
hugepage directly to the userspace, and returns.

We adopt an interrupt-driven polling method (§4.6) to
mitigate the CPU overhead. If nk_pol1 () does not find any
relevant NQE, it sleeps until CoreEngine wakes up the NK
device when new NQEs arrive to its receive queue. GuestLib
then parses the NQEs to check if any sockets are in the epoll
instances, and wakes up the epoll to return to application.
An epoll_wait ()can also be returned by a timeout.

C. NQE Switching Across Lockless Queues

We now elaborate how NQEs are switched by CoreEngine
and how the NK devices interact with CoreEngine.

Scalable queue design. The queues in a NK device is
scalable: There are one dedicated queue set per vCPU for
both VM and NSM, so NetKernel performance scales with
CPU resources. Each queue set is shared memory with the
CoreEngine, essentially making it a single producer single
consumer queue without lock contention. VM and NSM may
have different numbers of queue sets.

Switching NQEs in CoreEngine. NQEs are load balanced
across multiple queue sets with the CoreEngine acting as a
switch. CoreEngine maintains a connection table as shown in
Figure 6, which maps the tuple (VM ID, queue set ID, socket
ID) to the corresponding (NSM ID, queue set ID, socket ID)
and vice versa. Here a socket ID corresponds to a pointer to
the sock struct in the user VM or NSM. We call them VM
tuple and NSM tuple respectively. NQEs only contain VM
tuple information.

Using the running example of the socket () call, we can
see how CoreEngine uses the connection table. The process
is also shown in Figure 6. (1) When CoreEngine processes
the socket NQE from VMI’s queue set 1, it realizes this
is a new connection, and inserts a new entry to the table
with the VM tuple from the NQE. (2) It checks which NSM
should handle it,' performs hashing based on the three tuple

'A user VM to NSM mapping is determined either by the users/operator
offline or some load balancing scheme dynamically by CoreEngine.
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to determine which queue set (say 2) to switch to if there
are multiple queue sets, and copies the NQE to the NSM’s
corresponding job queue. CoreEngine adds the NSM ID and
queue set ID to the new entry. (3) ServiceLib gets the NQE
and copies the VM tuple to its response NQE, and adds the
newly created connection ID in the NSM to the op_data field
of response NQE. (4) CoreEngine parses the response NQE,
matches the VM tuple to the entry and adds the NSM socket ID
to complete it, and copies the response NQE to the completion
queue 1 of VMI as instructed in the NQE. Later NQEs for
this VM connection can be processed by the correct NSM
connection and vice versa. ServiceLib pins its connections to
its vCPUs and queue sets, so processing the NQE and sending
the response NQE are done on the same CPU.

The connection table allows flexible multiplexing and
demultiplexing with the socket ID information. For example
one NSM can serve multiple VMs using different sockets.
CoreEngine polls all queue sets to maximize performance.

connection table
<VM ID, queue set ID, socket ID> <NSM ID, queue set ID, socket ID>

<01, 01, 2A3E 97 C3> <01, 01, C8 5D 42 6F>
Al <01, 01, FC 68 4E 02> <01,02, 7>
CoreEngine

Fig. 6. NQE switching with CoreEngine.

D. Management With CoreEngine

CoreEngine acts as the control plane of NetKernel and
carries out many control tasks beyond NQE switching.

NK device and queue setup. CoreEngine allocates shared
memory for the queue sets and sets up the NK devices
accordingly when a VM or NSM starts up, and de-allocates
when they shut down. Queues can also be dynamically added
or removed with the number of vCPUs.

Isolation. CoreEngine sits in an ideal position to carry out
isolation among VMs. In our design CoreEngine polls each
queue set in a round-robin fashion to ensure the basic fair
sharing. Operator can implement other isolation mechanisms
to rate limit a VM in terms of bandwidth or the number of
NQEs (i.e. operations) per second, which we show in §6.3.
Note that CoreEngine isolation happens for egress; ingress
isolation at the NSM is more challenging and may have to
use physical NIC queues [19].

Busy-polling. The busy-polling design of CoreEngine
requires a dedicated core per machine which is an inherent
overhead of our design. We resort to this simple design as
we focus on showing feasibility and potential of NetKernel
in this work, and prior work also used dedicated cores for
software polling [39]. One can explore hardware offloading
using FPGAs for example to eliminate this overhead [21], [22].

E. Processing Application Data
We now discuss the last missing piece of NetKernel design:
How application data are actually processed in the system.
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Sending data. Data is transmitted by hugepages shared
between the VM and NSM. Their NK devices maintain a
hugepage region that is mmaped to the application hugepages.
For sending data with send (), GuestLib copies data from
userspace directly to the hugepage, and adds a data pointer
to the send NQE. It also increases the send buffer usage for
this socket similar to the send buffer size maintained by the
kernel. The send () now returns to application. ServiceLib
invokes tcp_sendmsg () provided by the kernel stack upon
receiving the send NQE. Data are obtained from hugepages,
processed by the network stack, and sent to the vNIC. A new
NQE is generated with the result of send by the NSM and
sent to GuestLib, who then decreases the send buffer usage.

Receiving data. Now for receiving packets in the NSM,
a normal network stack would send received data to userspace
applications. In order to send received data to the user VM,
ServiceLib then copies the data chunk to hugepages and create
anew NQE to the receive queue, which is then sent to the VM.
It also increases the receive buffer usage for this connection,
similar to the send buffer maintained by GuestLib described
above. The rest of the receive process is already explained in
§4.2. Note that application uses recv () to copy data from
hugepages to their own buffer.

ServiceLib. As discussed ServiceLib deals with much of
data processing at the NSM side so the network stack works
in concert with the rest of NetKernel. One thing to note is that
unlike the kernel space GuestLib, ServiceLib should live in the
same space as the network stack to ensure best performance.
We have focused on a Linux kernel stack with a kernel space
ServiceLib here. The design of a userspace ServiceLib for a
userspace stack is similar in principle. ServiceLib busy-polls
its queues for maximum performance.

F. Optimization

We present several optimizations employed in NetKernel.

Pipelining. NetKernel applies pipelining between VM
and NSM for performance. For example on the VM side,
a send() returns immediately after putting data to the
hugepages, instead of waiting for the actual send result from
the NSM. Similarly the NSM would handle accept ()
by accepting a new connection and returning immediately,
before the corresponding NQE is sent to GuestLib and then
application to process. Doing so does not break BSD socket
semantics. Take send () for example. A successful send ()
does not guarantee delivery of the message [11]; it merely
indicates the message is written to socket buffer successfully.
In NetKernel a successful send () indicates the message is
written to buffer in the hugepages successfully. As explained
in §4.5 the NSM sends the result of send back to the VM to
indicate if the socket buffer usage can be decreased or not.

Interrupt-driven polling. We adopt an interrupt-driven
polling design for NQE event notification to GuestLib’s NK
device. This is to reduce the overhead of GuestLib and user
VM. When an application is waiting for events e.g. the result
of the socket () call or receive data for epoll, the device
will first poll its completion queue and receive queue. If no
new NQE comes after a short time period (204 s in our experi-
ments), the device sends an interrupt to CoreEngine, notifying

that it is expecting NQE, and stops polling. CoreEngine later
wakes up the device, which goes back to polling mode to
process new NQEs from the completion queue. This is similar
in spirit to busy-polling sockets in Linux kernel [3], [8].
Interrupt-driven polling presents a favorable trade-off between
overhead and performance compared to pure polling based or
interrupt based design. It saves precious CPU cycles when load
is low and ensures the overhead of NetKernel is very small
to the user VM. Performance on the other hand is competent
since the response NQE is received within the polling period
in most cases for blocking calls, and when the load is
high polling automatically drives the notification mechanism.
As explained before CoreEngine and ServiceLib use busy
polling to maximize performance. In addition, the software
polling overhead can also be alleviated through a hard-
ware/software notification mechanism [24], [62].

Batching. Batching is used in many parts of NetKernel
for better throughput. CoreEngine uses batching whenever
possible for polling from and copying into the queues. The
NK devices also receive NQEs in a batch.

V. IMPLEMENTATION

Our implementation is based on QEMU KVM 2.5.0 and
Linux kernel 4.9 for host and guest, with over 11K LoC.

GuestLib. We add the SOCK_NETKERNEL socket to the
kernel (net.h), and modify socket.c to rewrite the
SOCK_STREAM to SOCK_NETKERNEL during socket cre-
ation. We implement GuestLib as a kernel module with
two components: Guestlib_core and nk_driver. Guestlib_core
is mainly for Netkernel sockets and NQE translation,
and nk_driver is for NQE communications via queues.
Guestlib_core and nk_driver communicate with each other
using function calls.

ServiceLib and NSM. We also implement ServiceLib
as two components: Servicelib_core and nk_driver. Ser-
vicelib_core translates NQEs to network stack APIs, and the
nk_driver is identical to the one in GuestLib. For the kernel
stack NSM, Servicelib_core calls the kernel APIs directly to
handle socket operations without entering userspace. We create
an independent kthread to poll the job queue and send
queue for NQEs to avoid kernel stuck. Some BSD socket
APIs cannot be invoked in kernel space directly. We use
EXPORT_SYMBOLS to export the functions for ServiceLib.
Meanwhile, the boundary check between kernel space and
userspace is disabled. We use per-core epoll_wait () to
obtain incoming events from the kernel stack.

We also port mTCP [10] as a userspace stack NSM. It uses
DPDK 17.08 for packet I/0. For simplicity, we maintain its
two-thread model and per-core data structure. We implement
the NSM in mTCP’s application thread at each core. The
ServiceLib is essentially an mTCP application: Once receiving
a NQE from its send queue, it accesses data from the shared
hugepage by the data pointer in the NQE and sends it
using mTCP with DPDK. For receiving, the received data
is copied into the hugepage, and ServiceLib encapsulates
the data pointer into a NQE of the receive queue. The
per-core application thread (1) translates NQEs polled from
the NK device to mTCP socket APIs, and (2) responds
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NQEs to the tenant VM based on the network events col-
lected by mtcp_epoll_wait (). Since mTCP works in
non-blocking mode for performance, we buffer send operations
at each core and set the timeout parameter to lms in
mtcp_epoll_wait () to avoid starvation when polling
NQE requests.

Queues and hugepages. The hugepages are implemented
based on QEMU’s IVSHMEM. The page size is 2 MB and
we use 128 pages. The queues are ring buffers implemented as
much smaller IVSHMEM devices. Together they form a NK
device which is a virtual device to the VM and NSM.

CoreEngine. The CoreEngine is a daemon with two threads
on the KVM hypervisor. One thread listens on a pre-defined
port to handle NK device (de)allocation requests, namely
8-byte network messages of the tuples (ce_op, ce_data). When
a VM (or NSM) starts (or terminates), it sends a request to
CoreEngine for registering (or deregistering) a NK device.
If the request is successfully handled, CoreEngine responds in
the same message format. Otherwise, an error code is returned.
The other thread polls NQEs in batches from all NK devices
and switches them as described in §4.3.

VI. MICROBENCHMARKS
We present microbenchmarks of crucial aspects of NetKer-
nel: Performance and multicore scalability in §6.2; isolation
of multiple VMs in §6.3; and system overhead in §6.4.

A. Setup

Each of our testbed servers has two Xeon ES5-2698 v3
16-core CPUs clocked at 2.3 GHz, 256 GB memory at
2133 MHz, and a Mellanox ConnectX-4 single port 100G
NIC. Hyperthreading is disabled. We compare to the status
quo where an application uses the kernel TCP stack in its
VM, referred to as Baseline in the following. We designate
NetKernel to refer to the common setting where we use the
kernel stack NSM in our implementation. When mTCP NSM
is used we explicitly mark the setting in the results. The
same TCP parameter settings are used for both systems. The
NSM uses the same number of vCPUs as Baseline since CPU
is used almost entirely by the network stack in Baseline.
NetKernel allocates 1 more vCPU for the VM to run the
application and ServiceLib throughout the evaluation. Its CPU
utilization is usually low: We report the actual CPU overheads
of NetKernel in §6.4. The throughput results are measured by
iperf and the RPS results are measured by ab, unless stated
otherwise. The throughput results are averaged over 5 runs
each lasting 30 seconds.

B. Performance and Scalability

We now look at NetKernel’s basic performance.

NQE switching and memory copy. NQEs are transmitted
by CoreEngine as a software switch. It is important that
CoreEngine offers enough horsepower to ensure performance
at 100G and higher. We measure CoreEngine throughput
which is defined as the number of 32-byte NQEs copied from
GuestLib’s NK device queues to the ServiceLib’s NK device
queues. Table IIT shows the results with varying batch sizes.
CoreEngine achieves ~8M NQEs/s without batching. With a
small batch size of 4 or 8 throughput reaches 41.4M NQEs/s

IEEE/ACM TRANSACTIONS ON NETWORKING

120,

[ Baseline
100 - NetKerniel

80

60

a0b

Throughput (Gbps)

20F

1 2 3 4 5 6 7 8
# of vCPUs

Fig. 7. Send throughput of 8 TCP streams with varying numbers of vCPUs,
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Fig. 9. Performance of TCP short connections with multiple vCPUs. Message
size 64B.

and 65.9M NQEs/s, respectively, which is sufficient for most
applications.

We also measure the memory copy throughput between
GuestLib and ServiceLib via hugepages. A memory copy in
this experiment includes the following: (1) application in the
VM issues a send () with data; (2) GuestLib gets a pointer
from the hugepages; (3) copies the message to hugepages;
(4) prepares a NQE with the data pointer; (5) CoreEngine
copies the NQE to ServiceLib; and (6) ServiceLib obtains
the data pointer and puts it back to the hugepages. Thus
it measures the effective application-level throughput using
NetKernel (including NQE transmission) without network
stack processing.

We observe from Table IV that NetKernel delivers over
100G throughput with messages larger than 4KB: with
8KB messages 144G is achievable. Thus NetKernel provides
enough raw performance to the network stack and is not a
bottleneck to the 100G deployment in production.

Single TCP Stream. We benchmark the single stream TCP
throughput with different message sizes. The send and receive
throughput are shown in Figure 10 and Figure 11. NetKernel
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TABLE III

COREENGINE SWITCHING THROUGHPUT USING A SINGLE CORE WITH
DIFFERENT BATCH SIZES

[ Batch Size (B) [1] 2] 4 T6 | 32 | 64 | 128 | 256 |

TABLE V

THROUGHPUT SCALING AND SHORT CONNECTIONS WITH VARYING
NUMBERS OF NETKERNEL WITH KERNEL STACK NSM
EacH WITH TwWo VCPUS

[ 8 [ 16 ]
| NQEs per second (x10%) [ 8.0 [ 14.4 | 22.3 | 414 [ 659 | 100.2 | 119.6 | 1782 | 1985 |

TABLE IV

MESSAGE COPY THROUGHPUT VIA HUGEPAGES WITH
DIFFERENT MESSAGE SIZES

[ Message Size (B) | 64 | 128 | 256 | 512 | 1024 | 2048 | 4096 | 8192 |
[ Throughput (Gbps) | 49 | 83 | 147 | 258 | 459 | 803 | 118.0 | 1442 |
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Fig. 10. Single TCP stream send throughput with the kernel stack NSM.
The NSM uses 1 vCPU.
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Fig. 11. Single TCP stream receive throughput with the kernel stack NSM.
The NSM uses 1 vCPU.

performs on par with Baseline in all cases, this is because a
single TCP stream is bounded by the single-core kernel stack
processing. Note that send throughput reaches 30.9Gbps and
receive throughput tops at 13.6Gbps in NetKernel. Receive
throughput is much lower because the kernel stack’s RX
processing is much more CPU-intensive with interrupts. If the
other cores of the NUMA node are not disabled, soft interrupts
(softirq) may be sent to those cores instead of the one assigned
to the NSM (or VM), thereby inflating the receive throughput.?

Multiple TCP Streams. We examine throughput perfor-
mance using the kernel stack NSM and 8 TCP streams with
8KB messages. Figures 7 and 8 show respectively the send and
receive throughput with varying number of vCPUs. NetKernel
achieves the same throughput performance and scalability with
Baseline. The single-core send and receive throughput reaches
48Gbps and 17Gbps, respectively. Receive throughput is much
lower because the kernel stack’s RX processing is much more
CPU-intensive with interrupts. Note that if the other cores
of the NUMA node are not disabled, soft interrupts (softirq)
may be sent to those cores instead of the one assigned to the

2We observe 30.6Gbps receive throughput with 16KB messages in both
NetKernel and Baseline when leaving the other cores on.

# of 2-vCPU NSMs 1 2 3 4

Send throughput (Gbps) 851 | 940 | 941 | 942
Receive throughput (Gbps) | 33.6 | 61.2 | 91.0 | 910
Requests per sec (x10%) 131.6 | 260.4 | 399.1 | 520.1

NSM (or VM), thereby inflating the receive throughput. Both
systems achieve the line rate of 100G using at least 3 vCPUs
for send throughput as in Figure 7. For receive, both achieve
91Gbps using 8 vCPUs as in Figure 8.

Short TCP connections. We also benchmark NetKernel’s
performance in handling short TCP connections using a cus-
tom server sending a short message as a response. The server
runs multiple worker threads that share the same listening
port. Each thread runs an epoll event loop. Our workload
generates 10 million requests in total with a concurrency of
1000. The connections are non-keepalive. The message size
is 64B. Socket option SO_REUSEPORT is always used for
the kernel stack. Figure 9 shows that NetKernel has the same
multicore scalability as Baseline: Performance increases from
~71K RPS with 1 vCPU to ~400K RPS with 8 vCPUs, i.e.
5.6x the single core performance. To demonstrate NetKernel’s
full capability, we also run the mTCP NSM with 1, 2, 4,
and 8 vCPUs.? NetKernel with mTCP offers 167K, 313K,
562K, and 979K RPS respectively, and shows better scalability
than the kernel stack.

The results here show that NetKernel preserves the per-
formance and scalability of network stacks, including high
performance stacks like mTCP since our scalable queue design
can ensure NetKernel is not the bottleneck and the contention
is not severe in this situation.

NetKernel scalability. We now examine the scalability
of NetKernel’s overall design. With the same epoll server,
we use 8 connections and 8KB messages for throughput
experiments and 10 millions of requests with 64B messages
for short connections experiments. Each kernel stack NSM
now uses 2 vCPUs. The servers in different NSMs listen on
different ports and does not share an accept queue. We vary
the number of NSMs to serve this 1-core VM.

Table V shows the throughput scaling results. Throughput
for send is already 85.1Gbps with 2 vCPUs (recall Figure 7),
and adding NSMs does not improve it beyond 94.2Gbps.
Throughput for receive shows almost linear scalability on the
other hand. Performance of short connections also exhibits
near linear scalability: One NSM provides 131.6K RPS,
2 NSMs 260.4K RPS, and 4 NSMs 520.1K RPS which is 4x
better. The results indicate that NetKernel’s design is highly
scalable.

C. Isolation

Isolation is important to ensure co-located users do not
interfere with each other, especially in a public cloud. It is
different from fair sharing: Isolation ensures a VM’s per-
formance guarantee is met despite network dynamics, while

3Using other numbers of vCPUs for mTCP causes stability problems even
without NetKernel.
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Fig. 12. VM 1 is capped at 1Gbps, VM2 at 5S00Mbps, and VM3 uncapped.
All VMs use the same kernel stack NSM. The NSM is assigned 10Gbps
bandwidth. NetKernel isolates VM1 and VM2 successfully while allowing
VM3 to obtain the remaining capacity.

TABLE VI

DISTRIBUTION OF RESPONSE TIMES (MS) FOR 64B MESSAGES
WITH 5 MILLION REQUESTS AND 1K CONCURRENCY

Baseline NetKernel mTCP baseline | NetKernel, mTCP NSM
Min 0.6 0.8 (+33.3%) 0.7 3.1 (+ 342.9%)
Mean 16.0 16.4 (+2.5%) 4.0 4.2 (+ 5.0%)
Median 2.1 2.2 (+4.8%) 3.9 4.0 (+ 2.6%)

fairness ensures a VM obtains a fair share of the bottleneck
capacity which varies dynamically. We conduct an experiment
to verify NetKernel’s isolation guarantees. As discussed in
§4.4, CoreEngine uses round-robin to poll each VM’s NK
device for basic fairness. In addition, to achieve isolation we
implement token buckets in CoreEngine to limit the bandwidth
of each VM, taking into account varying message sizes. There
are 3 VMs now: VM1 is rated limited at 1Gbps, VM2 at
500Mbps, and VM3 has unlimited bandwidth. They arrive and
depart at different times. They are colocated on the same host
running a kernel stack NSM using 1 vCPU. The NSM is given
a 10G VF for simplicity of showing work conservation.

Figure 12 shows the time series of each VM’s throughput,
measured by our epoll server at 100ms intervals. VM1 joins
the system at time O and leaves at 25s. VM2 comes later at 4.5s
and leaves at 21s. VM3 joins last and stays until 30s. We can
observe that NetKernel throttles VM1’s and VM?2’s throughput
at their respective limits correctly despite the dynamics. VM3
is also able to use all the remaining capacity of the 10G NSM:
It obtains 9Gbps after VM2 leaves and 10Gbps after VM1
leaves at 25s. Therefore, NetKernel is able to achieve the same
isolation in today’s clouds with bandwidth caps.

D. Overhead

Latency. One may wonder if NetKernel with the NQE
transmission would add delay to TCP processing, especially in
handling short connections. Table VI shows the latency statis-
tics when we run ab to generate 1K concurrent connections
to our epoll server for 64B messages. A total of 5 million
requests are used. We can see NetKernel incurs less than 5%
latency slowdown in terms of the mean and median values,
and the latency overhead is mostly introduced by CoreEngine.
Even for the mTCP NSM, NetKernel preserves its low latency
due to the much simpler TCP stack processing and various
optimization [32]. Note that NetKernel doesn’t perform well
in the minimum latency, which is not a primary concern here.

CPU. Now to quantify NetKernel’s CPU overhead, we use
the epoll server at the VM side, and run clients from a different
machine with fixed throughput or requests per second for both
NetKernel and Baseline with kernel TCP stack. We disable
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TABLE VII

OVERHEAD FOR THROUGHPUT. THE NSM RUNS THE LINUX KERNEL TCP
STACK. WE USE 8 TCP STREAMS WITH 8KB MESSAGES.
NETKERNEL’S CPU USAGE IS NORMALIZED OVER
THAT OF BASELINE

[ Throughput [ 20Gbps | 40Gbps | 60Gbps | 80Gbps [ 100Gbps |
| Normalized CPU usage [ 114 | 128 [ 142 1.56 170 |
TABLE VIII

OVERHEAD FOR SHORT TCP CONNECTIONS. THE NSM RUNS THE
KERNEL TCP STACK. WE USE 64B MESSAGES WITH
A CONCURRENCY OF 100

[ Requests per second (RPS) [ 100K | 200K [ 300K | 400K [ 500K |
| Normalized CPU usage [ 1.06 | 1.05 [ 1.08 | 1.08 | 1.09 |

all unnecessary background system services in both the VM
and NSM, and ensure the CPU usage is almost zero without
running epoll servers. During the experiments, we measure the
total number of cycles spent by the VM in Baseline, and that
spent by the VM and NSM together in NetKernel. We then
report NetKernel’s CPU usage normalized over Baseline’s for
the same performance level in Tables VII and VIIIL.

We can see that to achieve the same throughput, NetKer-
nel incurs relatively high overhead especially as throughput
increases. To put things into perspective, we measure CPU
usage when the client runs in a docker container with the
bridge networking mode. Docker incurs 13% CPU overhead
compared to Baseline to achieve 40 Gbps throughput whereas
NetKernel’s is 28%. The overhead here is due to the extra
memory copy from the hugepages to the NSM. It can be opti-
mized away by implementing zerocopy between the hugepages
and the NSM, which we are working on currently.

Table VIII shows NetKernel’s overhead with short TCP
connections. We can observe that the overhead ranges from
5% to 9% in all cases and is mild. As the message is only 64B
here, the results verify that the NQE transmission overhead in
NK devices is small.

Lastly, throughout all experiments of our evaluation we
dedicated one core to CoreEngine, which is another overhead.
As we focus on showing feasibility and potential of NetKernel
in this paper, we resort to software NQE switching which
attributes to the polling overhead. Fortunately, this overhead
can be mitigated and even removed by offloading the progress
onto hardwares like FPGAs. Therefore CoreEngine does not
consume CPU for the majority of the NQEs: Only the first
NQE of a new connection needs to be handled in CPU (direct
to a proper NSM as in §4.3).

To quickly recap, current NetKernel implementation incurs
CPU overheads especially for extra data copy and CoreEngine.
We believe, however, they are not inevitable when separating
the network stack from the guest OS. They can be largely
mitigated using known implementation techniques which is
left as future work. In addition, as shown in §7.1 multiplexing
can be used in NetKernel’s current implementation to actually
save CPU compared to dedicating cores to individual VMs.

VII. NEW USE CASES

We present some new use cases that are realized using
our prototype to demonstrate the potential of NetKernel.
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Fig. 13.  Traffic of three most utilized application gateways (AGs) in our
trace. They are deployed as VMs.
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Fig. 14. Per-core RPS comparison. Baseline uses 12 cores for 3 AGs, while
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Details of the performance and overhead microbenchmarks are
presented in §6.

A. Multiplexing

Here we describe a new use case where the operator can
optimize resource utilization by serving multiple bursty VMs
with one NSM.

To make things concrete we draw upon a user traffic
trace collected from a large cloud in September 2018. The
trace contains statistics of tens of thousands of application
gateways (AGs) that handle tenant (web) traffic in order to
provide load balancing, proxy, and other services. The AGs
are internally deployed as VMs by the operator. We find
that the AG’s average utilization is very low most of the
time. Figure 13 shows normalized traffic processed by three
most utilized AGs (in the same datacenter) in our trace with
I-minute intervals for a 1-hour period. We can clearly see
the bursty nature of the traffic. Yet it is very difficult to
consolidate their workloads in current cloud because they
serve different customers using different configurations (proxy
settings, LB strategies, etc.), and there is no way to separate
the application logic with the underlying network stack. The
operator has to deploy AGs as independent VMs, reserve
resources for them, and charge customers accordingly.

NetKernel enables multiplexing across AGs running distinct
services, since the common TCP stack processing is now
separated into the NSM. Using the three most utilized AGs
which have the least benefit from multiplexing as an example,
without NetKernel each needs 4 cores in our testbed to handle
their peak traffic, and the total per-core requests per sec-
ond (RPS) of the system is depicted in Figure 14 as Baseline.
Then in NetKernel, we deploy 3 VMs each with 1 core to
replay the trace as the AGs, and use a kernel stack NSM
with 5 cores which is sufficient to handle the aggregate traffic.
Totally 9 cores are used including CoreEngine, representing
a saving of 3 cores in this case. The per core RPS is thus
improved by 33% as shown in Figure 14. Each AG has exactly

TABLE IX
NETKERNEL MULTIPLEXES MORE AGS AND SAVES OVER 40% CORES

Total Cores | NSM | CoreEngine | AGs
Baseline 32 0 0 16
NetKernel | 32 2 1 29

the same RPS performance without any packet loss. Note that
when the baseline is assigned with 3 cores for each VM,
the peak RPS performance becomes 75 for AGl and AG3
in Figure 13 while the per-core RPS performance does not
change in Figure 14.

In the general case multiplexing these AGs brings even more
gains since their peak traffic is far from their capacity. For ease
of exposition we assume the operator reserves 2 cores for each
AG. A 32-core machine can host 16 AGs. If we use NetKernel
with 1 core for CoreEngine and a 2-core NSM, we find that we
can always pack 29 AGs each with 1 core for the application
logic as depicted in Table IX, and the maximum utilization
of the NSM would be well under 60% in the worst case for
~97% of the AGs in the trace. Thus one machine can run 13 or
81.25% more AGs now, which means the operator can save
over 40% cores for supporting this workload. This implies
salient financial gains for the operator: According to [22] one
physical core has a maximum potential revenue of $900/yr.

B. Fair Bandwidth Sharing

TCP is designed to achieve flow-level fairness for bandwidth
sharing in a network. This leads to poor fairness in a cloud
where a misbehaved VM can hog the bandwidth by establish-
ing excessive TCP flows. Distributed congestion control at an
entity-level (VM, process, etc.) such as Seawall [59] has been
proposed and implemented in a non-virtualized setting. Yet
using Seawall in a cloud has many difficulties: The provider
has to implement it on the vSwitch or hypervisor and make
it work for various guest OSes. The interaction with the
VM’s own congestion control logic makes it even harder [29].
NetKernel enforces VM-level fair bandwidth sharing by imple-
menting schemes like Seawall in a new NSM. As all the
flows from the VMs go through this NSM, the operator can
fully control and manage them. Therefore, NetKernel naturally
facilitates implementation of such fair sharing.

To prove NetKernel’s efficiency, we run a simple VM-level
congestion control setting in the NSM: One VM maintains a
global congestion window shared among all its connections to
different destinations. Each individual flow’s ACK advances
the shared congestion window, and when sending data, each
flow cannot send more than 1/n of the shared window where
n is the number of active flows. We then run experiments
with 2 VMs: A well-behaved VM that has 8 active flows, and a
selfish VM that uses varying number of active flows. As shown
in Figure 15, NetKernel with the VM-level congestion control
NSM is able to realize an equal share of bandwidth between
two VMs regardless of number of flows. We leave the imple-
mentation of a complete general solution such as Seawall in
NetKernel as future work.

C. Deploying mTCP Without API Change
We now focus on use cases of deployment and performance
benefits for users.
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Fig. 15. By sharing a unified congestion window to same destination,
an NSM can achieve VM-level fairness.

TABLE X

PERFORMANCE OF NGINX USING ab WITH 64B HTML FILES,
A CONCURRENCY OF 100, AND 10M REQUESTS IN TOTAL.
THE NSM AND VM USE THE SAME NUMBER OF VCPUs

# vCPUs 1 2 4
Kernel stack NSM | 71.9K | 133.6K | 200.1K
mTCP NSM 98.1K | 183.6K | 379.2K

Most userspace stacks use their own APIs and require
applications to be ported [4], [9], [32]. For example, in mTCP
an application has to use mtcp_epoll_wait () to fetch
events [32]. The semantics of these APIs are also different
from socket APIs [32]. These factors lead to expensive code
changes and make it difficult to use the stack in practice. The
lack of modern APIs also makes it difficult to support complex
web servers like nginx. mTCP also lacks some modern kernel
TCP features such as advanced loss recovery, small queue,
DSACK, etc.

With NetKernel, applications can directly take advantage
of userspace stacks without any code change. To show this,
we deploy unmodified nginx in the VM with the mTCP NSM
we implement, and benchmark its performance using ab. Both
VM and NSM use the same number of vCPUs. Table X depicts
that mTCP provides 1.4x—1.9x improvements over the kernel
stack NSM across various vCPU setting.

NetKernel also mitigates the maintenance efforts required
from users. We provide another piece of evidence with mTCP
here. When compiling DPDK required by mTCP on our
testbed, we could not set the RSS (receive side scaling) key
properly to the mlx5_core driver for our NIC and mTCP
performance was very low. After discussing with mTCP devel-
opers, we were able to attribute this to the asymmetric RSS
key used in the NIC, and fixed the problem by modifying the
code in the DPDK mlx5 driver. We have submitted our fix
to mTCP community. Without NetKernel users would have
to deal with such technical complication by themselves. Now
they are taken care of transparently, saving much time and
effort for many users.

D. Shared Memory Networking

Inter-VM communication is well-known to suffer from high
overheads [57]. A VM’s traffic goes through its network stack,
then the vNIC and the vSwitch, even when the other VM
is on the same host. It is difficult for users and operator
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Fig. 16. Using shared memory NSM for NetKernel for traffic between two
colocated VMs of the same user. NetKernel uses 2 cores for each VM, 2
cores for the NSM, and 1 core for CoreEngine. Baseline uses 2 core for the
sending VM, 5 cores for receiving VM, and runs TCP Cubic. Both schemes
use 8 TCP connections.

to optimize for this case, because a VM has no information
about where the other endpoint is. The hypervisor cannot help
either as the data has already been processed by the TCP/IP
stack. With NetKernel the NSM is part of the infrastructure,
the operator can easily detect the on-host traffic and use
shared memory to copy data for the two VMs. We build a
prototype NSM to demonstrate this idea: When a socket pair
is detected as an internal socket pair by the GuestLib, and the
two VMs belong to the same user, a shared memory NSM
takes over their traffic. This NSM simply copies the message
chunks between their hugepages and bypasses the TCP stack
processing. As shown in Figure 16, with 7 cores in total,
NetKernel with shared memory NSM can achieve 100Gbps,
which is ~2x of Baseline using TCP Cubic and same number
of cores.

VIII. DISCUSSION

How can I do netfilter now? Due to the removal of
vNIC and redirection from the VM’s own TCP stack, some
networking tools like netfilter are affected. Though our current
design does not address them, they may be supported by
adding additional callback functions to the network stack in the
NSM. When the NSM serves multiple VMs, it then becomes
challenging to apply netfilter just for packets of a specific
VM. We argue that this is acceptable since most users wish to
focus on their applications instead of tuning a network stack.
NetKernel does not aim to completely replace the current
architecture. Tenants may still use the VMs without NetKernel
if they wish to gain maximum flexibility on the network stack
implementation.

What about troubleshooting performance issues? In
current virtualized environment, operators cannot easily deter-
mine whether a performance issue is caused by the guest
network stack or the underlying infrastructure. With NetKernel
operators gain much visibility of the guest network stack,
which potentially facilitates debugging the performance issues.
For example operators can closely monitor their NSMs to
detect problems with the network stack; they can also deploy
additional mechanisms in the NSMs to monitor their datacen-
ter network [27], [47], all without disrupting users at all.

Does NetKernel increase the attack surface? It is
well-known that shared memory design might suffer from
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side-channel attacks where malicious tenants could temper
with other tenants’ data on the hugepages. In this regard,
NetKernel limits the visibility of NK devices into the hugepage
for guest VMs: Each device can only access its own address
space, which is guaranteed by enforcing the address allocation
and isolation control at CoreEngine. Therefore, NetKernel
keeps the same attack surface as the virtual NIC and virtual
switch abstractions, meaning that the attack consequence is
the same as before without NetKernel. It is also possible to
exploit hardware for memory copying: guest VM and NSM
has dedicated memory regions, in which data can be copied
by hardware DMA engines (e.g., FPGA and Intel QuickData),
thus avoiding side-channel attacks.

How about supporting stacks with non-socket API?
There are many fast network stacks with non-socket API
such as PASTE [30], Seastar [9], and IX [16]. As NetKernel
keeps the socket API, the central challenge to support these
stacks (as NSMs) is how to resolve the semantic differences.
While this requires case-by-case porting efforts, in general the
ServiceLib should take care of the semantic transformation
between the APIs.

Future directions. We outline a few future directions that
require immediate attention with high potential: (1) Isolation.
When multiple guest VMs share the same NSM, fine-grained
performance isolation [37] is imperative. It is also necessary
and interesting to design charging policies that promote fair
use of the NSM and CoreEngine. For example, tenants may
be charged according to how many requests are processed.
In addition, as multiple guest VMs may share the same NSM,
complete resource isolation becomes crucial for multi-tenant
scenarios, which NetKernel considers as future work.
(2) Resource efficiency. Various aspects of NetKernel’s design
can be optimized for efficiency and practicality. The CPU
overhead of CoreEngine, mostly to poll the shared memory
queues for NQE transmission, can be optimized by offloading
to hardware like FPGA and SoC. For example, a FPGA-based
CoreEngine can interact with NK devices via a DMA engine,
and it only transmits the NQEs so that the DMA bus does not
become a performance bottleneck. Besides, such offloading
saves precious CPU cores that could benefit user applications.
(3) APL. NetKernel currently provides BSD socket semantics,
but a guest VM might need more network functionalities,
such as access control and firewall. Therefore, identifying the
minimal API set for guests to efficiently interact with the
network stack becomes another future direction. Additionally,
applications based on netmap [56], RDMA and eRPC [35]
libraries cannot benefit from NetKernel at present. NetKernel
aims at supporting these network libraries in the future.

IX. RELATED WORK
We discuss related work besides those mentioned in §2.2.
There are many novel network stack designs to improve
performance. The kernel stack continues to receive optimiza-
tion in various aspects [41], [51], [64]. Userspace stacks
based on fast packet I/O are also gaining momentum [9],
[32], [39], [44], [53]. Beyond transport layer, novel flow
scheduling [14] and end-host based load balancing schemes
[28], [36] are developed to reduce flow completion times.

These proposals are targeting specific problems of the stack,
and can be potentially deployed as NSMs in NetKernel. This
paper takes on a broader and more fundamental issue: How can
we properly re-factor the network stack, so that new designs
can be easily deployed, and operating them in cloud can be
more efficient?

Snap [46] is a microkernel networking framework that
implements a range of network functions in userspace moti-
vated by the need of rapid development and high performance
packet processing in a private cloud. As NetKernel’s design
space and design choice are significantly different, it achieves
many advantages that Snap does not target, such as multiplex-
ing, porting a network stack across OSes or from kernel to user
space, enforcing different network stack for different VMs, etc.

Lastly, our earlier papers [49], [50] present the vision of
NetKernel and part of the work. In this paper we extend the
conference version [49] with a bandwidth sharing use case
and more benchmarks to demonstrate the performance and
scalability.

X. CONCLUSION

We have presented NetKernel, a system that decouples the
network stack from the guest, therefore making it part of the
virtualized infrastructure in the cloud. NetKernel improves
network management efficiency for operator, and provides
deployment and performance gains for users. We experimen-
tally demonstrated new use cases enabled by NetKernel that
are otherwise difficult to realize in the current architecture.
Through testbed evaluation with 100G NICs, we showed that
NetKernel achieves the same performance and isolation as
today’s cloud.

We focused on efficiency benefits of NetKernel in this
paper since they seem most immediate. The idea of separating
network stack from the guest VM applies to public and private
clouds as well, and brings additional benefits that are more far-
reaching. For example, it facilitates innovation by allowing
new protocols in different layers of the stack to be rapidly
prototyped and experimented. It provides a direct path for
enforcing centralized control, so network functions like failure
detection [27] and monitoring [38], [47] can be integrated into
the network stack implementation. It opens up new design
space to more freely exploit end-point coordination [23], [52],
software-hardware co-design, and programmable data planes
[13], [42]. We encourage the community to explore these
opportunities in the future.
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